chacha-riscv64-v-zbb.pl: better format
[openssl.git] / crypto / ec / ec_mult.c
1 /*
2  * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10
11 /*
12  * ECDSA low level APIs are deprecated for public use, but still ok for
13  * internal use.
14  */
15 #include "internal/deprecated.h"
16
17 #include <string.h>
18 #include <openssl/err.h>
19
20 #include "internal/cryptlib.h"
21 #include "crypto/bn.h"
22 #include "ec_local.h"
23 #include "internal/refcount.h"
24
25 /*
26  * This file implements the wNAF-based interleaving multi-exponentiation method
27  * Formerly at:
28  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
29  * You might now find it here:
30  *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
31  *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
32  * For multiplication with precomputation, we use wNAF splitting, formerly at:
33  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
34  */
35
36 /* structure for precomputed multiples of the generator */
37 struct ec_pre_comp_st {
38     const EC_GROUP *group;      /* parent EC_GROUP object */
39     size_t blocksize;           /* block size for wNAF splitting */
40     size_t numblocks;           /* max. number of blocks for which we have
41                                  * precomputation */
42     size_t w;                   /* window size */
43     EC_POINT **points;          /* array with pre-calculated multiples of
44                                  * generator: 'num' pointers to EC_POINT
45                                  * objects followed by a NULL */
46     size_t num;                 /* numblocks * 2^(w-1) */
47     CRYPTO_REF_COUNT references;
48     CRYPTO_RWLOCK *lock;
49 };
50
51 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
52 {
53     EC_PRE_COMP *ret = NULL;
54
55     if (!group)
56         return NULL;
57
58     ret = OPENSSL_zalloc(sizeof(*ret));
59     if (ret == NULL) {
60         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
61         return ret;
62     }
63
64     ret->group = group;
65     ret->blocksize = 8;         /* default */
66     ret->w = 4;                 /* default */
67     ret->references = 1;
68
69     ret->lock = CRYPTO_THREAD_lock_new();
70     if (ret->lock == NULL) {
71         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
72         OPENSSL_free(ret);
73         return NULL;
74     }
75     return ret;
76 }
77
78 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
79 {
80     int i;
81     if (pre != NULL)
82         CRYPTO_UP_REF(&pre->references, &i, pre->lock);
83     return pre;
84 }
85
86 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
87 {
88     int i;
89
90     if (pre == NULL)
91         return;
92
93     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
94     REF_PRINT_COUNT("EC_ec", pre);
95     if (i > 0)
96         return;
97     REF_ASSERT_ISNT(i < 0);
98
99     if (pre->points != NULL) {
100         EC_POINT **pts;
101
102         for (pts = pre->points; *pts != NULL; pts++)
103             EC_POINT_free(*pts);
104         OPENSSL_free(pre->points);
105     }
106     CRYPTO_THREAD_lock_free(pre->lock);
107     OPENSSL_free(pre);
108 }
109
110 #define EC_POINT_BN_set_flags(P, flags) do { \
111     BN_set_flags((P)->X, (flags)); \
112     BN_set_flags((P)->Y, (flags)); \
113     BN_set_flags((P)->Z, (flags)); \
114 } while(0)
115
116 /*-
117  * This functions computes a single point multiplication over the EC group,
118  * using, at a high level, a Montgomery ladder with conditional swaps, with
119  * various timing attack defenses.
120  *
121  * It performs either a fixed point multiplication
122  *          (scalar * generator)
123  * when point is NULL, or a variable point multiplication
124  *          (scalar * point)
125  * when point is not NULL.
126  *
127  * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
128  * constant time bets are off (where n is the cardinality of the EC group).
129  *
130  * This function expects `group->order` and `group->cardinality` to be well
131  * defined and non-zero: it fails with an error code otherwise.
132  *
133  * NB: This says nothing about the constant-timeness of the ladder step
134  * implementation (i.e., the default implementation is based on EC_POINT_add and
135  * EC_POINT_dbl, which of course are not constant time themselves) or the
136  * underlying multiprecision arithmetic.
137  *
138  * The product is stored in `r`.
139  *
140  * This is an internal function: callers are in charge of ensuring that the
141  * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
142  *
143  * Returns 1 on success, 0 otherwise.
144  */
145 int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
146                               const BIGNUM *scalar, const EC_POINT *point,
147                               BN_CTX *ctx)
148 {
149     int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
150     EC_POINT *p = NULL;
151     EC_POINT *s = NULL;
152     BIGNUM *k = NULL;
153     BIGNUM *lambda = NULL;
154     BIGNUM *cardinality = NULL;
155     int ret = 0;
156
157     /* early exit if the input point is the point at infinity */
158     if (point != NULL && EC_POINT_is_at_infinity(group, point))
159         return EC_POINT_set_to_infinity(group, r);
160
161     if (BN_is_zero(group->order)) {
162         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
163         return 0;
164     }
165     if (BN_is_zero(group->cofactor)) {
166         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR);
167         return 0;
168     }
169
170     BN_CTX_start(ctx);
171
172     if (((p = EC_POINT_new(group)) == NULL)
173         || ((s = EC_POINT_new(group)) == NULL)) {
174         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
175         goto err;
176     }
177
178     if (point == NULL) {
179         if (!EC_POINT_copy(p, group->generator)) {
180             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
181             goto err;
182         }
183     } else {
184         if (!EC_POINT_copy(p, point)) {
185             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
186             goto err;
187         }
188     }
189
190     EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
191     EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
192     EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
193
194     cardinality = BN_CTX_get(ctx);
195     lambda = BN_CTX_get(ctx);
196     k = BN_CTX_get(ctx);
197     if (k == NULL) {
198         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
199         goto err;
200     }
201
202     if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
203         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
204         goto err;
205     }
206
207     /*
208      * Group cardinalities are often on a word boundary.
209      * So when we pad the scalar, some timing diff might
210      * pop if it needs to be expanded due to carries.
211      * So expand ahead of time.
212      */
213     cardinality_bits = BN_num_bits(cardinality);
214     group_top = bn_get_top(cardinality);
215     if ((bn_wexpand(k, group_top + 2) == NULL)
216         || (bn_wexpand(lambda, group_top + 2) == NULL)) {
217         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
218         goto err;
219     }
220
221     if (!BN_copy(k, scalar)) {
222         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
223         goto err;
224     }
225
226     BN_set_flags(k, BN_FLG_CONSTTIME);
227
228     if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
229         /*-
230          * this is an unusual input, and we don't guarantee
231          * constant-timeness
232          */
233         if (!BN_nnmod(k, k, cardinality, ctx)) {
234             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
235             goto err;
236         }
237     }
238
239     if (!BN_add(lambda, k, cardinality)) {
240         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
241         goto err;
242     }
243     BN_set_flags(lambda, BN_FLG_CONSTTIME);
244     if (!BN_add(k, lambda, cardinality)) {
245         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
246         goto err;
247     }
248     /*
249      * lambda := scalar + cardinality
250      * k := scalar + 2*cardinality
251      */
252     kbit = BN_is_bit_set(lambda, cardinality_bits);
253     BN_consttime_swap(kbit, k, lambda, group_top + 2);
254
255     group_top = bn_get_top(group->field);
256     if ((bn_wexpand(s->X, group_top) == NULL)
257         || (bn_wexpand(s->Y, group_top) == NULL)
258         || (bn_wexpand(s->Z, group_top) == NULL)
259         || (bn_wexpand(r->X, group_top) == NULL)
260         || (bn_wexpand(r->Y, group_top) == NULL)
261         || (bn_wexpand(r->Z, group_top) == NULL)
262         || (bn_wexpand(p->X, group_top) == NULL)
263         || (bn_wexpand(p->Y, group_top) == NULL)
264         || (bn_wexpand(p->Z, group_top) == NULL)) {
265         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
266         goto err;
267     }
268
269     /* ensure input point is in affine coords for ladder step efficiency */
270     if (!p->Z_is_one && (group->meth->make_affine == NULL
271                          || !group->meth->make_affine(group, p, ctx))) {
272             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
273             goto err;
274     }
275
276     /* Initialize the Montgomery ladder */
277     if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
278         ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE);
279         goto err;
280     }
281
282     /* top bit is a 1, in a fixed pos */
283     pbit = 1;
284
285 #define EC_POINT_CSWAP(c, a, b, w, t) do {         \
286         BN_consttime_swap(c, (a)->X, (b)->X, w);   \
287         BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
288         BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
289         t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
290         (a)->Z_is_one ^= (t);                      \
291         (b)->Z_is_one ^= (t);                      \
292 } while(0)
293
294     /*-
295      * The ladder step, with branches, is
296      *
297      * k[i] == 0: S = add(R, S), R = dbl(R)
298      * k[i] == 1: R = add(S, R), S = dbl(S)
299      *
300      * Swapping R, S conditionally on k[i] leaves you with state
301      *
302      * k[i] == 0: T, U = R, S
303      * k[i] == 1: T, U = S, R
304      *
305      * Then perform the ECC ops.
306      *
307      * U = add(T, U)
308      * T = dbl(T)
309      *
310      * Which leaves you with state
311      *
312      * k[i] == 0: U = add(R, S), T = dbl(R)
313      * k[i] == 1: U = add(S, R), T = dbl(S)
314      *
315      * Swapping T, U conditionally on k[i] leaves you with state
316      *
317      * k[i] == 0: R, S = T, U
318      * k[i] == 1: R, S = U, T
319      *
320      * Which leaves you with state
321      *
322      * k[i] == 0: S = add(R, S), R = dbl(R)
323      * k[i] == 1: R = add(S, R), S = dbl(S)
324      *
325      * So we get the same logic, but instead of a branch it's a
326      * conditional swap, followed by ECC ops, then another conditional swap.
327      *
328      * Optimization: The end of iteration i and start of i-1 looks like
329      *
330      * ...
331      * CSWAP(k[i], R, S)
332      * ECC
333      * CSWAP(k[i], R, S)
334      * (next iteration)
335      * CSWAP(k[i-1], R, S)
336      * ECC
337      * CSWAP(k[i-1], R, S)
338      * ...
339      *
340      * So instead of two contiguous swaps, you can merge the condition
341      * bits and do a single swap.
342      *
343      * k[i]   k[i-1]    Outcome
344      * 0      0         No Swap
345      * 0      1         Swap
346      * 1      0         Swap
347      * 1      1         No Swap
348      *
349      * This is XOR. pbit tracks the previous bit of k.
350      */
351
352     for (i = cardinality_bits - 1; i >= 0; i--) {
353         kbit = BN_is_bit_set(k, i) ^ pbit;
354         EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
355
356         /* Perform a single step of the Montgomery ladder */
357         if (!ec_point_ladder_step(group, r, s, p, ctx)) {
358             ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE);
359             goto err;
360         }
361         /*
362          * pbit logic merges this cswap with that of the
363          * next iteration
364          */
365         pbit ^= kbit;
366     }
367     /* one final cswap to move the right value into r */
368     EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
369 #undef EC_POINT_CSWAP
370
371     /* Finalize ladder (and recover full point coordinates) */
372     if (!ec_point_ladder_post(group, r, s, p, ctx)) {
373         ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE);
374         goto err;
375     }
376
377     ret = 1;
378
379  err:
380     EC_POINT_free(p);
381     EC_POINT_clear_free(s);
382     BN_CTX_end(ctx);
383
384     return ret;
385 }
386
387 #undef EC_POINT_BN_set_flags
388
389 /*
390  * Table could be optimised for the wNAF-based implementation,
391  * sometimes smaller windows will give better performance (thus the
392  * boundaries should be increased)
393  */
394 #define EC_window_bits_for_scalar_size(b) \
395                 ((size_t) \
396                  ((b) >= 2000 ? 6 : \
397                   (b) >=  800 ? 5 : \
398                   (b) >=  300 ? 4 : \
399                   (b) >=   70 ? 3 : \
400                   (b) >=   20 ? 2 : \
401                   1))
402
403 /*-
404  * Compute
405  *      \sum scalars[i]*points[i],
406  * also including
407  *      scalar*generator
408  * in the addition if scalar != NULL
409  */
410 int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
411                      size_t num, const EC_POINT *points[],
412                      const BIGNUM *scalars[], BN_CTX *ctx)
413 {
414     const EC_POINT *generator = NULL;
415     EC_POINT *tmp = NULL;
416     size_t totalnum;
417     size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
418     size_t pre_points_per_block = 0;
419     size_t i, j;
420     int k;
421     int r_is_inverted = 0;
422     int r_is_at_infinity = 1;
423     size_t *wsize = NULL;       /* individual window sizes */
424     signed char **wNAF = NULL;  /* individual wNAFs */
425     size_t *wNAF_len = NULL;
426     size_t max_len = 0;
427     size_t num_val;
428     EC_POINT **val = NULL;      /* precomputation */
429     EC_POINT **v;
430     EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
431                                  * 'pre_comp->points' */
432     const EC_PRE_COMP *pre_comp = NULL;
433     int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
434                                  * treated like other scalars, i.e.
435                                  * precomputation is not available */
436     int ret = 0;
437
438     if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
439         /*-
440          * Handle the common cases where the scalar is secret, enforcing a
441          * scalar multiplication implementation based on a Montgomery ladder,
442          * with various timing attack defenses.
443          */
444         if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
445             /*-
446              * In this case we want to compute scalar * GeneratorPoint: this
447              * codepath is reached most prominently by (ephemeral) key
448              * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
449              * ECDH keygen/first half), where the scalar is always secret. This
450              * is why we ignore if BN_FLG_CONSTTIME is actually set and we
451              * always call the ladder version.
452              */
453             return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
454         }
455         if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
456             /*-
457              * In this case we want to compute scalar * VariablePoint: this
458              * codepath is reached most prominently by the second half of ECDH,
459              * where the secret scalar is multiplied by the peer's public point.
460              * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
461              * actually set and we always call the ladder version.
462              */
463             return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0],
464                                              ctx);
465         }
466     }
467
468     if (scalar != NULL) {
469         generator = EC_GROUP_get0_generator(group);
470         if (generator == NULL) {
471             ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
472             goto err;
473         }
474
475         /* look if we can use precomputed multiples of generator */
476
477         pre_comp = group->pre_comp.ec;
478         if (pre_comp && pre_comp->numblocks
479             && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
480                 0)) {
481             blocksize = pre_comp->blocksize;
482
483             /*
484              * determine maximum number of blocks that wNAF splitting may
485              * yield (NB: maximum wNAF length is bit length plus one)
486              */
487             numblocks = (BN_num_bits(scalar) / blocksize) + 1;
488
489             /*
490              * we cannot use more blocks than we have precomputation for
491              */
492             if (numblocks > pre_comp->numblocks)
493                 numblocks = pre_comp->numblocks;
494
495             pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
496
497             /* check that pre_comp looks sane */
498             if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
499                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
500                 goto err;
501             }
502         } else {
503             /* can't use precomputation */
504             pre_comp = NULL;
505             numblocks = 1;
506             num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
507                                  * 'scalars' */
508         }
509     }
510
511     totalnum = num + numblocks;
512
513     wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
514     wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
515     /* include space for pivot */
516     wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
517     val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
518
519     /* Ensure wNAF is initialised in case we end up going to err */
520     if (wNAF != NULL)
521         wNAF[0] = NULL;         /* preliminary pivot */
522
523     if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
524         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
525         goto err;
526     }
527
528     /*
529      * num_val will be the total number of temporarily precomputed points
530      */
531     num_val = 0;
532
533     for (i = 0; i < num + num_scalar; i++) {
534         size_t bits;
535
536         bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
537         wsize[i] = EC_window_bits_for_scalar_size(bits);
538         num_val += (size_t)1 << (wsize[i] - 1);
539         wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
540         wNAF[i] =
541             bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
542                             &wNAF_len[i]);
543         if (wNAF[i] == NULL)
544             goto err;
545         if (wNAF_len[i] > max_len)
546             max_len = wNAF_len[i];
547     }
548
549     if (numblocks) {
550         /* we go here iff scalar != NULL */
551
552         if (pre_comp == NULL) {
553             if (num_scalar != 1) {
554                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
555                 goto err;
556             }
557             /* we have already generated a wNAF for 'scalar' */
558         } else {
559             signed char *tmp_wNAF = NULL;
560             size_t tmp_len = 0;
561
562             if (num_scalar != 0) {
563                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
564                 goto err;
565             }
566
567             /*
568              * use the window size for which we have precomputation
569              */
570             wsize[num] = pre_comp->w;
571             tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
572             if (!tmp_wNAF)
573                 goto err;
574
575             if (tmp_len <= max_len) {
576                 /*
577                  * One of the other wNAFs is at least as long as the wNAF
578                  * belonging to the generator, so wNAF splitting will not buy
579                  * us anything.
580                  */
581
582                 numblocks = 1;
583                 totalnum = num + 1; /* don't use wNAF splitting */
584                 wNAF[num] = tmp_wNAF;
585                 wNAF[num + 1] = NULL;
586                 wNAF_len[num] = tmp_len;
587                 /*
588                  * pre_comp->points starts with the points that we need here:
589                  */
590                 val_sub[num] = pre_comp->points;
591             } else {
592                 /*
593                  * don't include tmp_wNAF directly into wNAF array - use wNAF
594                  * splitting and include the blocks
595                  */
596
597                 signed char *pp;
598                 EC_POINT **tmp_points;
599
600                 if (tmp_len < numblocks * blocksize) {
601                     /*
602                      * possibly we can do with fewer blocks than estimated
603                      */
604                     numblocks = (tmp_len + blocksize - 1) / blocksize;
605                     if (numblocks > pre_comp->numblocks) {
606                         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
607                         OPENSSL_free(tmp_wNAF);
608                         goto err;
609                     }
610                     totalnum = num + numblocks;
611                 }
612
613                 /* split wNAF in 'numblocks' parts */
614                 pp = tmp_wNAF;
615                 tmp_points = pre_comp->points;
616
617                 for (i = num; i < totalnum; i++) {
618                     if (i < totalnum - 1) {
619                         wNAF_len[i] = blocksize;
620                         if (tmp_len < blocksize) {
621                             ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
622                             OPENSSL_free(tmp_wNAF);
623                             goto err;
624                         }
625                         tmp_len -= blocksize;
626                     } else
627                         /*
628                          * last block gets whatever is left (this could be
629                          * more or less than 'blocksize'!)
630                          */
631                         wNAF_len[i] = tmp_len;
632
633                     wNAF[i + 1] = NULL;
634                     wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
635                     if (wNAF[i] == NULL) {
636                         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
637                         OPENSSL_free(tmp_wNAF);
638                         goto err;
639                     }
640                     memcpy(wNAF[i], pp, wNAF_len[i]);
641                     if (wNAF_len[i] > max_len)
642                         max_len = wNAF_len[i];
643
644                     if (*tmp_points == NULL) {
645                         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
646                         OPENSSL_free(tmp_wNAF);
647                         goto err;
648                     }
649                     val_sub[i] = tmp_points;
650                     tmp_points += pre_points_per_block;
651                     pp += blocksize;
652                 }
653                 OPENSSL_free(tmp_wNAF);
654             }
655         }
656     }
657
658     /*
659      * All points we precompute now go into a single array 'val'.
660      * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
661      * subarray of 'pre_comp->points' if we already have precomputation.
662      */
663     val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
664     if (val == NULL) {
665         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
666         goto err;
667     }
668     val[num_val] = NULL;        /* pivot element */
669
670     /* allocate points for precomputation */
671     v = val;
672     for (i = 0; i < num + num_scalar; i++) {
673         val_sub[i] = v;
674         for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
675             *v = EC_POINT_new(group);
676             if (*v == NULL)
677                 goto err;
678             v++;
679         }
680     }
681     if (!(v == val + num_val)) {
682         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
683         goto err;
684     }
685
686     if ((tmp = EC_POINT_new(group)) == NULL)
687         goto err;
688
689     /*-
690      * prepare precomputed values:
691      *    val_sub[i][0] :=     points[i]
692      *    val_sub[i][1] := 3 * points[i]
693      *    val_sub[i][2] := 5 * points[i]
694      *    ...
695      */
696     for (i = 0; i < num + num_scalar; i++) {
697         if (i < num) {
698             if (!EC_POINT_copy(val_sub[i][0], points[i]))
699                 goto err;
700         } else {
701             if (!EC_POINT_copy(val_sub[i][0], generator))
702                 goto err;
703         }
704
705         if (wsize[i] > 1) {
706             if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
707                 goto err;
708             for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
709                 if (!EC_POINT_add
710                     (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
711                     goto err;
712             }
713         }
714     }
715
716     if (group->meth->points_make_affine == NULL
717         || !group->meth->points_make_affine(group, num_val, val, ctx))
718         goto err;
719
720     r_is_at_infinity = 1;
721
722     for (k = max_len - 1; k >= 0; k--) {
723         if (!r_is_at_infinity) {
724             if (!EC_POINT_dbl(group, r, r, ctx))
725                 goto err;
726         }
727
728         for (i = 0; i < totalnum; i++) {
729             if (wNAF_len[i] > (size_t)k) {
730                 int digit = wNAF[i][k];
731                 int is_neg;
732
733                 if (digit) {
734                     is_neg = digit < 0;
735
736                     if (is_neg)
737                         digit = -digit;
738
739                     if (is_neg != r_is_inverted) {
740                         if (!r_is_at_infinity) {
741                             if (!EC_POINT_invert(group, r, ctx))
742                                 goto err;
743                         }
744                         r_is_inverted = !r_is_inverted;
745                     }
746
747                     /* digit > 0 */
748
749                     if (r_is_at_infinity) {
750                         if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
751                             goto err;
752
753                         /*-
754                          * Apply coordinate blinding for EC_POINT.
755                          *
756                          * The underlying EC_METHOD can optionally implement this function:
757                          * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on
758                          * success or if coordinate blinding is not implemented for this
759                          * group.
760                          */
761                         if (!ossl_ec_point_blind_coordinates(group, r, ctx)) {
762                             ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE);
763                             goto err;
764                         }
765
766                         r_is_at_infinity = 0;
767                     } else {
768                         if (!EC_POINT_add
769                             (group, r, r, val_sub[i][digit >> 1], ctx))
770                             goto err;
771                     }
772                 }
773             }
774         }
775     }
776
777     if (r_is_at_infinity) {
778         if (!EC_POINT_set_to_infinity(group, r))
779             goto err;
780     } else {
781         if (r_is_inverted)
782             if (!EC_POINT_invert(group, r, ctx))
783                 goto err;
784     }
785
786     ret = 1;
787
788  err:
789     EC_POINT_free(tmp);
790     OPENSSL_free(wsize);
791     OPENSSL_free(wNAF_len);
792     if (wNAF != NULL) {
793         signed char **w;
794
795         for (w = wNAF; *w != NULL; w++)
796             OPENSSL_free(*w);
797
798         OPENSSL_free(wNAF);
799     }
800     if (val != NULL) {
801         for (v = val; *v != NULL; v++)
802             EC_POINT_clear_free(*v);
803
804         OPENSSL_free(val);
805     }
806     OPENSSL_free(val_sub);
807     return ret;
808 }
809
810 /*-
811  * ossl_ec_wNAF_precompute_mult()
812  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
813  * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul().
814  *
815  * 'pre_comp->points' is an array of multiples of the generator
816  * of the following form:
817  * points[0] =     generator;
818  * points[1] = 3 * generator;
819  * ...
820  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
821  * points[2^(w-1)]   =     2^blocksize * generator;
822  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
823  * ...
824  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
825  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
826  * ...
827  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
828  * points[2^(w-1)*numblocks]       = NULL
829  */
830 int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
831 {
832     const EC_POINT *generator;
833     EC_POINT *tmp_point = NULL, *base = NULL, **var;
834     const BIGNUM *order;
835     size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
836     EC_POINT **points = NULL;
837     EC_PRE_COMP *pre_comp;
838     int ret = 0;
839     int used_ctx = 0;
840 #ifndef FIPS_MODULE
841     BN_CTX *new_ctx = NULL;
842 #endif
843
844     /* if there is an old EC_PRE_COMP object, throw it away */
845     EC_pre_comp_free(group);
846     if ((pre_comp = ec_pre_comp_new(group)) == NULL)
847         return 0;
848
849     generator = EC_GROUP_get0_generator(group);
850     if (generator == NULL) {
851         ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
852         goto err;
853     }
854
855 #ifndef FIPS_MODULE
856     if (ctx == NULL)
857         ctx = new_ctx = BN_CTX_new();
858 #endif
859     if (ctx == NULL)
860         goto err;
861
862     BN_CTX_start(ctx);
863     used_ctx = 1;
864
865     order = EC_GROUP_get0_order(group);
866     if (order == NULL)
867         goto err;
868     if (BN_is_zero(order)) {
869         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
870         goto err;
871     }
872
873     bits = BN_num_bits(order);
874     /*
875      * The following parameters mean we precompute (approximately) one point
876      * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
877      * bit lengths, other parameter combinations might provide better
878      * efficiency.
879      */
880     blocksize = 8;
881     w = 4;
882     if (EC_window_bits_for_scalar_size(bits) > w) {
883         /* let's not make the window too small ... */
884         w = EC_window_bits_for_scalar_size(bits);
885     }
886
887     numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
888                                                      * to use for wNAF
889                                                      * splitting */
890
891     pre_points_per_block = (size_t)1 << (w - 1);
892     num = pre_points_per_block * numblocks; /* number of points to compute
893                                              * and store */
894
895     points = OPENSSL_malloc(sizeof(*points) * (num + 1));
896     if (points == NULL) {
897         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
898         goto err;
899     }
900
901     var = points;
902     var[num] = NULL;            /* pivot */
903     for (i = 0; i < num; i++) {
904         if ((var[i] = EC_POINT_new(group)) == NULL) {
905             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
906             goto err;
907         }
908     }
909
910     if ((tmp_point = EC_POINT_new(group)) == NULL
911         || (base = EC_POINT_new(group)) == NULL) {
912         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
913         goto err;
914     }
915
916     if (!EC_POINT_copy(base, generator))
917         goto err;
918
919     /* do the precomputation */
920     for (i = 0; i < numblocks; i++) {
921         size_t j;
922
923         if (!EC_POINT_dbl(group, tmp_point, base, ctx))
924             goto err;
925
926         if (!EC_POINT_copy(*var++, base))
927             goto err;
928
929         for (j = 1; j < pre_points_per_block; j++, var++) {
930             /*
931              * calculate odd multiples of the current base point
932              */
933             if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
934                 goto err;
935         }
936
937         if (i < numblocks - 1) {
938             /*
939              * get the next base (multiply current one by 2^blocksize)
940              */
941             size_t k;
942
943             if (blocksize <= 2) {
944                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
945                 goto err;
946             }
947
948             if (!EC_POINT_dbl(group, base, tmp_point, ctx))
949                 goto err;
950             for (k = 2; k < blocksize; k++) {
951                 if (!EC_POINT_dbl(group, base, base, ctx))
952                     goto err;
953             }
954         }
955     }
956
957     if (group->meth->points_make_affine == NULL
958         || !group->meth->points_make_affine(group, num, points, ctx))
959         goto err;
960
961     pre_comp->group = group;
962     pre_comp->blocksize = blocksize;
963     pre_comp->numblocks = numblocks;
964     pre_comp->w = w;
965     pre_comp->points = points;
966     points = NULL;
967     pre_comp->num = num;
968     SETPRECOMP(group, ec, pre_comp);
969     pre_comp = NULL;
970     ret = 1;
971
972  err:
973     if (used_ctx)
974         BN_CTX_end(ctx);
975 #ifndef FIPS_MODULE
976     BN_CTX_free(new_ctx);
977 #endif
978     EC_ec_pre_comp_free(pre_comp);
979     if (points) {
980         EC_POINT **p;
981
982         for (p = points; *p != NULL; p++)
983             EC_POINT_free(*p);
984         OPENSSL_free(points);
985     }
986     EC_POINT_free(tmp_point);
987     EC_POINT_free(base);
988     return ret;
989 }
990
991 int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group)
992 {
993     return HAVEPRECOMP(group, ec);
994 }