ssl/statem: Replace size_t with int and add the checks
[openssl.git] / doc / man3 / CRYPTO_THREAD_run_once.pod
1 =pod
2
3 =head1 NAME
4
5 CRYPTO_THREAD_run_once,
6 CRYPTO_THREAD_lock_new, CRYPTO_THREAD_read_lock, CRYPTO_THREAD_write_lock,
7 CRYPTO_THREAD_unlock, CRYPTO_THREAD_lock_free,
8 CRYPTO_atomic_add, CRYPTO_atomic_or, CRYPTO_atomic_load, CRYPTO_atomic_store,
9 CRYPTO_atomic_load_int,
10 OSSL_set_max_threads, OSSL_get_max_threads,
11 OSSL_get_thread_support_flags, OSSL_THREAD_SUPPORT_FLAG_THREAD_POOL,
12 OSSL_THREAD_SUPPORT_FLAG_DEFAULT_SPAWN - OpenSSL thread support
13
14 =head1 SYNOPSIS
15
16  #include <openssl/crypto.h>
17
18  CRYPTO_ONCE CRYPTO_ONCE_STATIC_INIT;
19  int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void));
20
21  CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void);
22  int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock);
23  int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock);
24  int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock);
25  void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock);
26
27  int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock);
28  int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
29                       CRYPTO_RWLOCK *lock);
30  int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock);
31  int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock);
32  int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock);
33
34  int OSSL_set_max_threads(OSSL_LIB_CTX *ctx, uint64_t max_threads);
35  uint64_t OSSL_get_max_threads(OSSL_LIB_CTX *ctx);
36  uint32_t OSSL_get_thread_support_flags(void);
37
38  #define OSSL_THREAD_SUPPORT_FLAG_THREAD_POOL
39  #define OSSL_THREAD_SUPPORT_FLAG_DEFAULT_SPAWN
40
41 =head1 DESCRIPTION
42
43 OpenSSL can be safely used in multi-threaded applications provided that
44 support for the underlying OS threading API is built-in. Currently, OpenSSL
45 supports the pthread and Windows APIs. OpenSSL can also be built without
46 any multi-threading support, for example on platforms that don't provide
47 any threading support or that provide a threading API that is not yet
48 supported by OpenSSL.
49
50 The following multi-threading function are provided:
51
52 =over 2
53
54 =item *
55
56 CRYPTO_THREAD_run_once() can be used to perform one-time initialization.
57 The I<once> argument must be a pointer to a static object of type
58 B<CRYPTO_ONCE> that was statically initialized to the value
59 B<CRYPTO_ONCE_STATIC_INIT>.
60 The I<init> argument is a pointer to a function that performs the desired
61 exactly once initialization.
62 In particular, this can be used to allocate locks in a thread-safe manner,
63 which can then be used with the locking functions below.
64
65 =item *
66
67 CRYPTO_THREAD_lock_new() allocates, initializes and returns a new read/write
68 lock.
69
70 =item *
71
72 CRYPTO_THREAD_read_lock() locks the provided I<lock> for reading.
73
74 =item *
75
76 CRYPTO_THREAD_write_lock() locks the provided I<lock> for writing.
77
78 =item *
79
80 CRYPTO_THREAD_unlock() unlocks the previously locked I<lock>.
81
82 =item *
83
84 CRYPTO_THREAD_lock_free() frees the provided I<lock>.
85
86 =item *
87
88 CRYPTO_atomic_add() atomically adds I<amount> to I<*val> and returns the
89 result of the operation in I<*ret>. I<lock> will be locked, unless atomic
90 operations are supported on the specific platform. Because of this, if a
91 variable is modified by CRYPTO_atomic_add() then CRYPTO_atomic_add() must
92 be the only way that the variable is modified. If atomic operations are not
93 supported and I<lock> is NULL, then the function will fail.
94
95 =item *
96
97 CRYPTO_atomic_or() performs an atomic bitwise or of I<op> and I<*val> and stores
98 the result back in I<*val>. It also returns the result of the operation in
99 I<*ret>. I<lock> will be locked, unless atomic operations are supported on the
100 specific platform. Because of this, if a variable is modified by
101 CRYPTO_atomic_or() or read by CRYPTO_atomic_load() then CRYPTO_atomic_or() must
102 be the only way that the variable is modified. If atomic operations are not
103 supported and I<lock> is NULL, then the function will fail.
104
105 =item *
106
107 CRYPTO_atomic_load() atomically loads the contents of I<*val> into I<*ret>.
108 I<lock> will be locked, unless atomic operations are supported on the specific
109 platform. Because of this, if a variable is modified by CRYPTO_atomic_or() or
110 read by CRYPTO_atomic_load() then CRYPTO_atomic_load() must be the only way that
111 the variable is read. If atomic operations are not supported and I<lock> is
112 NULL, then the function will fail.
113
114 =item *
115
116 CRYPTO_atomic_store() atomically stores the contents of I<val> into I<*dst>.
117 I<lock> will be locked, unless atomic operations are supported on the specific
118 plaform.
119
120 =item *
121
122 CRYPTO_atomic_load_int() works identically to CRYPTO_atomic_load() but operates
123 on an I<int> value instead of a I<uint64_t> value.
124
125 =item *
126
127 OSSL_set_max_threads() sets the maximum number of threads to be used by the
128 thread pool. If the argument is 0, thread pooling is disabled. OpenSSL will
129 not create any threads and existing threads in the thread pool will be torn
130 down. The maximum thread count is a limit, not a target. Threads will not be
131 spawned unless (and until) there is demand. Thread polling is disabled by
132 default. To enable threading you must call OSSL_set_max_threads() explicitly.
133 Under no circumstances is this done for you.
134
135 =item *
136
137 OSSL_get_thread_support_flags() determines what thread pool functionality
138 OpenSSL is compiled with and is able to support in the current run time
139 environment. B<OSSL_THREAD_SUPPORT_FLAG_THREAD_POOL> indicates that the base
140 thread pool functionality is available, and
141 B<OSSL_THREAD_SUPPORT_FLAG_DEFAULT_SPAWN> indicates that the default thread pool
142 model is available. The default thread pool model is currently the only model
143 available, therefore both of these flags must be set for thread pool
144 functionality to be used.
145
146 =back
147
148 =head1 RETURN VALUES
149
150 CRYPTO_THREAD_run_once() returns 1 on success, or 0 on error.
151
152 CRYPTO_THREAD_lock_new() returns the allocated lock, or NULL on error.
153
154 CRYPTO_THREAD_lock_free() returns no value.
155
156 OSSL_set_max_threads() returns 1 on success and 0 on failure. Returns failure
157 if OpenSSL-managed thread pooling is not supported (for example, if it is not
158 supported on the current platform, or because OpenSSL is not built with the
159 necessary support).
160
161 OSSL_get_max_threads() returns the maximum number of threads currently allowed
162 to be used by the thread pool. If thread pooling is disabled or not available,
163 returns 0.
164
165 OSSL_get_thread_support_flags() returns zero or more B<OSSL_THREAD_SUPPORT_FLAG>
166 values.
167
168 The other functions return 1 on success, or 0 on error.
169
170 =head1 NOTES
171
172 On Windows platforms the CRYPTO_THREAD_* types and functions in the
173 F<< <openssl/crypto.h> >> header are dependent on some of the types
174 customarily made available by including F<< <windows.h> >>. The application
175 developer is likely to require control over when the latter is included,
176 commonly as one of the first included headers. Therefore, it is defined as an
177 application developer's responsibility to include F<< <windows.h> >> prior to
178 F<< <openssl/crypto.h> >> where use of CRYPTO_THREAD_* types and functions is
179 required.
180
181 =head1 EXAMPLES
182
183 You can find out if OpenSSL was configured with thread support:
184
185  #include <openssl/opensslconf.h>
186  #if defined(OPENSSL_THREADS)
187      /* thread support enabled */
188  #else
189      /* no thread support */
190  #endif
191
192 This example safely initializes and uses a lock.
193
194  #ifdef _WIN32
195  # include <windows.h>
196  #endif
197  #include <openssl/crypto.h>
198
199  static CRYPTO_ONCE once = CRYPTO_ONCE_STATIC_INIT;
200  static CRYPTO_RWLOCK *lock;
201
202  static void myinit(void)
203  {
204      lock = CRYPTO_THREAD_lock_new();
205  }
206
207  static int mylock(void)
208  {
209      if (!CRYPTO_THREAD_run_once(&once, void init) || lock == NULL)
210          return 0;
211      return CRYPTO_THREAD_write_lock(lock);
212  }
213
214  static int myunlock(void)
215  {
216      return CRYPTO_THREAD_unlock(lock);
217  }
218
219  int serialized(void)
220  {
221      int ret = 0;
222
223      if (mylock()) {
224          /* Your code here, do not return without releasing the lock! */
225          ret = ... ;
226      }
227      myunlock();
228      return ret;
229  }
230
231 Finalization of locks is an advanced topic, not covered in this example.
232 This can only be done at process exit or when a dynamically loaded library is
233 no longer in use and is unloaded.
234 The simplest solution is to just "leak" the lock in applications and not
235 repeatedly load/unload shared libraries that allocate locks.
236
237 =head1 SEE ALSO
238
239 L<crypto(7)>, L<openssl-threads(7)>.
240
241 =head1 HISTORY
242
243 CRYPTO_atomic_store() was added in OpenSSL 3.4.0
244
245 =head1 COPYRIGHT
246
247 Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.
248
249 Licensed under the Apache License 2.0 (the "License").  You may not use
250 this file except in compliance with the License.  You can obtain a copy
251 in the file LICENSE in the source distribution or at
252 L<https://www.openssl.org/source/license.html>.
253
254 =cut