ec/ecp_nistz256.c: harmonize with latest indent script.
authorAndy Polyakov <appro@openssl.org>
Wed, 21 Jan 2015 15:02:33 +0000 (16:02 +0100)
committerMatt Caswell <matt@openssl.org>
Thu, 22 Jan 2015 09:27:52 +0000 (09:27 +0000)
Conflicts:
crypto/ec/ecp_nistz256.c

Reviewed-by: Tim Hudson <tjh@openssl.org>
crypto/ec/ecp_nistz256.c

index bf3fcc6..d8c0dae 100644 (file)
 #include "ec_lcl.h"
 
 #if BN_BITS2 != 64
-# define TOBN(hi,lo)   lo,hi
+# define TOBN(hi,lo)    lo,hi
 #else
-# define TOBN(hi,lo)   ((BN_ULONG)hi<<32|lo)
+# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
 #endif
 
 #if defined(__GNUC__)
-# define ALIGN32       __attribute((aligned(32)))
+# define ALIGN32        __attribute((aligned(32)))
 #elif defined(_MSC_VER)
-# define ALIGN32       __declspec(align(32))
+# define ALIGN32        __declspec(align(32))
 #else
 # define ALIGN32
 #endif
 
-#define ALIGNPTR(p,N)  ((unsigned char *)p+N-(size_t)p%N)
-#define P256_LIMBS     (256/BN_BITS2)
+#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
+#define P256_LIMBS      (256/BN_BITS2)
 
 typedef unsigned short u16;
 
@@ -127,7 +127,7 @@ static const BN_ULONG ONE[P256_LIMBS] = {
 static void *ecp_nistz256_pre_comp_dup(void *);
 static void ecp_nistz256_pre_comp_free(void *);
 static void ecp_nistz256_pre_comp_clear_free(void *);
-static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP * group);
+static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
 
 /* Precomputed tables for the default generator */
 #include "ecp_nistz256_table.c"
@@ -221,15 +221,15 @@ static BN_ULONG is_one(const BN_ULONG a[P256_LIMBS])
 }
 
 #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
-void ecp_nistz256_point_double(P256_POINT * r, const P256_POINT * a);
-void ecp_nistz256_point_add(P256_POINT * r,
-                            const P256_POINT * a, const P256_POINT * b);
-void ecp_nistz256_point_add_affine(P256_POINT * r,
-                                   const P256_POINT * a,
-                                   const P256_POINT_AFFINE * b);
+void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
+void ecp_nistz256_point_add(P256_POINT *r,
+                            const P256_POINT *a, const P256_POINT *b);
+void ecp_nistz256_point_add_affine(P256_POINT *r,
+                                   const P256_POINT *a,
+                                   const P256_POINT_AFFINE *b);
 #else
 /* Point double: r = 2*a */
-static void ecp_nistz256_point_double(P256_POINT * r, const P256_POINT * a)
+static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
 {
     BN_ULONG S[P256_LIMBS];
     BN_ULONG M[P256_LIMBS];
@@ -303,17 +303,17 @@ static void ecp_nistz256_point_add(P256_POINT * r,
 
     /* We encode infinity as (0,0), which is not on the curve,
      * so it is OK. */
-    in1infty = in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
-               in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3];
+    in1infty = (in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
+                in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3]);
     if (P256_LIMBS == 8)
-        in1infty |= in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
-                    in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7];
+        in1infty |= (in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
+                     in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7]);
 
-    in2infty = in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
-               in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3];
+    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
+                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
     if (P256_LIMBS == 8)
-        in2infty |= in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
-                    in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7];
+        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
+                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
 
     in1infty = is_zero(in1infty);
     in2infty = is_zero(in2infty);
@@ -376,9 +376,9 @@ static void ecp_nistz256_point_add(P256_POINT * r,
 }
 
 /* Point addition when b is known to be affine: r = a+b */
-static void ecp_nistz256_point_add_affine(P256_POINT * r,
-                                          const P256_POINT * a,
-                                          const P256_POINT_AFFINE * b)
+static void ecp_nistz256_point_add_affine(P256_POINT *r,
+                                          const P256_POINT *a,
+                                          const P256_POINT_AFFINE *b)
 {
     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
     BN_ULONG Z1sqr[P256_LIMBS];
@@ -402,17 +402,17 @@ static void ecp_nistz256_point_add_affine(P256_POINT * r,
 
     /* In affine representation we encode infty as (0,0),
      * which is not on the curve, so it is OK */
-    in1infty = in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
-               in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3];
+    in1infty = (in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
+                in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3]);
     if (P256_LIMBS == 8)
-        in1infty |= in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
-                    in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7];
+        in1infty |= (in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
+                     in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7]);
 
-    in2infty = in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
-               in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3];
+    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
+                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
     if (P256_LIMBS == 8)
-        in2infty |= in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
-                    in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7];
+        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
+                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
 
     in1infty = is_zero(in1infty);
     in2infty = is_zero(in2infty);
@@ -548,11 +548,11 @@ static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
 }
 
 /* r = sum(scalar[i]*point[i]) */
-static void ecp_nistz256_windowed_mul(const EC_GROUP * group,
-                                      P256_POINT * r,
-                                      const BIGNUM ** scalar,
-                                      const EC_POINT ** point,
-                                      int num, BN_CTX * ctx)
+static void ecp_nistz256_windowed_mul(const EC_GROUP *group,
+                                      P256_POINT *r,
+                                      const BIGNUM **scalar,
+                                      const EC_POINT **point,
+                                      int num, BN_CTX *ctx)
 {
     int i, j;
     unsigned int index;
@@ -688,7 +688,7 @@ static void ecp_nistz256_windowed_mul(const EC_GROUP * group,
         ecp_nistz256_point_add(r, r, &h);
     }
 
-err:
+ err:
     if (table_storage)
         OPENSSL_free(table_storage);
     if (p_str)
@@ -710,7 +710,7 @@ const static BN_ULONG def_yG[P256_LIMBS] = {
 
 /* ecp_nistz256_is_affine_G returns one if |generator| is the standard,
  * P-256 generator. */
-static int ecp_nistz256_is_affine_G(const EC_POINT * generator)
+static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
 {
     return (generator->X.top == P256_LIMBS) &&
         (generator->Y.top == P256_LIMBS) &&
@@ -719,7 +719,7 @@ static int ecp_nistz256_is_affine_G(const EC_POINT * generator)
         is_equal(generator->Y.d, def_yG) && is_one(generator->Z.d);
 }
 
-static int ecp_nistz256_mult_precompute(EC_GROUP * group, BN_CTX * ctx)
+static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
 {
     /* We precompute a table for a Booth encoded exponent (wNAF) based
      * computation. Each table holds 64 values for safe access, with an
@@ -827,7 +827,7 @@ static int ecp_nistz256_mult_precompute(EC_GROUP * group, BN_CTX * ctx)
 
     ret = 1;
 
-err:
+ err:
     if (ctx != NULL)
         BN_CTX_end(ctx);
     if (pre_comp)
@@ -889,10 +889,9 @@ static void booth_recode_w7(unsigned char *sign,
 /* ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
  * precomputed table. It does 4 affine point additions in parallel,
  * significantly speeding up point multiplication for a fixed value. */
-static void ecp_nistz256_avx2_mul_g(P256_POINT * r,
+static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
                                     unsigned char p_str[33],
-                                    const
-                                    P256_POINT_AFFINE(*preComputedTable)[64])
+                                    const P256_POINT_AFFINE(*preComputedTable)[64])
 {
     const unsigned int window_size = 7;
     const unsigned int mask = (1 << (window_size + 1)) - 1;
@@ -1042,9 +1041,9 @@ static void ecp_nistz256_avx2_mul_g(P256_POINT * r,
 # endif
 #endif
 
-static int ecp_nistz256_set_from_affine(EC_POINT * out, const EC_GROUP * group,
-                                        const P256_POINT_AFFINE * in,
-                                        BN_CTX * ctx)
+static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
+                                        const P256_POINT_AFFINE *in,
+                                        BN_CTX *ctx)
 {
     BIGNUM x, y;
     BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS];
@@ -1068,12 +1067,12 @@ static int ecp_nistz256_set_from_affine(EC_POINT * out, const EC_GROUP * group,
 }
 
 /* r = scalar*G + sum(scalars[i]*points[i]) */
-static int ecp_nistz256_points_mul(const EC_GROUP * group,
-                                   EC_POINT * r,
-                                   const BIGNUM * scalar,
+static int ecp_nistz256_points_mul(const EC_GROUP *group,
+                                   EC_POINT *r,
+                                   const BIGNUM *scalar,
                                    size_t num,
-                                   const EC_POINT * points[],
-                                   const BIGNUM * scalars[], BN_CTX * ctx)
+                                   const EC_POINT *points[],
+                                   const BIGNUM *scalars[], BN_CTX *ctx)
 {
     int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
     size_t j;
@@ -1281,13 +1280,13 @@ static int ecp_nistz256_points_mul(const EC_GROUP * group,
 
     ret = 1;
 
-err:
+ err:
     return ret;
 }
 
-static int ecp_nistz256_get_affine(const EC_GROUP * group,
-                                   const EC_POINT * point,
-                                   BIGNUM * x, BIGNUM * y, BN_CTX * ctx)
+static int ecp_nistz256_get_affine(const EC_GROUP *group,
+                                   const EC_POINT *point,
+                                   BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
 {
     BN_ULONG z_inv2[P256_LIMBS];
     BN_ULONG z_inv3[P256_LIMBS];
@@ -1330,14 +1329,14 @@ static int ecp_nistz256_get_affine(const EC_GROUP * group,
     return 1;
 }
 
-static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP * group)
+static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
 {
     EC_PRE_COMP *ret = NULL;
 
     if (!group)
         return NULL;
 
-    ret = (EC_PRE_COMP *) OPENSSL_malloc(sizeof(EC_PRE_COMP));
+    ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
 
     if (!ret) {
         ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
@@ -1401,7 +1400,7 @@ static void ecp_nistz256_pre_comp_clear_free(void *pre_)
     OPENSSL_free(pre);
 }
 
-static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP * group)
+static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
 {
     /* There is a hard-coded table for the default generator. */
     const EC_POINT *generator = EC_GROUP_get0_generator(group);