rand: remove unimplemented librandom stub code
[openssl.git] / crypto / threads_win.c
1 /*
2  * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #if defined(_WIN32)
11 # include <windows.h>
12 # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
13 #  define USE_RWLOCK
14 # endif
15 #endif
16 #include <assert.h>
17
18 /*
19  * VC++ 2008 or earlier x86 compilers do not have an inline implementation
20  * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
21  * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
22  * To work around this problem, we implement a manual locking mechanism for
23  * only VC++ 2008 or earlier x86 compilers.
24  */
25
26 #if (defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600)
27 # define NO_INTERLOCKEDOR64
28 #endif
29
30 #include <openssl/crypto.h>
31 #include <crypto/cryptlib.h>
32 #include "internal/common.h"
33 #include "internal/thread_arch.h"
34 #include "internal/rcu.h"
35 #include "rcu_internal.h"
36
37 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
38
39 # ifdef USE_RWLOCK
40 typedef struct {
41     SRWLOCK lock;
42     int exclusive;
43 } CRYPTO_win_rwlock;
44 # endif
45
46 # define READER_SHIFT 0
47 # define ID_SHIFT 32 
48 # define READER_SIZE 32 
49 # define ID_SIZE 32 
50
51 # define READER_MASK     (((LONG64)1 << READER_SIZE)-1)
52 # define ID_MASK         (((LONG64)1 << ID_SIZE)-1)
53 # define READER_COUNT(x) (((LONG64)(x) >> READER_SHIFT) & READER_MASK)
54 # define ID_VAL(x)       (((LONG64)(x) >> ID_SHIFT) & ID_MASK)
55 # define VAL_READER      ((LONG64)1 << READER_SHIFT)
56 # define VAL_ID(x)       ((LONG64)x << ID_SHIFT)
57
58 /*
59  * This defines a quescent point (qp)
60  * This is the barrier beyond which a writer
61  * must wait before freeing data that was
62  * atomically updated
63  */
64 struct rcu_qp {
65     volatile LONG64 users;
66 };
67
68 struct thread_qp {
69     struct rcu_qp *qp;
70     unsigned int depth;
71     CRYPTO_RCU_LOCK *lock;
72 };
73
74 #define MAX_QPS 10
75 /*
76  * This is the per thread tracking data
77  * that is assigned to each thread participating
78  * in an rcu qp
79  *
80  * qp points to the qp that it last acquired
81  *
82  */
83 struct rcu_thr_data {
84     struct thread_qp thread_qps[MAX_QPS];
85 };
86
87 /*
88  * This is the internal version of a CRYPTO_RCU_LOCK
89  * it is cast from CRYPTO_RCU_LOCK
90  */
91 struct rcu_lock_st {
92     struct rcu_cb_item *cb_items;
93     OSSL_LIB_CTX *ctx;
94     uint32_t id_ctr;
95     struct rcu_qp *qp_group;
96     size_t group_count;
97     uint32_t next_to_retire;
98     volatile long int reader_idx;
99     uint32_t current_alloc_idx;
100     uint32_t writers_alloced;
101     CRYPTO_MUTEX *write_lock;
102     CRYPTO_MUTEX *alloc_lock;
103     CRYPTO_CONDVAR *alloc_signal;
104     CRYPTO_MUTEX *prior_lock;
105     CRYPTO_CONDVAR *prior_signal;
106 };
107
108 static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
109                                             int count)
110 {
111     struct rcu_qp *new =
112         OPENSSL_zalloc(sizeof(*new) * count);
113
114     lock->group_count = count;
115     return new;
116 }
117
118 CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
119 {
120     struct rcu_lock_st *new;
121
122     if (num_writers < 1)
123         num_writers = 1;
124
125     ctx = ossl_lib_ctx_get_concrete(ctx);
126     if (ctx == NULL)
127         return 0;
128
129     new = OPENSSL_zalloc(sizeof(*new));
130
131     if (new == NULL)
132         return NULL;
133
134     new->ctx = ctx;
135     new->write_lock = ossl_crypto_mutex_new();
136     new->alloc_signal = ossl_crypto_condvar_new();
137     new->prior_signal = ossl_crypto_condvar_new();
138     new->alloc_lock = ossl_crypto_mutex_new();
139     new->prior_lock = ossl_crypto_mutex_new();
140     new->qp_group = allocate_new_qp_group(new, num_writers + 1);
141     if (new->qp_group == NULL
142         || new->alloc_signal == NULL
143         || new->prior_signal == NULL
144         || new->write_lock == NULL
145         || new->alloc_lock == NULL
146         || new->prior_lock == NULL) {
147         OPENSSL_free(new->qp_group);
148         ossl_crypto_condvar_free(&new->alloc_signal);
149         ossl_crypto_condvar_free(&new->prior_signal);
150         ossl_crypto_mutex_free(&new->alloc_lock);
151         ossl_crypto_mutex_free(&new->prior_lock);
152         ossl_crypto_mutex_free(&new->write_lock);
153         OPENSSL_free(new);
154         new = NULL;
155     }
156     return new;
157
158 }
159
160 void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
161 {
162     OPENSSL_free(lock->qp_group);
163     ossl_crypto_condvar_free(&lock->alloc_signal);
164     ossl_crypto_condvar_free(&lock->prior_signal);
165     ossl_crypto_mutex_free(&lock->alloc_lock);
166     ossl_crypto_mutex_free(&lock->prior_lock);
167     ossl_crypto_mutex_free(&lock->write_lock);
168     OPENSSL_free(lock);
169 }
170
171 static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
172 {
173     uint32_t qp_idx;
174
175     /* get the current qp index */
176     for (;;) {
177         qp_idx = InterlockedOr(&lock->reader_idx, 0);
178         InterlockedAdd64(&lock->qp_group[qp_idx].users, VAL_READER);
179         if (qp_idx == InterlockedOr(&lock->reader_idx, 0))
180             break;
181         InterlockedAdd64(&lock->qp_group[qp_idx].users, -VAL_READER);
182     }
183
184     return &lock->qp_group[qp_idx];
185 }
186
187 static void ossl_rcu_free_local_data(void *arg)
188 {
189     OSSL_LIB_CTX *ctx = arg;
190     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
191     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
192     OPENSSL_free(data);
193 }
194
195 void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
196 {
197     struct rcu_thr_data *data;
198     int i;
199     int available_qp = -1;
200     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
201
202     /*
203      * we're going to access current_qp here so ask the
204      * processor to fetch it
205      */
206     data = CRYPTO_THREAD_get_local(lkey);
207
208     if (data == NULL) {
209         data = OPENSSL_zalloc(sizeof(*data));
210         OPENSSL_assert(data != NULL);
211         CRYPTO_THREAD_set_local(lkey, data);
212         ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
213     }
214
215     for (i = 0; i < MAX_QPS; i++) {
216         if (data->thread_qps[i].qp == NULL && available_qp == -1)
217             available_qp = i;
218         /* If we have a hold on this lock already, we're good */
219         if (data->thread_qps[i].lock == lock)
220             return;
221     }
222
223     /*
224      * if we get here, then we don't have a hold on this lock yet
225      */
226     assert(available_qp != -1);
227
228     data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
229     data->thread_qps[available_qp].depth = 1;
230     data->thread_qps[available_qp].lock = lock;
231 }
232
233 void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
234 {
235     ossl_crypto_mutex_lock(lock->write_lock);
236 }
237
238 void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
239 {
240     ossl_crypto_mutex_unlock(lock->write_lock);
241 }
242
243 void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
244 {
245     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
246     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
247     int i;
248     LONG64 ret;
249
250     assert(data != NULL);
251
252     for (i = 0; i < MAX_QPS; i++) {
253         if (data->thread_qps[i].lock == lock) {
254             data->thread_qps[i].depth--;
255             if (data->thread_qps[i].depth == 0) {
256                 ret = InterlockedAdd64(&data->thread_qps[i].qp->users, -VAL_READER);
257                 OPENSSL_assert(ret >= 0);
258                 data->thread_qps[i].qp = NULL;
259                 data->thread_qps[i].lock = NULL;
260             }
261             return;
262         }
263     }
264 }
265
266 static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
267 {
268     uint64_t new_id;
269     uint32_t current_idx;
270     uint32_t tmp;
271
272     ossl_crypto_mutex_lock(lock->alloc_lock);
273     /*
274      * we need at least one qp to be available with one
275      * left over, so that readers can start working on
276      * one that isn't yet being waited on
277      */
278     while (lock->group_count - lock->writers_alloced < 2)
279         ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
280
281     current_idx = lock->current_alloc_idx;
282     /* Allocate the qp */
283     lock->writers_alloced++;
284
285     /* increment the allocation index */
286     lock->current_alloc_idx =
287         (lock->current_alloc_idx + 1) % lock->group_count;
288
289     /* get and insert a new id */
290     new_id = lock->id_ctr;
291     lock->id_ctr++;
292
293     new_id = VAL_ID(new_id);
294     InterlockedAnd64(&lock->qp_group[current_idx].users, ID_MASK);
295     InterlockedAdd64(&lock->qp_group[current_idx].users, new_id);
296
297     /* update the reader index to be the prior qp */
298     tmp = lock->current_alloc_idx;
299     InterlockedExchange(&lock->reader_idx, tmp);
300
301     /* wake up any waiters */
302     ossl_crypto_condvar_broadcast(lock->alloc_signal);
303     ossl_crypto_mutex_unlock(lock->alloc_lock);
304     return &lock->qp_group[current_idx];
305 }
306
307 static void retire_qp(CRYPTO_RCU_LOCK *lock,
308                       struct rcu_qp *qp)
309 {
310     ossl_crypto_mutex_lock(lock->alloc_lock);
311     lock->writers_alloced--;
312     ossl_crypto_condvar_broadcast(lock->alloc_signal);
313     ossl_crypto_mutex_unlock(lock->alloc_lock);
314 }
315
316
317 void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
318 {
319     struct rcu_qp *qp;
320     uint64_t count;
321     struct rcu_cb_item *cb_items, *tmpcb;
322
323     /* before we do anything else, lets grab the cb list */
324     cb_items = InterlockedExchangePointer((void * volatile *)&lock->cb_items, NULL);
325
326     qp = update_qp(lock);
327
328     /* wait for the reader count to reach zero */
329     do {
330         count = InterlockedOr64(&qp->users, 0);
331     } while (READER_COUNT(count) != 0);
332
333     /* retire in order */
334     ossl_crypto_mutex_lock(lock->prior_lock);
335     while (lock->next_to_retire != ID_VAL(count))
336         ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
337
338     lock->next_to_retire++;
339     ossl_crypto_condvar_broadcast(lock->prior_signal);
340     ossl_crypto_mutex_unlock(lock->prior_lock);
341
342     retire_qp(lock, qp);
343
344     /* handle any callbacks that we have */
345     while (cb_items != NULL) {
346         tmpcb = cb_items;
347         cb_items = cb_items->next;
348         tmpcb->fn(tmpcb->data);
349         OPENSSL_free(tmpcb);
350     }
351
352     /* and we're done */
353     return;
354
355 }
356
357 int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
358 {
359     struct rcu_cb_item *new;
360
361     new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
362     if (new == NULL)
363         return 0;
364     new->data = data;
365     new->fn = cb;
366
367     new->next = InterlockedExchangePointer((void * volatile *)&lock->cb_items, new);
368     return 1;
369 }
370
371 void *ossl_rcu_uptr_deref(void **p)
372 {
373     return (void *)*p;
374 }
375
376 void ossl_rcu_assign_uptr(void **p, void **v)
377 {
378     InterlockedExchangePointer((void * volatile *)p, (void *)*v);
379 }
380
381
382 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
383 {
384     CRYPTO_RWLOCK *lock;
385 # ifdef USE_RWLOCK
386     CRYPTO_win_rwlock *rwlock;
387
388     if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
389         /* Don't set error, to avoid recursion blowup. */
390         return NULL;
391     rwlock = lock;
392     InitializeSRWLock(&rwlock->lock);
393 # else
394
395     if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
396         /* Don't set error, to avoid recursion blowup. */
397         return NULL;
398
399 #  if !defined(_WIN32_WCE)
400     /* 0x400 is the spin count value suggested in the documentation */
401     if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
402         OPENSSL_free(lock);
403         return NULL;
404     }
405 #  else
406     InitializeCriticalSection(lock);
407 #  endif
408 # endif
409
410     return lock;
411 }
412
413 __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
414 {
415 # ifdef USE_RWLOCK
416     CRYPTO_win_rwlock *rwlock = lock;
417
418     AcquireSRWLockShared(&rwlock->lock);
419 # else
420     EnterCriticalSection(lock);
421 # endif
422     return 1;
423 }
424
425 __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
426 {
427 # ifdef USE_RWLOCK
428     CRYPTO_win_rwlock *rwlock = lock;
429
430     AcquireSRWLockExclusive(&rwlock->lock);
431     rwlock->exclusive = 1;
432 # else
433     EnterCriticalSection(lock);
434 # endif
435     return 1;
436 }
437
438 int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
439 {
440 # ifdef USE_RWLOCK
441     CRYPTO_win_rwlock *rwlock = lock;
442
443     if (rwlock->exclusive) {
444         rwlock->exclusive = 0;
445         ReleaseSRWLockExclusive(&rwlock->lock);
446     } else {
447         ReleaseSRWLockShared(&rwlock->lock);
448     }
449 # else
450     LeaveCriticalSection(lock);
451 # endif
452     return 1;
453 }
454
455 void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
456 {
457     if (lock == NULL)
458         return;
459
460 # ifndef USE_RWLOCK
461     DeleteCriticalSection(lock);
462 # endif
463     OPENSSL_free(lock);
464
465     return;
466 }
467
468 # define ONCE_UNINITED     0
469 # define ONCE_ININIT       1
470 # define ONCE_DONE         2
471
472 /*
473  * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
474  * we still have to support.
475  */
476 int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
477 {
478     LONG volatile *lock = (LONG *)once;
479     LONG result;
480
481     if (*lock == ONCE_DONE)
482         return 1;
483
484     do {
485         result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
486         if (result == ONCE_UNINITED) {
487             init();
488             *lock = ONCE_DONE;
489             return 1;
490         }
491     } while (result == ONCE_ININIT);
492
493     return (*lock == ONCE_DONE);
494 }
495
496 int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
497 {
498     *key = TlsAlloc();
499     if (*key == TLS_OUT_OF_INDEXES)
500         return 0;
501
502     return 1;
503 }
504
505 void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
506 {
507     DWORD last_error;
508     void *ret;
509
510     /*
511      * TlsGetValue clears the last error even on success, so that callers may
512      * distinguish it successfully returning NULL or failing. It is documented
513      * to never fail if the argument is a valid index from TlsAlloc, so we do
514      * not need to handle this.
515      *
516      * However, this error-mangling behavior interferes with the caller's use of
517      * GetLastError. In particular SSL_get_error queries the error queue to
518      * determine whether the caller should look at the OS's errors. To avoid
519      * destroying state, save and restore the Windows error.
520      *
521      * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
522      */
523     last_error = GetLastError();
524     ret = TlsGetValue(*key);
525     SetLastError(last_error);
526     return ret;
527 }
528
529 int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
530 {
531     if (TlsSetValue(*key, val) == 0)
532         return 0;
533
534     return 1;
535 }
536
537 int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
538 {
539     if (TlsFree(*key) == 0)
540         return 0;
541
542     return 1;
543 }
544
545 CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
546 {
547     return GetCurrentThreadId();
548 }
549
550 int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
551 {
552     return (a == b);
553 }
554
555 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
556 {
557     *ret = (int)InterlockedExchangeAdd((long volatile *)val, (long)amount) + amount;
558     return 1;
559 }
560
561 int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
562                      CRYPTO_RWLOCK *lock)
563 {
564 #if (defined(NO_INTERLOCKEDOR64))
565     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
566         return 0;
567     *val |= op;
568     *ret = *val;
569
570     if (!CRYPTO_THREAD_unlock(lock))
571         return 0;
572
573     return 1;
574 #else
575     *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
576     return 1;
577 #endif
578 }
579
580 int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
581 {
582 #if (defined(NO_INTERLOCKEDOR64))
583     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
584         return 0;
585     *ret = *val;
586     if (!CRYPTO_THREAD_unlock(lock))
587         return 0;
588
589     return 1;
590 #else
591     *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
592     return 1;
593 #endif
594 }
595
596 int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
597 {
598 #if (defined(NO_INTERLOCKEDOR64))
599     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
600         return 0;
601     *dst = val;
602     if (!CRYPTO_THREAD_unlock(lock))
603         return 0;
604
605     return 1;
606 #else
607     InterlockedExchange64(dst, val);
608     return 1;
609 #endif
610 }
611
612 int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
613 {
614 #if (defined(NO_INTERLOCKEDOR64))
615     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
616         return 0;
617     *ret = *val;
618     if (!CRYPTO_THREAD_unlock(lock))
619         return 0;
620
621     return 1;
622 #else
623     /* On Windows, LONG is always the same size as int. */
624     *ret = (int)InterlockedOr((LONG volatile *)val, 0);
625     return 1;
626 #endif
627 }
628
629 int openssl_init_fork_handlers(void)
630 {
631     return 0;
632 }
633
634 int openssl_get_fork_id(void)
635 {
636     return 0;
637 }
638 #endif