CTR, HASH and HMAC DRBGs in provider
[openssl.git] / crypto / x509 / v3_addr.c
1 /*
2  * Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /*
11  * Implementation of RFC 3779 section 2.2.
12  */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16
17 #include "internal/cryptlib.h"
18 #include <openssl/conf.h>
19 #include <openssl/asn1.h>
20 #include <openssl/asn1t.h>
21 #include <openssl/buffer.h>
22 #include <openssl/x509v3.h>
23 #include "crypto/x509.h"
24 #include "ext_dat.h"
25
26 #ifndef OPENSSL_NO_RFC3779
27
28 DEFINE_STACK_OF(IPAddressOrRange)
29 DEFINE_STACK_OF(IPAddressFamily)
30 DEFINE_STACK_OF(CONF_VALUE)
31 DEFINE_STACK_OF(X509)
32
33 /*
34  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
35  */
36
37 ASN1_SEQUENCE(IPAddressRange) = {
38   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
39   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
40 } ASN1_SEQUENCE_END(IPAddressRange)
41
42 ASN1_CHOICE(IPAddressOrRange) = {
43   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
44   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
45 } ASN1_CHOICE_END(IPAddressOrRange)
46
47 ASN1_CHOICE(IPAddressChoice) = {
48   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
49   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
50 } ASN1_CHOICE_END(IPAddressChoice)
51
52 ASN1_SEQUENCE(IPAddressFamily) = {
53   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
54   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
55 } ASN1_SEQUENCE_END(IPAddressFamily)
56
57 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
58   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
59                         IPAddrBlocks, IPAddressFamily)
60 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
61
62 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
63 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
64 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
65 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
66
67 /*
68  * How much buffer space do we need for a raw address?
69  */
70 #define ADDR_RAW_BUF_LEN        16
71
72 /*
73  * What's the address length associated with this AFI?
74  */
75 static int length_from_afi(const unsigned afi)
76 {
77     switch (afi) {
78     case IANA_AFI_IPV4:
79         return 4;
80     case IANA_AFI_IPV6:
81         return 16;
82     default:
83         return 0;
84     }
85 }
86
87 /*
88  * Extract the AFI from an IPAddressFamily.
89  */
90 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
91 {
92     if (f == NULL
93             || f->addressFamily == NULL
94             || f->addressFamily->data == NULL
95             || f->addressFamily->length < 2)
96         return 0;
97     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
98 }
99
100 /*
101  * Expand the bitstring form of an address into a raw byte array.
102  * At the moment this is coded for simplicity, not speed.
103  */
104 static int addr_expand(unsigned char *addr,
105                        const ASN1_BIT_STRING *bs,
106                        const int length, const unsigned char fill)
107 {
108     if (bs->length < 0 || bs->length > length)
109         return 0;
110     if (bs->length > 0) {
111         memcpy(addr, bs->data, bs->length);
112         if ((bs->flags & 7) != 0) {
113             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
114             if (fill == 0)
115                 addr[bs->length - 1] &= ~mask;
116             else
117                 addr[bs->length - 1] |= mask;
118         }
119     }
120     memset(addr + bs->length, fill, length - bs->length);
121     return 1;
122 }
123
124 /*
125  * Extract the prefix length from a bitstring.
126  */
127 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
128
129 /*
130  * i2r handler for one address bitstring.
131  */
132 static int i2r_address(BIO *out,
133                        const unsigned afi,
134                        const unsigned char fill, const ASN1_BIT_STRING *bs)
135 {
136     unsigned char addr[ADDR_RAW_BUF_LEN];
137     int i, n;
138
139     if (bs->length < 0)
140         return 0;
141     switch (afi) {
142     case IANA_AFI_IPV4:
143         if (!addr_expand(addr, bs, 4, fill))
144             return 0;
145         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
146         break;
147         /* TODO possibly combine with ipaddr_to_asc() */
148     case IANA_AFI_IPV6:
149         if (!addr_expand(addr, bs, 16, fill))
150             return 0;
151         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
152              n -= 2) ;
153         for (i = 0; i < n; i += 2)
154             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
155                        (i < 14 ? ":" : ""));
156         if (i < 16)
157             BIO_puts(out, ":");
158         if (i == 0)
159             BIO_puts(out, ":");
160         break;
161     default:
162         for (i = 0; i < bs->length; i++)
163             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
164         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
165         break;
166     }
167     return 1;
168 }
169
170 /*
171  * i2r handler for a sequence of addresses and ranges.
172  */
173 static int i2r_IPAddressOrRanges(BIO *out,
174                                  const int indent,
175                                  const IPAddressOrRanges *aors,
176                                  const unsigned afi)
177 {
178     int i;
179     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
180         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
181         BIO_printf(out, "%*s", indent, "");
182         switch (aor->type) {
183         case IPAddressOrRange_addressPrefix:
184             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
185                 return 0;
186             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
187             continue;
188         case IPAddressOrRange_addressRange:
189             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
190                 return 0;
191             BIO_puts(out, "-");
192             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
193                 return 0;
194             BIO_puts(out, "\n");
195             continue;
196         }
197     }
198     return 1;
199 }
200
201 /*
202  * i2r handler for an IPAddrBlocks extension.
203  */
204 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
205                             void *ext, BIO *out, int indent)
206 {
207     const IPAddrBlocks *addr = ext;
208     int i;
209     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
210         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
211         const unsigned int afi = X509v3_addr_get_afi(f);
212         switch (afi) {
213         case IANA_AFI_IPV4:
214             BIO_printf(out, "%*sIPv4", indent, "");
215             break;
216         case IANA_AFI_IPV6:
217             BIO_printf(out, "%*sIPv6", indent, "");
218             break;
219         default:
220             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
221             break;
222         }
223         if (f->addressFamily->length > 2) {
224             switch (f->addressFamily->data[2]) {
225             case 1:
226                 BIO_puts(out, " (Unicast)");
227                 break;
228             case 2:
229                 BIO_puts(out, " (Multicast)");
230                 break;
231             case 3:
232                 BIO_puts(out, " (Unicast/Multicast)");
233                 break;
234             case 4:
235                 BIO_puts(out, " (MPLS)");
236                 break;
237             case 64:
238                 BIO_puts(out, " (Tunnel)");
239                 break;
240             case 65:
241                 BIO_puts(out, " (VPLS)");
242                 break;
243             case 66:
244                 BIO_puts(out, " (BGP MDT)");
245                 break;
246             case 128:
247                 BIO_puts(out, " (MPLS-labeled VPN)");
248                 break;
249             default:
250                 BIO_printf(out, " (Unknown SAFI %u)",
251                            (unsigned)f->addressFamily->data[2]);
252                 break;
253             }
254         }
255         switch (f->ipAddressChoice->type) {
256         case IPAddressChoice_inherit:
257             BIO_puts(out, ": inherit\n");
258             break;
259         case IPAddressChoice_addressesOrRanges:
260             BIO_puts(out, ":\n");
261             if (!i2r_IPAddressOrRanges(out,
262                                        indent + 2,
263                                        f->ipAddressChoice->
264                                        u.addressesOrRanges, afi))
265                 return 0;
266             break;
267         }
268     }
269     return 1;
270 }
271
272 /*
273  * Sort comparison function for a sequence of IPAddressOrRange
274  * elements.
275  *
276  * There's no sane answer we can give if addr_expand() fails, and an
277  * assertion failure on externally supplied data is seriously uncool,
278  * so we just arbitrarily declare that if given invalid inputs this
279  * function returns -1.  If this messes up your preferred sort order
280  * for garbage input, tough noogies.
281  */
282 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
283                                 const IPAddressOrRange *b, const int length)
284 {
285     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
286     int prefixlen_a = 0, prefixlen_b = 0;
287     int r;
288
289     switch (a->type) {
290     case IPAddressOrRange_addressPrefix:
291         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
292             return -1;
293         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
294         break;
295     case IPAddressOrRange_addressRange:
296         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
297             return -1;
298         prefixlen_a = length * 8;
299         break;
300     }
301
302     switch (b->type) {
303     case IPAddressOrRange_addressPrefix:
304         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
305             return -1;
306         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
307         break;
308     case IPAddressOrRange_addressRange:
309         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
310             return -1;
311         prefixlen_b = length * 8;
312         break;
313     }
314
315     if ((r = memcmp(addr_a, addr_b, length)) != 0)
316         return r;
317     else
318         return prefixlen_a - prefixlen_b;
319 }
320
321 /*
322  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
323  * comparison routines are only allowed two arguments.
324  */
325 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
326                                   const IPAddressOrRange *const *b)
327 {
328     return IPAddressOrRange_cmp(*a, *b, 4);
329 }
330
331 /*
332  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
333  * comparison routines are only allowed two arguments.
334  */
335 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
336                                   const IPAddressOrRange *const *b)
337 {
338     return IPAddressOrRange_cmp(*a, *b, 16);
339 }
340
341 /*
342  * Calculate whether a range collapses to a prefix.
343  * See last paragraph of RFC 3779 2.2.3.7.
344  */
345 static int range_should_be_prefix(const unsigned char *min,
346                                   const unsigned char *max, const int length)
347 {
348     unsigned char mask;
349     int i, j;
350
351     if (memcmp(min, max, length) <= 0)
352         return -1;
353     for (i = 0; i < length && min[i] == max[i]; i++) ;
354     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
355     if (i < j)
356         return -1;
357     if (i > j)
358         return i * 8;
359     mask = min[i] ^ max[i];
360     switch (mask) {
361     case 0x01:
362         j = 7;
363         break;
364     case 0x03:
365         j = 6;
366         break;
367     case 0x07:
368         j = 5;
369         break;
370     case 0x0F:
371         j = 4;
372         break;
373     case 0x1F:
374         j = 3;
375         break;
376     case 0x3F:
377         j = 2;
378         break;
379     case 0x7F:
380         j = 1;
381         break;
382     default:
383         return -1;
384     }
385     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
386         return -1;
387     else
388         return i * 8 + j;
389 }
390
391 /*
392  * Construct a prefix.
393  */
394 static int make_addressPrefix(IPAddressOrRange **result,
395                               unsigned char *addr, const int prefixlen)
396 {
397     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
398     IPAddressOrRange *aor = IPAddressOrRange_new();
399
400     if (aor == NULL)
401         return 0;
402     aor->type = IPAddressOrRange_addressPrefix;
403     if (aor->u.addressPrefix == NULL &&
404         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
405         goto err;
406     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
407         goto err;
408     aor->u.addressPrefix->flags &= ~7;
409     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
410     if (bitlen > 0) {
411         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
412         aor->u.addressPrefix->flags |= 8 - bitlen;
413     }
414
415     *result = aor;
416     return 1;
417
418  err:
419     IPAddressOrRange_free(aor);
420     return 0;
421 }
422
423 /*
424  * Construct a range.  If it can be expressed as a prefix,
425  * return a prefix instead.  Doing this here simplifies
426  * the rest of the code considerably.
427  */
428 static int make_addressRange(IPAddressOrRange **result,
429                              unsigned char *min,
430                              unsigned char *max, const int length)
431 {
432     IPAddressOrRange *aor;
433     int i, prefixlen;
434
435     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
436         return make_addressPrefix(result, min, prefixlen);
437
438     if ((aor = IPAddressOrRange_new()) == NULL)
439         return 0;
440     aor->type = IPAddressOrRange_addressRange;
441     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
442         goto err;
443     if (aor->u.addressRange->min == NULL &&
444         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
445         goto err;
446     if (aor->u.addressRange->max == NULL &&
447         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
448         goto err;
449
450     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
451     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
452         goto err;
453     aor->u.addressRange->min->flags &= ~7;
454     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
455     if (i > 0) {
456         unsigned char b = min[i - 1];
457         int j = 1;
458         while ((b & (0xFFU >> j)) != 0)
459             ++j;
460         aor->u.addressRange->min->flags |= 8 - j;
461     }
462
463     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
464     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
465         goto err;
466     aor->u.addressRange->max->flags &= ~7;
467     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
468     if (i > 0) {
469         unsigned char b = max[i - 1];
470         int j = 1;
471         while ((b & (0xFFU >> j)) != (0xFFU >> j))
472             ++j;
473         aor->u.addressRange->max->flags |= 8 - j;
474     }
475
476     *result = aor;
477     return 1;
478
479  err:
480     IPAddressOrRange_free(aor);
481     return 0;
482 }
483
484 /*
485  * Construct a new address family or find an existing one.
486  */
487 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
488                                              const unsigned afi,
489                                              const unsigned *safi)
490 {
491     IPAddressFamily *f;
492     unsigned char key[3];
493     int keylen;
494     int i;
495
496     key[0] = (afi >> 8) & 0xFF;
497     key[1] = afi & 0xFF;
498     if (safi != NULL) {
499         key[2] = *safi & 0xFF;
500         keylen = 3;
501     } else {
502         keylen = 2;
503     }
504
505     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
506         f = sk_IPAddressFamily_value(addr, i);
507         if (f->addressFamily->length == keylen &&
508             !memcmp(f->addressFamily->data, key, keylen))
509             return f;
510     }
511
512     if ((f = IPAddressFamily_new()) == NULL)
513         goto err;
514     if (f->ipAddressChoice == NULL &&
515         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
516         goto err;
517     if (f->addressFamily == NULL &&
518         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
519         goto err;
520     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
521         goto err;
522     if (!sk_IPAddressFamily_push(addr, f))
523         goto err;
524
525     return f;
526
527  err:
528     IPAddressFamily_free(f);
529     return NULL;
530 }
531
532 /*
533  * Add an inheritance element.
534  */
535 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
536                             const unsigned afi, const unsigned *safi)
537 {
538     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
539     if (f == NULL ||
540         f->ipAddressChoice == NULL ||
541         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
542          f->ipAddressChoice->u.addressesOrRanges != NULL))
543         return 0;
544     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
545         f->ipAddressChoice->u.inherit != NULL)
546         return 1;
547     if (f->ipAddressChoice->u.inherit == NULL &&
548         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
549         return 0;
550     f->ipAddressChoice->type = IPAddressChoice_inherit;
551     return 1;
552 }
553
554 /*
555  * Construct an IPAddressOrRange sequence, or return an existing one.
556  */
557 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
558                                                const unsigned afi,
559                                                const unsigned *safi)
560 {
561     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
562     IPAddressOrRanges *aors = NULL;
563
564     if (f == NULL ||
565         f->ipAddressChoice == NULL ||
566         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
567          f->ipAddressChoice->u.inherit != NULL))
568         return NULL;
569     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
570         aors = f->ipAddressChoice->u.addressesOrRanges;
571     if (aors != NULL)
572         return aors;
573     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
574         return NULL;
575     switch (afi) {
576     case IANA_AFI_IPV4:
577         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
578         break;
579     case IANA_AFI_IPV6:
580         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
581         break;
582     }
583     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
584     f->ipAddressChoice->u.addressesOrRanges = aors;
585     return aors;
586 }
587
588 /*
589  * Add a prefix.
590  */
591 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
592                            const unsigned afi,
593                            const unsigned *safi,
594                            unsigned char *a, const int prefixlen)
595 {
596     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
597     IPAddressOrRange *aor;
598     if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
599         return 0;
600     if (sk_IPAddressOrRange_push(aors, aor))
601         return 1;
602     IPAddressOrRange_free(aor);
603     return 0;
604 }
605
606 /*
607  * Add a range.
608  */
609 int X509v3_addr_add_range(IPAddrBlocks *addr,
610                           const unsigned afi,
611                           const unsigned *safi,
612                           unsigned char *min, unsigned char *max)
613 {
614     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
615     IPAddressOrRange *aor;
616     int length = length_from_afi(afi);
617     if (aors == NULL)
618         return 0;
619     if (!make_addressRange(&aor, min, max, length))
620         return 0;
621     if (sk_IPAddressOrRange_push(aors, aor))
622         return 1;
623     IPAddressOrRange_free(aor);
624     return 0;
625 }
626
627 /*
628  * Extract min and max values from an IPAddressOrRange.
629  */
630 static int extract_min_max(IPAddressOrRange *aor,
631                            unsigned char *min, unsigned char *max, int length)
632 {
633     if (aor == NULL || min == NULL || max == NULL)
634         return 0;
635     switch (aor->type) {
636     case IPAddressOrRange_addressPrefix:
637         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
638                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
639     case IPAddressOrRange_addressRange:
640         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
641                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
642     }
643     return 0;
644 }
645
646 /*
647  * Public wrapper for extract_min_max().
648  */
649 int X509v3_addr_get_range(IPAddressOrRange *aor,
650                           const unsigned afi,
651                           unsigned char *min,
652                           unsigned char *max, const int length)
653 {
654     int afi_length = length_from_afi(afi);
655     if (aor == NULL || min == NULL || max == NULL ||
656         afi_length == 0 || length < afi_length ||
657         (aor->type != IPAddressOrRange_addressPrefix &&
658          aor->type != IPAddressOrRange_addressRange) ||
659         !extract_min_max(aor, min, max, afi_length))
660         return 0;
661
662     return afi_length;
663 }
664
665 /*
666  * Sort comparison function for a sequence of IPAddressFamily.
667  *
668  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
669  * the ordering: I can read it as meaning that IPv6 without a SAFI
670  * comes before IPv4 with a SAFI, which seems pretty weird.  The
671  * examples in appendix B suggest that the author intended the
672  * null-SAFI rule to apply only within a single AFI, which is what I
673  * would have expected and is what the following code implements.
674  */
675 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
676                                const IPAddressFamily *const *b_)
677 {
678     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
679     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
680     int len = ((a->length <= b->length) ? a->length : b->length);
681     int cmp = memcmp(a->data, b->data, len);
682     return cmp ? cmp : a->length - b->length;
683 }
684
685 /*
686  * Check whether an IPAddrBLocks is in canonical form.
687  */
688 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
689 {
690     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
691     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
692     IPAddressOrRanges *aors;
693     int i, j, k;
694
695     /*
696      * Empty extension is canonical.
697      */
698     if (addr == NULL)
699         return 1;
700
701     /*
702      * Check whether the top-level list is in order.
703      */
704     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
705         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
706         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
707         if (IPAddressFamily_cmp(&a, &b) >= 0)
708             return 0;
709     }
710
711     /*
712      * Top level's ok, now check each address family.
713      */
714     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
715         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
716         int length = length_from_afi(X509v3_addr_get_afi(f));
717
718         /*
719          * Inheritance is canonical.  Anything other than inheritance or
720          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
721          */
722         if (f == NULL || f->ipAddressChoice == NULL)
723             return 0;
724         switch (f->ipAddressChoice->type) {
725         case IPAddressChoice_inherit:
726             continue;
727         case IPAddressChoice_addressesOrRanges:
728             break;
729         default:
730             return 0;
731         }
732
733         /*
734          * It's an IPAddressOrRanges sequence, check it.
735          */
736         aors = f->ipAddressChoice->u.addressesOrRanges;
737         if (sk_IPAddressOrRange_num(aors) == 0)
738             return 0;
739         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
740             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
741             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
742
743             if (!extract_min_max(a, a_min, a_max, length) ||
744                 !extract_min_max(b, b_min, b_max, length))
745                 return 0;
746
747             /*
748              * Punt misordered list, overlapping start, or inverted range.
749              */
750             if (memcmp(a_min, b_min, length) >= 0 ||
751                 memcmp(a_min, a_max, length) > 0 ||
752                 memcmp(b_min, b_max, length) > 0)
753                 return 0;
754
755             /*
756              * Punt if adjacent or overlapping.  Check for adjacency by
757              * subtracting one from b_min first.
758              */
759             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
760             if (memcmp(a_max, b_min, length) >= 0)
761                 return 0;
762
763             /*
764              * Check for range that should be expressed as a prefix.
765              */
766             if (a->type == IPAddressOrRange_addressRange &&
767                 range_should_be_prefix(a_min, a_max, length) >= 0)
768                 return 0;
769         }
770
771         /*
772          * Check range to see if it's inverted or should be a
773          * prefix.
774          */
775         j = sk_IPAddressOrRange_num(aors) - 1;
776         {
777             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
778             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
779                 if (!extract_min_max(a, a_min, a_max, length))
780                     return 0;
781                 if (memcmp(a_min, a_max, length) > 0 ||
782                     range_should_be_prefix(a_min, a_max, length) >= 0)
783                     return 0;
784             }
785         }
786     }
787
788     /*
789      * If we made it through all that, we're happy.
790      */
791     return 1;
792 }
793
794 /*
795  * Whack an IPAddressOrRanges into canonical form.
796  */
797 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
798                                       const unsigned afi)
799 {
800     int i, j, length = length_from_afi(afi);
801
802     /*
803      * Sort the IPAddressOrRanges sequence.
804      */
805     sk_IPAddressOrRange_sort(aors);
806
807     /*
808      * Clean up representation issues, punt on duplicates or overlaps.
809      */
810     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
811         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
812         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
813         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
814         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
815
816         if (!extract_min_max(a, a_min, a_max, length) ||
817             !extract_min_max(b, b_min, b_max, length))
818             return 0;
819
820         /*
821          * Punt inverted ranges.
822          */
823         if (memcmp(a_min, a_max, length) > 0 ||
824             memcmp(b_min, b_max, length) > 0)
825             return 0;
826
827         /*
828          * Punt overlaps.
829          */
830         if (memcmp(a_max, b_min, length) >= 0)
831             return 0;
832
833         /*
834          * Merge if a and b are adjacent.  We check for
835          * adjacency by subtracting one from b_min first.
836          */
837         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
838         if (memcmp(a_max, b_min, length) == 0) {
839             IPAddressOrRange *merged;
840             if (!make_addressRange(&merged, a_min, b_max, length))
841                 return 0;
842             (void)sk_IPAddressOrRange_set(aors, i, merged);
843             (void)sk_IPAddressOrRange_delete(aors, i + 1);
844             IPAddressOrRange_free(a);
845             IPAddressOrRange_free(b);
846             --i;
847             continue;
848         }
849     }
850
851     /*
852      * Check for inverted final range.
853      */
854     j = sk_IPAddressOrRange_num(aors) - 1;
855     {
856         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
857         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
858             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
859             if (!extract_min_max(a, a_min, a_max, length))
860                 return 0;
861             if (memcmp(a_min, a_max, length) > 0)
862                 return 0;
863         }
864     }
865
866     return 1;
867 }
868
869 /*
870  * Whack an IPAddrBlocks extension into canonical form.
871  */
872 int X509v3_addr_canonize(IPAddrBlocks *addr)
873 {
874     int i;
875     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
876         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
877         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
878             !IPAddressOrRanges_canonize(f->ipAddressChoice->
879                                         u.addressesOrRanges,
880                                         X509v3_addr_get_afi(f)))
881             return 0;
882     }
883     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
884     sk_IPAddressFamily_sort(addr);
885     if (!ossl_assert(X509v3_addr_is_canonical(addr)))
886         return 0;
887     return 1;
888 }
889
890 /*
891  * v2i handler for the IPAddrBlocks extension.
892  */
893 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
894                               struct v3_ext_ctx *ctx,
895                               STACK_OF(CONF_VALUE) *values)
896 {
897     static const char v4addr_chars[] = "0123456789.";
898     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
899     IPAddrBlocks *addr = NULL;
900     char *s = NULL, *t;
901     int i;
902
903     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
904         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
905         return NULL;
906     }
907
908     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
909         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
910         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
911         unsigned afi, *safi = NULL, safi_;
912         const char *addr_chars = NULL;
913         int prefixlen, i1, i2, delim, length;
914
915         if (!v3_name_cmp(val->name, "IPv4")) {
916             afi = IANA_AFI_IPV4;
917         } else if (!v3_name_cmp(val->name, "IPv6")) {
918             afi = IANA_AFI_IPV6;
919         } else if (!v3_name_cmp(val->name, "IPv4-SAFI")) {
920             afi = IANA_AFI_IPV4;
921             safi = &safi_;
922         } else if (!v3_name_cmp(val->name, "IPv6-SAFI")) {
923             afi = IANA_AFI_IPV6;
924             safi = &safi_;
925         } else {
926             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
927                       X509V3_R_EXTENSION_NAME_ERROR);
928             X509V3_conf_err(val);
929             goto err;
930         }
931
932         switch (afi) {
933         case IANA_AFI_IPV4:
934             addr_chars = v4addr_chars;
935             break;
936         case IANA_AFI_IPV6:
937             addr_chars = v6addr_chars;
938             break;
939         }
940
941         length = length_from_afi(afi);
942
943         /*
944          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
945          * the other input values.
946          */
947         if (safi != NULL) {
948             *safi = strtoul(val->value, &t, 0);
949             t += strspn(t, " \t");
950             if (*safi > 0xFF || *t++ != ':') {
951                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
952                 X509V3_conf_err(val);
953                 goto err;
954             }
955             t += strspn(t, " \t");
956             s = OPENSSL_strdup(t);
957         } else {
958             s = OPENSSL_strdup(val->value);
959         }
960         if (s == NULL) {
961             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
962             goto err;
963         }
964
965         /*
966          * Check for inheritance.  Not worth additional complexity to
967          * optimize this (seldom-used) case.
968          */
969         if (strcmp(s, "inherit") == 0) {
970             if (!X509v3_addr_add_inherit(addr, afi, safi)) {
971                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
972                           X509V3_R_INVALID_INHERITANCE);
973                 X509V3_conf_err(val);
974                 goto err;
975             }
976             OPENSSL_free(s);
977             s = NULL;
978             continue;
979         }
980
981         i1 = strspn(s, addr_chars);
982         i2 = i1 + strspn(s + i1, " \t");
983         delim = s[i2++];
984         s[i1] = '\0';
985
986         if (a2i_ipadd(min, s) != length) {
987             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
988             X509V3_conf_err(val);
989             goto err;
990         }
991
992         switch (delim) {
993         case '/':
994             prefixlen = (int)strtoul(s + i2, &t, 10);
995             if (t == s + i2 || *t != '\0') {
996                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
997                           X509V3_R_EXTENSION_VALUE_ERROR);
998                 X509V3_conf_err(val);
999                 goto err;
1000             }
1001             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1002                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1003                 goto err;
1004             }
1005             break;
1006         case '-':
1007             i1 = i2 + strspn(s + i2, " \t");
1008             i2 = i1 + strspn(s + i1, addr_chars);
1009             if (i1 == i2 || s[i2] != '\0') {
1010                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1011                           X509V3_R_EXTENSION_VALUE_ERROR);
1012                 X509V3_conf_err(val);
1013                 goto err;
1014             }
1015             if (a2i_ipadd(max, s + i1) != length) {
1016                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1017                           X509V3_R_INVALID_IPADDRESS);
1018                 X509V3_conf_err(val);
1019                 goto err;
1020             }
1021             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1022                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1023                           X509V3_R_EXTENSION_VALUE_ERROR);
1024                 X509V3_conf_err(val);
1025                 goto err;
1026             }
1027             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1028                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1029                 goto err;
1030             }
1031             break;
1032         case '\0':
1033             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1034                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1035                 goto err;
1036             }
1037             break;
1038         default:
1039             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1040                       X509V3_R_EXTENSION_VALUE_ERROR);
1041             X509V3_conf_err(val);
1042             goto err;
1043         }
1044
1045         OPENSSL_free(s);
1046         s = NULL;
1047     }
1048
1049     /*
1050      * Canonize the result, then we're done.
1051      */
1052     if (!X509v3_addr_canonize(addr))
1053         goto err;
1054     return addr;
1055
1056  err:
1057     OPENSSL_free(s);
1058     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1059     return NULL;
1060 }
1061
1062 /*
1063  * OpenSSL dispatch
1064  */
1065 const X509V3_EXT_METHOD v3_addr = {
1066     NID_sbgp_ipAddrBlock,       /* nid */
1067     0,                          /* flags */
1068     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1069     0, 0, 0, 0,                 /* old functions, ignored */
1070     0,                          /* i2s */
1071     0,                          /* s2i */
1072     0,                          /* i2v */
1073     v2i_IPAddrBlocks,           /* v2i */
1074     i2r_IPAddrBlocks,           /* i2r */
1075     0,                          /* r2i */
1076     NULL                        /* extension-specific data */
1077 };
1078
1079 /*
1080  * Figure out whether extension sues inheritance.
1081  */
1082 int X509v3_addr_inherits(IPAddrBlocks *addr)
1083 {
1084     int i;
1085     if (addr == NULL)
1086         return 0;
1087     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1088         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1089         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1090             return 1;
1091     }
1092     return 0;
1093 }
1094
1095 /*
1096  * Figure out whether parent contains child.
1097  */
1098 static int addr_contains(IPAddressOrRanges *parent,
1099                          IPAddressOrRanges *child, int length)
1100 {
1101     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1102     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1103     int p, c;
1104
1105     if (child == NULL || parent == child)
1106         return 1;
1107     if (parent == NULL)
1108         return 0;
1109
1110     p = 0;
1111     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1112         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1113                              c_min, c_max, length))
1114             return -1;
1115         for (;; p++) {
1116             if (p >= sk_IPAddressOrRange_num(parent))
1117                 return 0;
1118             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1119                                  p_min, p_max, length))
1120                 return 0;
1121             if (memcmp(p_max, c_max, length) < 0)
1122                 continue;
1123             if (memcmp(p_min, c_min, length) > 0)
1124                 return 0;
1125             break;
1126         }
1127     }
1128
1129     return 1;
1130 }
1131
1132 /*
1133  * Test whether a is a subset of b.
1134  */
1135 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1136 {
1137     int i;
1138     if (a == NULL || a == b)
1139         return 1;
1140     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1141         return 0;
1142     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1143     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1144         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1145         int j = sk_IPAddressFamily_find(b, fa);
1146         IPAddressFamily *fb;
1147         fb = sk_IPAddressFamily_value(b, j);
1148         if (fb == NULL)
1149             return 0;
1150         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1151                            fa->ipAddressChoice->u.addressesOrRanges,
1152                            length_from_afi(X509v3_addr_get_afi(fb))))
1153             return 0;
1154     }
1155     return 1;
1156 }
1157
1158 /*
1159  * Validation error handling via callback.
1160  */
1161 #define validation_err(_err_)           \
1162   do {                                  \
1163     if (ctx != NULL) {                  \
1164       ctx->error = _err_;               \
1165       ctx->error_depth = i;             \
1166       ctx->current_cert = x;            \
1167       ret = ctx->verify_cb(0, ctx);     \
1168     } else {                            \
1169       ret = 0;                          \
1170     }                                   \
1171     if (!ret)                           \
1172       goto done;                        \
1173   } while (0)
1174
1175 /*
1176  * Core code for RFC 3779 2.3 path validation.
1177  *
1178  * Returns 1 for success, 0 on error.
1179  *
1180  * When returning 0, ctx->error MUST be set to an appropriate value other than
1181  * X509_V_OK.
1182  */
1183 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1184                                        STACK_OF(X509) *chain,
1185                                        IPAddrBlocks *ext)
1186 {
1187     IPAddrBlocks *child = NULL;
1188     int i, j, ret = 1;
1189     X509 *x;
1190
1191     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1192             || !ossl_assert(ctx != NULL || ext != NULL)
1193             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1194         if (ctx != NULL)
1195             ctx->error = X509_V_ERR_UNSPECIFIED;
1196         return 0;
1197     }
1198
1199     /*
1200      * Figure out where to start.  If we don't have an extension to
1201      * check, we're done.  Otherwise, check canonical form and
1202      * set up for walking up the chain.
1203      */
1204     if (ext != NULL) {
1205         i = -1;
1206         x = NULL;
1207     } else {
1208         i = 0;
1209         x = sk_X509_value(chain, i);
1210         if ((ext = x->rfc3779_addr) == NULL)
1211             goto done;
1212     }
1213     if (!X509v3_addr_is_canonical(ext))
1214         validation_err(X509_V_ERR_INVALID_EXTENSION);
1215     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1216     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1217         X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
1218                   ERR_R_MALLOC_FAILURE);
1219         if (ctx != NULL)
1220             ctx->error = X509_V_ERR_OUT_OF_MEM;
1221         ret = 0;
1222         goto done;
1223     }
1224
1225     /*
1226      * Now walk up the chain.  No cert may list resources that its
1227      * parent doesn't list.
1228      */
1229     for (i++; i < sk_X509_num(chain); i++) {
1230         x = sk_X509_value(chain, i);
1231         if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1232             validation_err(X509_V_ERR_INVALID_EXTENSION);
1233         if (x->rfc3779_addr == NULL) {
1234             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1235                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1236                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1237                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1238                     break;
1239                 }
1240             }
1241             continue;
1242         }
1243         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1244                                               IPAddressFamily_cmp);
1245         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1246             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1247             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1248             IPAddressFamily *fp =
1249                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1250             if (fp == NULL) {
1251                 if (fc->ipAddressChoice->type ==
1252                     IPAddressChoice_addressesOrRanges) {
1253                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1254                     break;
1255                 }
1256                 continue;
1257             }
1258             if (fp->ipAddressChoice->type ==
1259                 IPAddressChoice_addressesOrRanges) {
1260                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1261                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1262                                      fc->ipAddressChoice->u.addressesOrRanges,
1263                                      length_from_afi(X509v3_addr_get_afi(fc))))
1264                     sk_IPAddressFamily_set(child, j, fp);
1265                 else
1266                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1267             }
1268         }
1269     }
1270
1271     /*
1272      * Trust anchor can't inherit.
1273      */
1274     if (x->rfc3779_addr != NULL) {
1275         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1276             IPAddressFamily *fp =
1277                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1278             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1279                 && sk_IPAddressFamily_find(child, fp) >= 0)
1280                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1281         }
1282     }
1283
1284  done:
1285     sk_IPAddressFamily_free(child);
1286     return ret;
1287 }
1288
1289 #undef validation_err
1290
1291 /*
1292  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1293  */
1294 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1295 {
1296     if (ctx->chain == NULL
1297             || sk_X509_num(ctx->chain) == 0
1298             || ctx->verify_cb == NULL) {
1299         ctx->error = X509_V_ERR_UNSPECIFIED;
1300         return 0;
1301     }
1302     return addr_validate_path_internal(ctx, ctx->chain, NULL);
1303 }
1304
1305 /*
1306  * RFC 3779 2.3 path validation of an extension.
1307  * Test whether chain covers extension.
1308  */
1309 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1310                                   IPAddrBlocks *ext, int allow_inheritance)
1311 {
1312     if (ext == NULL)
1313         return 1;
1314     if (chain == NULL || sk_X509_num(chain) == 0)
1315         return 0;
1316     if (!allow_inheritance && X509v3_addr_inherits(ext))
1317         return 0;
1318     return addr_validate_path_internal(NULL, chain, ext);
1319 }
1320
1321 #endif                          /* OPENSSL_NO_RFC3779 */