crypto/mem_dbg.c: make it indent-friendly.
[openssl.git] / crypto / ec / ec_mult.c
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer. 
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63
64 #include <string.h>
65
66 #include <openssl/err.h>
67
68 #include "ec_lcl.h"
69
70
71 /*
72  * This file implements the wNAF-based interleaving multi-exponentation method
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74  * for multiplication with precomputation, we use wNAF splitting
75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76  */
77
78
79
80
81 /* structure for precomputed multiples of the generator */
82 typedef struct ec_pre_comp_st {
83         const EC_GROUP *group; /* parent EC_GROUP object */
84         size_t blocksize;      /* block size for wNAF splitting */
85         size_t numblocks;      /* max. number of blocks for which we have precomputation */
86         size_t w;              /* window size */
87         EC_POINT **points;     /* array with pre-calculated multiples of generator:
88                                 * 'num' pointers to EC_POINT objects followed by a NULL */
89         size_t num;            /* numblocks * 2^(w-1) */
90         int references;
91 } EC_PRE_COMP;
92  
93 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
94 static void *ec_pre_comp_dup(void *);
95 static void ec_pre_comp_free(void *);
96 static void ec_pre_comp_clear_free(void *);
97
98 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
99         {
100         EC_PRE_COMP *ret = NULL;
101
102         if (!group)
103                 return NULL;
104
105         ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
106         if (!ret)
107                 {
108                 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
109                 return ret;
110                 }
111         ret->group = group;
112         ret->blocksize = 8; /* default */
113         ret->numblocks = 0;
114         ret->w = 4; /* default */
115         ret->points = NULL;
116         ret->num = 0;
117         ret->references = 1;
118         return ret;
119         }
120
121 static void *ec_pre_comp_dup(void *src_)
122         {
123         EC_PRE_COMP *src = src_;
124
125         /* no need to actually copy, these objects never change! */
126
127         CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
128
129         return src_;
130         }
131
132 static void ec_pre_comp_free(void *pre_)
133         {
134         int i;
135         EC_PRE_COMP *pre = pre_;
136
137         if (!pre)
138                 return;
139
140         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
141         if (i > 0)
142                 return;
143
144         if (pre->points)
145                 {
146                 EC_POINT **p;
147
148                 for (p = pre->points; *p != NULL; p++)
149                         EC_POINT_free(*p);
150                 OPENSSL_free(pre->points);
151                 }
152         OPENSSL_free(pre);
153         }
154
155 static void ec_pre_comp_clear_free(void *pre_)
156         {
157         int i;
158         EC_PRE_COMP *pre = pre_;
159
160         if (!pre)
161                 return;
162
163         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
164         if (i > 0)
165                 return;
166
167         if (pre->points)
168                 {
169                 EC_POINT **p;
170
171                 for (p = pre->points; *p != NULL; p++)
172                         {
173                         EC_POINT_clear_free(*p);
174                         OPENSSL_cleanse(p, sizeof *p);
175                         }
176                 OPENSSL_free(pre->points);
177                 }
178         OPENSSL_cleanse(pre, sizeof *pre);
179         OPENSSL_free(pre);
180         }
181
182
183
184
185 /*-
186  * Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
187  * This is an array  r[]  of values that are either zero or odd with an
188  * absolute value less than  2^w  satisfying
189  *     scalar = \sum_j r[j]*2^j
190  * where at most one of any  w+1  consecutive digits is non-zero
191  * with the exception that the most significant digit may be only
192  * w-1 zeros away from that next non-zero digit.
193  */
194 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
195         {
196         int window_val;
197         int ok = 0;
198         signed char *r = NULL;
199         int sign = 1;
200         int bit, next_bit, mask;
201         size_t len = 0, j;
202         
203         if (BN_is_zero(scalar))
204                 {
205                 r = OPENSSL_malloc(1);
206                 if (!r)
207                         {
208                         ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
209                         goto err;
210                         }
211                 r[0] = 0;
212                 *ret_len = 1;
213                 return r;
214                 }
215                 
216         if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
217                 {
218                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
219                 goto err;
220                 }
221         bit = 1 << w; /* at most 128 */
222         next_bit = bit << 1; /* at most 256 */
223         mask = next_bit - 1; /* at most 255 */
224
225         if (BN_is_negative(scalar))
226                 {
227                 sign = -1;
228                 }
229
230         if (scalar->d == NULL || scalar->top == 0)
231                 {
232                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
233                 goto err;
234                 }
235
236         len = BN_num_bits(scalar);
237         r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
238                                       * (*ret_len will be set to the actual length, i.e. at most
239                                       * BN_num_bits(scalar) + 1) */
240         if (r == NULL)
241                 {
242                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
243                 goto err;
244                 }
245         window_val = scalar->d[0] & mask;
246         j = 0;
247         while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
248                 {
249                 int digit = 0;
250
251                 /* 0 <= window_val <= 2^(w+1) */
252
253                 if (window_val & 1)
254                         {
255                         /* 0 < window_val < 2^(w+1) */
256
257                         if (window_val & bit)
258                                 {
259                                 digit = window_val - next_bit; /* -2^w < digit < 0 */
260
261 #if 1 /* modified wNAF */
262                                 if (j + w + 1 >= len)
263                                         {
264                                         /* special case for generating modified wNAFs:
265                                          * no new bits will be added into window_val,
266                                          * so using a positive digit here will decrease
267                                          * the total length of the representation */
268                                         
269                                         digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
270                                         }
271 #endif
272                                 }
273                         else
274                                 {
275                                 digit = window_val; /* 0 < digit < 2^w */
276                                 }
277                         
278                         if (digit <= -bit || digit >= bit || !(digit & 1))
279                                 {
280                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
281                                 goto err;
282                                 }
283
284                         window_val -= digit;
285
286                         /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
287                          * for modified window NAFs, it may also be 2^w
288                          */
289                         if (window_val != 0 && window_val != next_bit && window_val != bit)
290                                 {
291                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
292                                 goto err;
293                                 }
294                         }
295
296                 r[j++] = sign * digit;
297
298                 window_val >>= 1;
299                 window_val += bit * BN_is_bit_set(scalar, j + w);
300
301                 if (window_val > next_bit)
302                         {
303                         ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
304                         goto err;
305                         }
306                 }
307
308         if (j > len + 1)
309                 {
310                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
311                 goto err;
312                 }
313         len = j;
314         ok = 1;
315
316  err:
317         if (!ok)
318                 {
319                 OPENSSL_free(r);
320                 r = NULL;
321                 }
322         if (ok)
323                 *ret_len = len;
324         return r;
325         }
326
327
328 /* TODO: table should be optimised for the wNAF-based implementation,
329  *       sometimes smaller windows will give better performance
330  *       (thus the boundaries should be increased)
331  */
332 #define EC_window_bits_for_scalar_size(b) \
333                 ((size_t) \
334                  ((b) >= 2000 ? 6 : \
335                   (b) >=  800 ? 5 : \
336                   (b) >=  300 ? 4 : \
337                   (b) >=   70 ? 3 : \
338                   (b) >=   20 ? 2 : \
339                   1))
340
341 /*-
342  * Compute
343  *      \sum scalars[i]*points[i],
344  * also including
345  *      scalar*generator
346  * in the addition if scalar != NULL
347  */
348 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
349         size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
350         {
351         BN_CTX *new_ctx = NULL;
352         const EC_POINT *generator = NULL;
353         EC_POINT *tmp = NULL;
354         size_t totalnum;
355         size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
356         size_t pre_points_per_block = 0;
357         size_t i, j;
358         int k;
359         int r_is_inverted = 0;
360         int r_is_at_infinity = 1;
361         size_t *wsize = NULL; /* individual window sizes */
362         signed char **wNAF = NULL; /* individual wNAFs */
363         size_t *wNAF_len = NULL;
364         size_t max_len = 0;
365         size_t num_val;
366         EC_POINT **val = NULL; /* precomputation */
367         EC_POINT **v;
368         EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
369         const EC_PRE_COMP *pre_comp = NULL;
370         int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
371                              * i.e. precomputation is not available */
372         int ret = 0;
373         
374         if (group->meth != r->meth)
375                 {
376                 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
377                 return 0;
378                 }
379
380         if ((scalar == NULL) && (num == 0))
381                 {
382                 return EC_POINT_set_to_infinity(group, r);
383                 }
384
385         for (i = 0; i < num; i++)
386                 {
387                 if (group->meth != points[i]->meth)
388                         {
389                         ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
390                         return 0;
391                         }
392                 }
393
394         if (ctx == NULL)
395                 {
396                 ctx = new_ctx = BN_CTX_new();
397                 if (ctx == NULL)
398                         goto err;
399                 }
400
401         if (scalar != NULL)
402                 {
403                 generator = EC_GROUP_get0_generator(group);
404                 if (generator == NULL)
405                         {
406                         ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
407                         goto err;
408                         }
409                 
410                 /* look if we can use precomputed multiples of generator */
411
412                 pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
413
414                 if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
415                         {
416                         blocksize = pre_comp->blocksize;
417
418                         /* determine maximum number of blocks that wNAF splitting may yield
419                          * (NB: maximum wNAF length is bit length plus one) */
420                         numblocks = (BN_num_bits(scalar) / blocksize) + 1;
421
422                         /* we cannot use more blocks than we have precomputation for */
423                         if (numblocks > pre_comp->numblocks)
424                                 numblocks = pre_comp->numblocks;
425
426                         pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
427
428                         /* check that pre_comp looks sane */
429                         if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
430                                 {
431                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
432                                 goto err;
433                                 }
434                         }
435                 else
436                         {
437                         /* can't use precomputation */
438                         pre_comp = NULL;
439                         numblocks = 1;
440                         num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
441                         }
442                 }
443         
444         totalnum = num + numblocks;
445
446         wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
447         wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
448         wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
449         val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
450
451         /* Ensure wNAF is initialised in case we end up going to err */
452         if (wNAF) wNAF[0] = NULL;       /* preliminary pivot */
453
454         if (!wsize || !wNAF_len || !wNAF || !val_sub)
455                 {
456                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
457                 goto err;
458                 }
459
460         /* num_val will be the total number of temporarily precomputed points */
461         num_val = 0;
462
463         for (i = 0; i < num + num_scalar; i++)
464                 {
465                 size_t bits;
466
467                 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
468                 wsize[i] = EC_window_bits_for_scalar_size(bits);
469                 num_val += (size_t)1 << (wsize[i] - 1);
470                 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
471                 wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
472                 if (wNAF[i] == NULL)
473                         goto err;
474                 if (wNAF_len[i] > max_len)
475                         max_len = wNAF_len[i];
476                 }
477
478         if (numblocks)
479                 {
480                 /* we go here iff scalar != NULL */
481                 
482                 if (pre_comp == NULL)
483                         {
484                         if (num_scalar != 1)
485                                 {
486                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
487                                 goto err;
488                                 }
489                         /* we have already generated a wNAF for 'scalar' */
490                         }
491                 else
492                         {
493                         signed char *tmp_wNAF = NULL;
494                         size_t tmp_len = 0;
495                         
496                         if (num_scalar != 0)
497                                 {
498                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
499                                 goto err;
500                                 }
501
502                         /* use the window size for which we have precomputation */
503                         wsize[num] = pre_comp->w;
504                         tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
505                         if (!tmp_wNAF)
506                                 goto err;
507
508                         if (tmp_len <= max_len)
509                                 {
510                                 /* One of the other wNAFs is at least as long
511                                  * as the wNAF belonging to the generator,
512                                  * so wNAF splitting will not buy us anything. */
513
514                                 numblocks = 1;
515                                 totalnum = num + 1; /* don't use wNAF splitting */
516                                 wNAF[num] = tmp_wNAF;
517                                 wNAF[num + 1] = NULL;
518                                 wNAF_len[num] = tmp_len;
519                                 if (tmp_len > max_len)
520                                         max_len = tmp_len;
521                                 /* pre_comp->points starts with the points that we need here: */
522                                 val_sub[num] = pre_comp->points;
523                                 }
524                         else
525                                 {
526                                 /* don't include tmp_wNAF directly into wNAF array
527                                  * - use wNAF splitting and include the blocks */
528
529                                 signed char *pp;
530                                 EC_POINT **tmp_points;
531                                 
532                                 if (tmp_len < numblocks * blocksize)
533                                         {
534                                         /* possibly we can do with fewer blocks than estimated */
535                                         numblocks = (tmp_len + blocksize - 1) / blocksize;
536                                         if (numblocks > pre_comp->numblocks)
537                                                 {
538                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
539                                                 goto err;
540                                                 }
541                                         totalnum = num + numblocks;
542                                         }
543                                 
544                                 /* split wNAF in 'numblocks' parts */
545                                 pp = tmp_wNAF;
546                                 tmp_points = pre_comp->points;
547
548                                 for (i = num; i < totalnum; i++)
549                                         {
550                                         if (i < totalnum - 1)
551                                                 {
552                                                 wNAF_len[i] = blocksize;
553                                                 if (tmp_len < blocksize)
554                                                         {
555                                                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
556                                                         goto err;
557                                                         }
558                                                 tmp_len -= blocksize;
559                                                 }
560                                         else
561                                                 /* last block gets whatever is left
562                                                  * (this could be more or less than 'blocksize'!) */
563                                                 wNAF_len[i] = tmp_len;
564                                         
565                                         wNAF[i + 1] = NULL;
566                                         wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
567                                         if (wNAF[i] == NULL)
568                                                 {
569                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
570                                                 OPENSSL_free(tmp_wNAF);
571                                                 goto err;
572                                                 }
573                                         memcpy(wNAF[i], pp, wNAF_len[i]);
574                                         if (wNAF_len[i] > max_len)
575                                                 max_len = wNAF_len[i];
576
577                                         if (*tmp_points == NULL)
578                                                 {
579                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
580                                                 OPENSSL_free(tmp_wNAF);
581                                                 goto err;
582                                                 }
583                                         val_sub[i] = tmp_points;
584                                         tmp_points += pre_points_per_block;
585                                         pp += blocksize;
586                                         }
587                                 OPENSSL_free(tmp_wNAF);
588                                 }
589                         }
590                 }
591
592         /* All points we precompute now go into a single array 'val'.
593          * 'val_sub[i]' is a pointer to the subarray for the i-th point,
594          * or to a subarray of 'pre_comp->points' if we already have precomputation. */
595         val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
596         if (val == NULL)
597                 {
598                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
599                 goto err;
600                 }
601         val[num_val] = NULL; /* pivot element */
602
603         /* allocate points for precomputation */
604         v = val;
605         for (i = 0; i < num + num_scalar; i++)
606                 {
607                 val_sub[i] = v;
608                 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++)
609                         {
610                         *v = EC_POINT_new(group);
611                         if (*v == NULL) goto err;
612                         v++;
613                         }
614                 }
615         if (!(v == val + num_val))
616                 {
617                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
618                 goto err;
619                 }
620
621         if (!(tmp = EC_POINT_new(group)))
622                 goto err;
623
624         /*-
625          * prepare precomputed values:
626          *    val_sub[i][0] :=     points[i]
627          *    val_sub[i][1] := 3 * points[i]
628          *    val_sub[i][2] := 5 * points[i]
629          *    ...
630          */
631         for (i = 0; i < num + num_scalar; i++)
632                 {
633                 if (i < num)
634                         {
635                         if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
636                         }
637                 else
638                         {
639                         if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
640                         }
641
642                 if (wsize[i] > 1)
643                         {
644                         if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
645                         for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++)
646                                 {
647                                 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
648                                 }
649                         }
650                 }
651
652 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
653         if (!EC_POINTs_make_affine(group, num_val, val, ctx))
654                 goto err;
655 #endif
656
657         r_is_at_infinity = 1;
658
659         for (k = max_len - 1; k >= 0; k--)
660                 {
661                 if (!r_is_at_infinity)
662                         {
663                         if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
664                         }
665                 
666                 for (i = 0; i < totalnum; i++)
667                         {
668                         if (wNAF_len[i] > (size_t)k)
669                                 {
670                                 int digit = wNAF[i][k];
671                                 int is_neg;
672
673                                 if (digit) 
674                                         {
675                                         is_neg = digit < 0;
676
677                                         if (is_neg)
678                                                 digit = -digit;
679
680                                         if (is_neg != r_is_inverted)
681                                                 {
682                                                 if (!r_is_at_infinity)
683                                                         {
684                                                         if (!EC_POINT_invert(group, r, ctx)) goto err;
685                                                         }
686                                                 r_is_inverted = !r_is_inverted;
687                                                 }
688
689                                         /* digit > 0 */
690
691                                         if (r_is_at_infinity)
692                                                 {
693                                                 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
694                                                 r_is_at_infinity = 0;
695                                                 }
696                                         else
697                                                 {
698                                                 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
699                                                 }
700                                         }
701                                 }
702                         }
703                 }
704
705         if (r_is_at_infinity)
706                 {
707                 if (!EC_POINT_set_to_infinity(group, r)) goto err;
708                 }
709         else
710                 {
711                 if (r_is_inverted)
712                         if (!EC_POINT_invert(group, r, ctx)) goto err;
713                 }
714         
715         ret = 1;
716
717  err:
718         if (new_ctx != NULL)
719                 BN_CTX_free(new_ctx);
720         if (tmp != NULL)
721                 EC_POINT_free(tmp);
722         if (wsize != NULL)
723                 OPENSSL_free(wsize);
724         if (wNAF_len != NULL)
725                 OPENSSL_free(wNAF_len);
726         if (wNAF != NULL)
727                 {
728                 signed char **w;
729                 
730                 for (w = wNAF; *w != NULL; w++)
731                         OPENSSL_free(*w);
732                 
733                 OPENSSL_free(wNAF);
734                 }
735         if (val != NULL)
736                 {
737                 for (v = val; *v != NULL; v++)
738                         EC_POINT_clear_free(*v);
739
740                 OPENSSL_free(val);
741                 }
742         if (val_sub != NULL)
743                 {
744                 OPENSSL_free(val_sub);
745                 }
746         return ret;
747         }
748
749
750 /*-
751  * ec_wNAF_precompute_mult()
752  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
753  * for use with wNAF splitting as implemented in ec_wNAF_mul().
754  * 
755  * 'pre_comp->points' is an array of multiples of the generator
756  * of the following form:
757  * points[0] =     generator;
758  * points[1] = 3 * generator;
759  * ...
760  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
761  * points[2^(w-1)]   =     2^blocksize * generator;
762  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
763  * ...
764  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
765  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
766  * ...
767  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
768  * points[2^(w-1)*numblocks]       = NULL
769  */
770 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
771         {
772         const EC_POINT *generator;
773         EC_POINT *tmp_point = NULL, *base = NULL, **var;
774         BN_CTX *new_ctx = NULL;
775         BIGNUM *order;
776         size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
777         EC_POINT **points = NULL;
778         EC_PRE_COMP *pre_comp;
779         int ret = 0;
780
781         /* if there is an old EC_PRE_COMP object, throw it away */
782         EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
783
784         if ((pre_comp = ec_pre_comp_new(group)) == NULL)
785                 return 0;
786
787         generator = EC_GROUP_get0_generator(group);
788         if (generator == NULL)
789                 {
790                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
791                 goto err;
792                 }
793
794         if (ctx == NULL)
795                 {
796                 ctx = new_ctx = BN_CTX_new();
797                 if (ctx == NULL)
798                         goto err;
799                 }
800         
801         BN_CTX_start(ctx);
802         order = BN_CTX_get(ctx);
803         if (order == NULL) goto err;
804         
805         if (!EC_GROUP_get_order(group, order, ctx)) goto err;           
806         if (BN_is_zero(order))
807                 {
808                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
809                 goto err;
810                 }
811
812         bits = BN_num_bits(order);
813         /* The following parameters mean we precompute (approximately)
814          * one point per bit.
815          *
816          * TBD: The combination  8, 4  is perfect for 160 bits; for other
817          * bit lengths, other parameter combinations might provide better
818          * efficiency.
819          */
820         blocksize = 8;
821         w = 4;
822         if (EC_window_bits_for_scalar_size(bits) > w)
823                 {
824                 /* let's not make the window too small ... */
825                 w = EC_window_bits_for_scalar_size(bits);
826                 }
827
828         numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
829         
830         pre_points_per_block = (size_t)1 << (w - 1);
831         num = pre_points_per_block * numblocks; /* number of points to compute and store */
832
833         points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
834         if (!points)
835                 {
836                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
837                 goto err;
838                 }
839
840         var = points;
841         var[num] = NULL; /* pivot */
842         for (i = 0; i < num; i++)
843                 {
844                 if ((var[i] = EC_POINT_new(group)) == NULL)
845                         {
846                         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
847                         goto err;
848                         }
849                 }
850
851         if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
852                 {
853                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
854                 goto err;
855                 }       
856         
857         if (!EC_POINT_copy(base, generator))
858                 goto err;
859         
860         /* do the precomputation */
861         for (i = 0; i < numblocks; i++)
862                 {
863                 size_t j;
864
865                 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
866                         goto err;
867
868                 if (!EC_POINT_copy(*var++, base))
869                         goto err;
870
871                 for (j = 1; j < pre_points_per_block; j++, var++)
872                         {
873                         /* calculate odd multiples of the current base point */
874                         if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
875                                 goto err;
876                         }
877
878                 if (i < numblocks - 1)
879                         {
880                         /* get the next base (multiply current one by 2^blocksize) */
881                         size_t k;
882
883                         if (blocksize <= 2)
884                                 {
885                                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
886                                 goto err;
887                                 }                               
888
889                         if (!EC_POINT_dbl(group, base, tmp_point, ctx))
890                                 goto err;
891                         for (k = 2; k < blocksize; k++)
892                                 {
893                                 if (!EC_POINT_dbl(group,base,base,ctx))
894                                         goto err;
895                                 }
896                         }
897                 }
898
899         if (!EC_POINTs_make_affine(group, num, points, ctx))
900                 goto err;
901         
902         pre_comp->group = group;
903         pre_comp->blocksize = blocksize;
904         pre_comp->numblocks = numblocks;
905         pre_comp->w = w;
906         pre_comp->points = points;
907         points = NULL;
908         pre_comp->num = num;
909
910         if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
911                 ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
912                 goto err;
913         pre_comp = NULL;
914
915         ret = 1;
916  err:
917         if (ctx != NULL)
918                 BN_CTX_end(ctx);
919         if (new_ctx != NULL)
920                 BN_CTX_free(new_ctx);
921         if (pre_comp)
922                 ec_pre_comp_free(pre_comp);
923         if (points)
924                 {
925                 EC_POINT **p;
926
927                 for (p = points; *p != NULL; p++)
928                         EC_POINT_free(*p);
929                 OPENSSL_free(points);
930                 }
931         if (tmp_point)
932                 EC_POINT_free(tmp_point);
933         if (base)
934                 EC_POINT_free(base);
935         return ret;
936         }
937
938
939 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
940         {
941         if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
942                 return 1;
943         else
944                 return 0;
945         }