pem_password_cb(3): References to other man pages
[openssl.git] / doc / man3 / PEM_read_bio_PrivateKey.pod
1 =pod
2
3 =head1 NAME
4
5 pem_password_cb,
6 PEM_read_bio_PrivateKey_ex, PEM_read_bio_PrivateKey,
7 PEM_read_PrivateKey_ex, PEM_read_PrivateKey,
8 PEM_write_bio_PrivateKey_ex, PEM_write_bio_PrivateKey,
9 PEM_write_bio_PrivateKey_traditional,
10 PEM_write_PrivateKey_ex, PEM_write_PrivateKey,
11 PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
12 PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
13 PEM_read_bio_PUBKEY_ex, PEM_read_bio_PUBKEY,
14 PEM_read_PUBKEY_ex, PEM_read_PUBKEY,
15 PEM_write_bio_PUBKEY_ex, PEM_write_bio_PUBKEY,
16 PEM_write_PUBKEY_ex, PEM_write_PUBKEY,
17 PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
18 PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
19 PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
20 PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
21 PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
22 PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
23 PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
24 PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters_ex, PEM_read_bio_Parameters,
25 PEM_write_bio_Parameters, PEM_read_bio_DSAparams, PEM_read_DSAparams,
26 PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
27 PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
28 PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
29 PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
30 PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
31 PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
32 PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
33 PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
34 PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
35
36 =head1 SYNOPSIS
37
38  #include <openssl/pem.h>
39
40  typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
41
42  EVP_PKEY *PEM_read_bio_PrivateKey_ex(BIO *bp, EVP_PKEY **x,
43                                       pem_password_cb *cb, void *u,
44                                       OSSL_LIB_CTX *libctx, const char *propq);
45  EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
46                                    pem_password_cb *cb, void *u);
47  EVP_PKEY *PEM_read_PrivateKey_ex(FILE *fp, EVP_PKEY **x, pem_password_cb *cb,
48                                   void *u, OSSL_LIB_CTX *libctx,
49                                   const char *propq);
50  EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
51                                pem_password_cb *cb, void *u);
52  int PEM_write_bio_PrivateKey_ex(BIO *bp, const EVP_PKEY *x,
53                                  const EVP_CIPHER *enc,
54                                  unsigned char *kstr, int klen,
55                                  pem_password_cb *cb, void *u,
56                                  OSSL_LIB_CTX *libctx, const char *propq);
57  int PEM_write_bio_PrivateKey(BIO *bp, const EVP_PKEY *x, const EVP_CIPHER *enc,
58                               unsigned char *kstr, int klen,
59                               pem_password_cb *cb, void *u);
60  int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
61                                           const EVP_CIPHER *enc,
62                                           unsigned char *kstr, int klen,
63                                           pem_password_cb *cb, void *u);
64  int PEM_write_PrivateKey_ex(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
65                              unsigned char *kstr, int klen,
66                              pem_password_cb *cb, void *u,
67                              OSSL_LIB_CTX *libctx, const char *propq);
68  int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
69                           unsigned char *kstr, int klen,
70                           pem_password_cb *cb, void *u);
71  int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
72                                    char *kstr, int klen,
73                                    pem_password_cb *cb, void *u);
74  int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
75                                char *kstr, int klen,
76                                pem_password_cb *cb, void *u);
77  int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, const EVP_PKEY *x, int nid,
78                                        char *kstr, int klen,
79                                        pem_password_cb *cb, void *u);
80  int PEM_write_PKCS8PrivateKey_nid(FILE *fp, const EVP_PKEY *x, int nid,
81                                    char *kstr, int klen,
82                                    pem_password_cb *cb, void *u);
83
84  EVP_PKEY *PEM_read_bio_PUBKEY_ex(BIO *bp, EVP_PKEY **x,
85                                   pem_password_cb *cb, void *u,
86                                   OSSL_LIB_CTX *libctx, const char *propq);
87  EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
88                                pem_password_cb *cb, void *u);
89  EVP_PKEY *PEM_read_PUBKEY_ex(FILE *fp, EVP_PKEY **x,
90                               pem_password_cb *cb, void *u,
91                               OSSL_LIB_CTX *libctx, const char *propq);
92  EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
93                            pem_password_cb *cb, void *u);
94  int PEM_write_bio_PUBKEY_ex(BIO *bp, EVP_PKEY *x,
95                              OSSL_LIB_CTX *libctx, const char *propq);
96  int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
97  int PEM_write_PUBKEY_ex(FILE *fp, EVP_PKEY *x,
98                          OSSL_LIB_CTX *libctx, const char *propq);
99  int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
100
101  EVP_PKEY *PEM_read_bio_Parameters_ex(BIO *bp, EVP_PKEY **x,
102                                       OSSL_LIB_CTX *libctx, const char *propq);
103  EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x);
104  int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x);
105
106  X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
107  X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
108  int PEM_write_bio_X509(BIO *bp, X509 *x);
109  int PEM_write_X509(FILE *fp, X509 *x);
110
111  X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
112  X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
113  int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
114  int PEM_write_X509_AUX(FILE *fp, X509 *x);
115
116  X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
117                                  pem_password_cb *cb, void *u);
118  X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
119                              pem_password_cb *cb, void *u);
120  int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
121  int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
122  int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
123  int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
124
125  X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
126                                  pem_password_cb *cb, void *u);
127  X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
128                              pem_password_cb *cb, void *u);
129  int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
130  int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
131
132  PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
133  PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
134  int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
135  int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
136
137 The following functions have been deprecated since OpenSSL 3.0, and can be
138 hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
139 see L<openssl_user_macros(7)>:
140
141  RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
142                                  pem_password_cb *cb, void *u);
143  RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
144                              pem_password_cb *cb, void *u);
145  int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
146                                  unsigned char *kstr, int klen,
147                                  pem_password_cb *cb, void *u);
148  int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
149                              unsigned char *kstr, int klen,
150                              pem_password_cb *cb, void *u);
151
152  RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
153                                 pem_password_cb *cb, void *u);
154  RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
155                             pem_password_cb *cb, void *u);
156  int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
157  int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
158
159  RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
160                               pem_password_cb *cb, void *u);
161  RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
162                           pem_password_cb *cb, void *u);
163  int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
164  int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
165
166  DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
167                                  pem_password_cb *cb, void *u);
168  DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
169                              pem_password_cb *cb, void *u);
170  int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
171                                  unsigned char *kstr, int klen,
172                                  pem_password_cb *cb, void *u);
173  int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
174                              unsigned char *kstr, int klen,
175                              pem_password_cb *cb, void *u);
176
177  DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
178                               pem_password_cb *cb, void *u);
179  DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
180                           pem_password_cb *cb, void *u);
181  int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
182  int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
183  DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
184  DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
185  int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
186  int PEM_write_DSAparams(FILE *fp, DSA *x);
187
188  DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
189  DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
190  int PEM_write_bio_DHparams(BIO *bp, DH *x);
191  int PEM_write_DHparams(FILE *fp, DH *x);
192
193 =head1 DESCRIPTION
194
195 All of the functions described on this page that have a I<TYPE> of B<DH>, B<DSA>
196 and B<RSA> are deprecated. Applications should use L<OSSL_ENCODER_to_bio(3)> and
197 L<OSSL_DECODER_from_bio(3)> instead.
198
199 The PEM functions read or write structures in PEM format. In
200 this sense PEM format is simply base64 encoded data surrounded
201 by header lines.
202
203 For more details about the meaning of arguments see the
204 B<PEM FUNCTION ARGUMENTS> section.
205
206 Each operation has four functions associated with it. For
207 brevity the term "B<I<TYPE>> functions" will be used below to collectively
208 refer to the B<PEM_read_bio_I<TYPE>>(), B<PEM_read_I<TYPE>>(),
209 B<PEM_write_bio_I<TYPE>>(), and B<PEM_write_I<TYPE>>() functions.
210
211 Some operations have additional variants that take a library context I<libctx>
212 and a property query string I<propq>. The B<X509>, B<X509_REQ> and B<X509_CRL>
213 objects may have an associated library context or property query string but
214 there are no variants of these functions that take a library context or property
215 query string parameter. In this case it is possible to set the appropriate
216 library context or property query string by creating an empty B<X509>,
217 B<X509_REQ> or B<X509_CRL> object using L<X509_new_ex(3)>, L<X509_REQ_new_ex(3)>
218 or L<X509_CRL_new_ex(3)> respectively. Then pass the empty object as a parameter
219 to the relevant PEM function. See the L</EXAMPLES> section below.
220
221 The B<PrivateKey> functions read or write a private key in PEM format using
222 an EVP_PKEY structure. The write routines use PKCS#8 private key format and are
223 equivalent to PEM_write_bio_PKCS8PrivateKey(). The read functions transparently
224 handle traditional and PKCS#8 format encrypted and unencrypted keys.
225
226 PEM_write_bio_PrivateKey_traditional() writes out a private key in the
227 "traditional" format with a simple private key marker and should only
228 be used for compatibility with legacy programs.
229
230 PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private
231 key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using
232 PKCS#5 v2.0 password based encryption algorithms. The I<cipher> argument
233 specifies the encryption algorithm to use: unlike some other PEM routines the
234 encryption is applied at the PKCS#8 level and not in the PEM headers. If
235 I<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
236 structure is used instead.
237
238 PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
239 also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
240 it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
241 to use is specified in the I<nid> parameter and should be the NID of the
242 corresponding OBJECT IDENTIFIER (see NOTES section).
243
244 The B<PUBKEY> functions process a public key using an EVP_PKEY
245 structure. The public key is encoded as a SubjectPublicKeyInfo
246 structure.
247
248 The B<RSAPrivateKey> functions process an RSA private key using an
249 RSA structure. The write routines uses traditional format. The read
250 routines handles the same formats as the B<PrivateKey>
251 functions but an error occurs if the private key is not RSA.
252
253 The B<RSAPublicKey> functions process an RSA public key using an
254 RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
255 structure.
256
257 The B<RSA_PUBKEY> functions also process an RSA public key using
258 an RSA structure. However, the public key is encoded using a
259 SubjectPublicKeyInfo structure and an error occurs if the public
260 key is not RSA.
261
262 The B<DSAPrivateKey> functions process a DSA private key using a
263 DSA structure. The write routines uses traditional format. The read
264 routines handles the same formats as the B<PrivateKey>
265 functions but an error occurs if the private key is not DSA.
266
267 The B<DSA_PUBKEY> functions process a DSA public key using
268 a DSA structure. The public key is encoded using a
269 SubjectPublicKeyInfo structure and an error occurs if the public
270 key is not DSA.
271
272 The B<Parameters> functions read or write key parameters in PEM format using
273 an EVP_PKEY structure.  The encoding depends on the type of key; for DSA key
274 parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH
275 key parameters, it will be a PKCS#3 DHparameter structure.  I<These functions
276 only exist for the B<BIO> type>.
277
278 The B<DSAparams> functions process DSA parameters using a DSA
279 structure. The parameters are encoded using a Dss-Parms structure
280 as defined in RFC2459.
281
282 The B<DHparams> functions process DH parameters using a DH
283 structure. The parameters are encoded using a PKCS#3 DHparameter
284 structure.
285
286 The B<X509> functions process an X509 certificate using an X509
287 structure. They will also process a trusted X509 certificate but
288 any trust settings are discarded.
289
290 The B<X509_AUX> functions process a trusted X509 certificate using
291 an X509 structure.
292
293 The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
294 certificate request using an X509_REQ structure. The B<X509_REQ>
295 write functions use B<CERTIFICATE REQUEST> in the header whereas
296 the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
297 (as required by some CAs). The B<X509_REQ> read functions will
298 handle either form so there are no B<X509_REQ_NEW> read functions.
299
300 The B<X509_CRL> functions process an X509 CRL using an X509_CRL
301 structure.
302
303 The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
304 structure.
305
306 =head1 PEM FUNCTION ARGUMENTS
307
308 The PEM functions have many common arguments.
309
310 The I<bp> BIO parameter (if present) specifies the BIO to read from
311 or write to.
312
313 The I<fp> FILE parameter (if present) specifies the FILE pointer to
314 read from or write to.
315
316 The PEM read functions all take an argument I<B<TYPE> **x> and return
317 a I<B<TYPE> *> pointer. Where I<B<TYPE>> is whatever structure the function
318 uses. If I<x> is NULL then the parameter is ignored. If I<x> is not
319 NULL but I<*x> is NULL then the structure returned will be written
320 to I<*x>. If neither I<x> nor I<*x> is NULL then an attempt is made
321 to reuse the structure at I<*x> (but see BUGS and EXAMPLES sections).
322 Irrespective of the value of I<x> a pointer to the structure is always
323 returned (or NULL if an error occurred).
324
325 The PEM functions which write private keys take an I<enc> parameter
326 which specifies the encryption algorithm to use, encryption is done
327 at the PEM level. If this parameter is set to NULL then the private
328 key is written in unencrypted form.
329
330 The I<cb> argument is the callback to use when querying for the pass
331 phrase used for encrypted PEM structures (normally only private keys).
332
333 For the PEM write routines if the I<kstr> parameter is not NULL then
334 I<klen> bytes at I<kstr> are used as the passphrase and I<cb> is
335 ignored.
336
337 If the I<cb> parameters is set to NULL and the I<u> parameter is not
338 NULL then the I<u> parameter is interpreted as a NUL terminated string
339 to use as the passphrase. If both I<cb> and I<u> are NULL then the
340 default callback routine is used which will typically prompt for the
341 passphrase on the current terminal with echoing turned off.
342
343 The default passphrase callback is sometimes inappropriate (for example
344 in a GUI application) so an alternative can be supplied. The callback
345 routine has the following form:
346
347  int cb(char *buf, int size, int rwflag, void *u);
348
349 I<buf> is the buffer to write the passphrase to. I<size> is the maximum
350 length of the passphrase (i.e. the size of buf). I<rwflag> is a flag
351 which is set to 0 when reading and 1 when writing. A typical routine
352 will ask the user to verify the passphrase (for example by prompting
353 for it twice) if I<rwflag> is 1. The I<u> parameter has the same
354 value as the I<u> parameter passed to the PEM routine. It allows
355 arbitrary data to be passed to the callback by the application
356 (for example a window handle in a GUI application). The callback
357 I<must> return the number of characters in the passphrase or -1 if
358 an error occurred. The passphrase can be arbitrary data; in the case where it
359 is a string, it is not NUL terminated. See the L</EXAMPLES> section below.
360
361 Some implementations may need to use cryptographic algorithms during their
362 operation. If this is the case and I<libctx> and I<propq> parameters have been
363 passed then any algorithm fetches will use that library context and property
364 query string. Otherwise the default library context and property query string
365 will be used.
366
367 =head1 NOTES
368
369 The PEM reading functions will skip any extraneous content or PEM data of
370 a different type than they expect. This allows for example having a certificate
371 (or multiple certificates) and a key in the PEM format in a single file.
372
373 The old B<PrivateKey> write routines are retained for compatibility.
374 New applications should write private keys using the
375 PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
376 because they are more secure (they use an iteration count of 2048 whereas
377 the traditional routines use a count of 1) unless compatibility with older
378 versions of OpenSSL is important.
379
380 The B<PrivateKey> read routines can be used in all applications because
381 they handle all formats transparently.
382
383 A frequent cause of problems is attempting to use the PEM routines like
384 this:
385
386  X509 *x;
387
388  PEM_read_bio_X509(bp, &x, 0, NULL);
389
390 this is a bug because an attempt will be made to reuse the data at I<x>
391 which is an uninitialised pointer.
392
393 These functions make no assumption regarding the pass phrase received from the
394 password callback.
395 It will simply be treated as a byte sequence.
396
397 =head1 PEM ENCRYPTION FORMAT
398
399 These old B<PrivateKey> routines use a non standard technique for encryption.
400
401 The private key (or other data) takes the following form:
402
403  -----BEGIN RSA PRIVATE KEY-----
404  Proc-Type: 4,ENCRYPTED
405  DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
406
407  ...base64 encoded data...
408  -----END RSA PRIVATE KEY-----
409
410 The line beginning with I<Proc-Type> contains the version and the
411 protection on the encapsulated data. The line beginning I<DEK-Info>
412 contains two comma separated values: the encryption algorithm name as
413 used by EVP_get_cipherbyname() and an initialization vector used by the
414 cipher encoded as a set of hexadecimal digits. After those two lines is
415 the base64-encoded encrypted data.
416
417 The encryption key is derived using EVP_BytesToKey(). The cipher's
418 initialization vector is passed to EVP_BytesToKey() as the I<salt>
419 parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used
420 (regardless of the size of the initialization vector). The user's
421 password is passed to EVP_BytesToKey() using the I<data> and I<datal>
422 parameters. Finally, the library uses an iteration count of 1 for
423 EVP_BytesToKey().
424
425 The I<key> derived by EVP_BytesToKey() along with the original initialization
426 vector is then used to decrypt the encrypted data. The I<iv> produced by
427 EVP_BytesToKey() is not utilized or needed, and NULL should be passed to
428 the function.
429
430 The pseudo code to derive the key would look similar to:
431
432  EVP_CIPHER* cipher = EVP_des_ede3_cbc();
433  EVP_MD* md = EVP_md5();
434
435  unsigned int nkey = EVP_CIPHER_get_key_length(cipher);
436  unsigned int niv = EVP_CIPHER_get_iv_length(cipher);
437  unsigned char key[nkey];
438  unsigned char iv[niv];
439
440  memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
441  rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
442  if (rc != nkey)
443      /* Error */
444
445  /* On success, use key and iv to initialize the cipher */
446
447 =head1 BUGS
448
449 The PEM read routines in some versions of OpenSSL will not correctly reuse
450 an existing structure. Therefore, the following:
451
452  PEM_read_bio_X509(bp, &x, 0, NULL);
453
454 where I<x> already contains a valid certificate, may not work, whereas:
455
456  X509_free(x);
457  x = PEM_read_bio_X509(bp, NULL, 0, NULL);
458
459 is guaranteed to work. It is always acceptable for I<x> to contain a newly
460 allocated, empty B<X509> object (for example allocated via L<X509_new_ex(3)>).
461
462 =head1 RETURN VALUES
463
464 The read routines return either a pointer to the structure read or NULL
465 if an error occurred.
466
467 The write routines return 1 for success or 0 for failure.
468
469 =head1 EXAMPLES
470
471 Although the PEM routines take several arguments in almost all applications
472 most of them are set to 0 or NULL.
473
474 To read a certificate with a library context in PEM format from a BIO:
475
476  X509 *x = X509_new_ex(libctx, NULL);
477
478  if (x == NULL)
479      /* Error */
480
481  if (PEM_read_bio_X509(bp, &x, 0, NULL) == NULL)
482      /* Error */
483
484 Read a certificate in PEM format from a BIO:
485
486  X509 *x;
487
488  x = PEM_read_bio_X509(bp, NULL, 0, NULL);
489  if (x == NULL)
490      /* Error */
491
492 Alternative method:
493
494  X509 *x = NULL;
495
496  if (!PEM_read_bio_X509(bp, &x, 0, NULL))
497      /* Error */
498
499 Write a certificate to a BIO:
500
501  if (!PEM_write_bio_X509(bp, x))
502      /* Error */
503
504 Write a private key (using traditional format) to a BIO using
505 triple DES encryption, the pass phrase is prompted for:
506
507  if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
508      /* Error */
509
510 Write a private key (using PKCS#8 format) to a BIO using triple
511 DES encryption, using the pass phrase "hello":
512
513  if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
514                                     NULL, 0, 0, "hello"))
515      /* Error */
516
517 Read a private key from a BIO using a pass phrase callback:
518
519  key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
520  if (key == NULL)
521      /* Error */
522
523 Skeleton pass phrase callback:
524
525  int pass_cb(char *buf, int size, int rwflag, void *u)
526  {
527
528      /* We'd probably do something else if 'rwflag' is 1 */
529      printf("Enter pass phrase for \"%s\"\n", (char *)u);
530
531      /* get pass phrase, length 'len' into 'tmp' */
532      char *tmp = "hello";
533      if (tmp == NULL) /* An error occurred */
534          return -1;
535
536      size_t len = strlen(tmp);
537
538      if (len > size)
539          len = size;
540      memcpy(buf, tmp, len);
541      return len;
542  }
543
544 =head1 SEE ALSO
545
546 L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>,
547 L<passphrase-encoding(7)>
548
549 =head1 HISTORY
550
551 The old Netscape certificate sequences were no longer documented
552 in OpenSSL 1.1.0; applications should use the PKCS7 standard instead
553 as they will be formally deprecated in a future releases.
554
555 PEM_read_bio_PrivateKey_ex(), PEM_read_PrivateKey_ex(),
556 PEM_read_bio_PUBKEY_ex(), PEM_read_PUBKEY_ex() and
557 PEM_read_bio_Parameters_ex() were introduced in OpenSSL 3.0.
558
559 The functions PEM_read_bio_RSAPrivateKey(), PEM_read_RSAPrivateKey(),
560 PEM_write_bio_RSAPrivateKey(), PEM_write_RSAPrivateKey(),
561 PEM_read_bio_RSAPublicKey(), PEM_read_RSAPublicKey(),
562 PEM_write_bio_RSAPublicKey(), PEM_write_RSAPublicKey(),
563 PEM_read_bio_RSA_PUBKEY(), PEM_read_RSA_PUBKEY(),
564 PEM_write_bio_RSA_PUBKEY(), PEM_write_RSA_PUBKEY(),
565 PEM_read_bio_DSAPrivateKey(), PEM_read_DSAPrivateKey(),
566 PEM_write_bio_DSAPrivateKey(), PEM_write_DSAPrivateKey(),
567 PEM_read_bio_DSA_PUBKEY(), PEM_read_DSA_PUBKEY(),
568 PEM_write_bio_DSA_PUBKEY(), PEM_write_DSA_PUBKEY();
569 PEM_read_bio_DSAparams(), PEM_read_DSAparams(),
570 PEM_write_bio_DSAparams(), PEM_write_DSAparams(),
571 PEM_read_bio_DHparams(), PEM_read_DHparams(),
572 PEM_write_bio_DHparams() and PEM_write_DHparams() were deprecated in 3.0.
573
574
575 =head1 COPYRIGHT
576
577 Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
578
579 Licensed under the Apache License 2.0 (the "License").  You may not use
580 this file except in compliance with the License.  You can obtain a copy
581 in the file LICENSE in the source distribution or at
582 L<https://www.openssl.org/source/license.html>.
583
584 =cut