Fix intermittent sslapitest early data related failures
[openssl.git] / crypto / threads_pthread.c
index c3fd2411db18e27d1a9ff98e1ed3561c7c658c69..8e411671d9f76c201bbd933849928e0802db9778 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
  *
  * Licensed under the Apache License 2.0 (the "License").  You may not use
  * this file except in compliance with the License.  You can obtain a copy
  * https://www.openssl.org/source/license.html
  */
 
+/* We need to use the OPENSSL_fork_*() deprecated APIs */
+#define OPENSSL_SUPPRESS_DEPRECATED
+
 #include <openssl/crypto.h>
+#include <crypto/cryptlib.h>
 #include "internal/cryptlib.h"
+#include "internal/rcu.h"
+#include "rcu_internal.h"
+
+#if defined(__clang__) && defined(__has_feature)
+# if __has_feature(thread_sanitizer)
+#  define __SANITIZE_THREAD__
+# endif
+#endif
+
+#if defined(__SANITIZE_THREAD__)
+# include <sanitizer/tsan_interface.h>
+# define TSAN_FAKE_UNLOCK(x)   __tsan_mutex_pre_unlock((x), 0); \
+__tsan_mutex_post_unlock((x), 0)
+
+# define TSAN_FAKE_LOCK(x)  __tsan_mutex_pre_lock((x), 0); \
+__tsan_mutex_post_lock((x), 0, 0)
+#else
+# define TSAN_FAKE_UNLOCK(x)
+# define TSAN_FAKE_LOCK(x)
+#endif
 
 #if defined(__sun)
 # include <atomic.h>
 #endif
 
+#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
+/*
+ * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
+ * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
+ * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
+ * All of this makes impossible to use __atomic_is_lock_free here.
+ *
+ * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
+ */
+# define BROKEN_CLANG_ATOMICS
+#endif
+
 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
 
+# if defined(OPENSSL_SYS_UNIX)
+#  include <sys/types.h>
+#  include <unistd.h>
+# endif
+
+# include <assert.h>
+
 # ifdef PTHREAD_RWLOCK_INITIALIZER
 #  define USE_RWLOCK
 # endif
 
+/*
+ * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
+ * other compilers.
+
+ * Unfortunately, we can't do that with some "generic type", because there's no
+ * guarantee that the chosen generic type is large enough to cover all cases.
+ * Therefore, we implement fallbacks for each applicable type, with composed
+ * names that include the type they handle.
+ *
+ * (an anecdote: we previously tried to use |void *| as the generic type, with
+ * the thought that the pointer itself is the largest type.  However, this is
+ * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
+ *
+ * All applicable ATOMIC_ macros take the intended type as first parameter, so
+ * they can map to the correct fallback function.  In the GNU/clang case, that
+ * parameter is simply ignored.
+ */
+
+/*
+ * Internal types used with the ATOMIC_ macros, to make it possible to compose
+ * fallback function names.
+ */
+typedef void *pvoid;
+typedef struct rcu_cb_item *prcu_cb_item;
+
+# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
+    && !defined(USE_ATOMIC_FALLBACKS)
+#  if defined(__APPLE__) && defined(__clang__) && defined(__aarch64__)
+/*
+ * For pointers, Apple M1 virtualized cpu seems to have some problem using the
+ * ldapr instruction (see https://github.com/openssl/openssl/pull/23974)
+ * When using the native apple clang compiler, this instruction is emitted for
+ * atomic loads, which is bad.  So, if
+ * 1) We are building on a target that defines __APPLE__ AND
+ * 2) We are building on a target using clang (__clang__) AND
+ * 3) We are building for an M1 processor (__aarch64__)
+ * Then we should not use __atomic_load_n and instead implement our own
+ * function to issue the ldar instruction instead, which produces the proper
+ * sequencing guarantees
+ */
+static inline void *apple_atomic_load_n_pvoid(void **p,
+                                              ossl_unused int memorder)
+{
+    void *ret;
+
+    __asm volatile("ldar %0, [%1]" : "=r" (ret): "r" (p):);
+
+    return ret;
+}
+
+/* For uint64_t, we should be fine, though */
+#   define apple_atomic_load_n_uint64_t(p, o) __atomic_load_n(p, o)
+
+#   define ATOMIC_LOAD_N(t, p, o) apple_atomic_load_n_##t(p, o)
+#  else
+#   define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
+#  endif
+#  define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
+#  define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
+#  define ATOMIC_EXCHANGE_N(t, p, v, o) __atomic_exchange_n(p, v, o)
+#  define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
+#  define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
+#  define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
+#  define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
+#  define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
+# else
+static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
+
+#  define IMPL_fallback_atomic_load_n(t)                        \
+    static inline t fallback_atomic_load_n_##t(t *p)            \
+    {                                                           \
+        t ret;                                                  \
+                                                                \
+        pthread_mutex_lock(&atomic_sim_lock);                   \
+        ret = *p;                                               \
+        pthread_mutex_unlock(&atomic_sim_lock);                 \
+        return ret;                                             \
+    }
+IMPL_fallback_atomic_load_n(uint64_t)
+IMPL_fallback_atomic_load_n(pvoid)
+
+#  define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
+
+#  define IMPL_fallback_atomic_store_n(t)                       \
+    static inline t fallback_atomic_store_n_##t(t *p, t v)      \
+    {                                                           \
+        t ret;                                                  \
+                                                                \
+        pthread_mutex_lock(&atomic_sim_lock);                   \
+        ret = *p;                                               \
+        *p = v;                                                 \
+        pthread_mutex_unlock(&atomic_sim_lock);                 \
+        return ret;                                             \
+    }
+IMPL_fallback_atomic_store_n(uint64_t)
+
+#  define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
+
+#  define IMPL_fallback_atomic_store(t)                         \
+    static inline void fallback_atomic_store_##t(t *p, t *v)    \
+    {                                                           \
+        pthread_mutex_lock(&atomic_sim_lock);                   \
+        *p = *v;                                                \
+        pthread_mutex_unlock(&atomic_sim_lock);                 \
+    }
+IMPL_fallback_atomic_store(uint64_t)
+IMPL_fallback_atomic_store(pvoid)
+
+#  define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
+
+#  define IMPL_fallback_atomic_exchange_n(t)                            \
+    static inline t fallback_atomic_exchange_n_##t(t *p, t v)           \
+    {                                                                   \
+        t ret;                                                          \
+                                                                        \
+        pthread_mutex_lock(&atomic_sim_lock);                           \
+        ret = *p;                                                       \
+        *p = v;                                                         \
+        pthread_mutex_unlock(&atomic_sim_lock);                         \
+        return ret;                                                     \
+    }
+IMPL_fallback_atomic_exchange_n(uint64_t)
+IMPL_fallback_atomic_exchange_n(prcu_cb_item)
+
+#  define ATOMIC_EXCHANGE_N(t, p, v, o) fallback_atomic_exchange_n_##t(p, v)
+
+/*
+ * The fallbacks that follow don't need any per type implementation, as
+ * they are designed for uint64_t only.  If there comes a time when multiple
+ * types need to be covered, it's relatively easy to refactor them the same
+ * way as the fallbacks above.
+ */
+
+static inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
+{
+    uint64_t ret;
+
+    pthread_mutex_lock(&atomic_sim_lock);
+    *p += v;
+    ret = *p;
+    pthread_mutex_unlock(&atomic_sim_lock);
+    return ret;
+}
+
+#  define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
+
+static inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
+{
+    uint64_t ret;
+
+    pthread_mutex_lock(&atomic_sim_lock);
+    ret = *p;
+    *p += v;
+    pthread_mutex_unlock(&atomic_sim_lock);
+    return ret;
+}
+
+#  define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
+
+static inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
+{
+    uint64_t ret;
+
+    pthread_mutex_lock(&atomic_sim_lock);
+    *p -= v;
+    ret = *p;
+    pthread_mutex_unlock(&atomic_sim_lock);
+    return ret;
+}
+
+#  define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
+
+static inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
+{
+    uint64_t ret;
+
+    pthread_mutex_lock(&atomic_sim_lock);
+    *p &= m;
+    ret = *p;
+    pthread_mutex_unlock(&atomic_sim_lock);
+    return ret;
+}
+
+#  define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
+
+static inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
+{
+    uint64_t ret;
+
+    pthread_mutex_lock(&atomic_sim_lock);
+    *p |= m;
+    ret = *p;
+    pthread_mutex_unlock(&atomic_sim_lock);
+    return ret;
+}
+
+#  define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
+# endif
+
+/*
+ * users is broken up into 2 parts
+ * bits 0-15 current readers
+ * bit 32-63 - ID
+ */
+# define READER_SHIFT 0
+# define ID_SHIFT 32
+# define READER_SIZE 16
+# define ID_SIZE 32
+
+# define READER_MASK     (((uint64_t)1 << READER_SIZE) - 1)
+# define ID_MASK         (((uint64_t)1 << ID_SIZE) - 1)
+# define READER_COUNT(x) (((uint64_t)(x) >> READER_SHIFT) & READER_MASK)
+# define ID_VAL(x)       (((uint64_t)(x) >> ID_SHIFT) & ID_MASK)
+# define VAL_READER      ((uint64_t)1 << READER_SHIFT)
+# define VAL_ID(x)       ((uint64_t)x << ID_SHIFT)
+
+/*
+ * This is the core of an rcu lock. It tracks the readers and writers for the
+ * current quiescence point for a given lock. Users is the 64 bit value that
+ * stores the READERS/ID as defined above
+ *
+ */
+struct rcu_qp {
+    uint64_t users;
+};
+
+struct thread_qp {
+    struct rcu_qp *qp;
+    unsigned int depth;
+    CRYPTO_RCU_LOCK *lock;
+};
+
+# define MAX_QPS 10
+/*
+ * This is the per thread tracking data
+ * that is assigned to each thread participating
+ * in an rcu qp
+ *
+ * qp points to the qp that it last acquired
+ *
+ */
+struct rcu_thr_data {
+    struct thread_qp thread_qps[MAX_QPS];
+};
+
+/*
+ * This is the internal version of a CRYPTO_RCU_LOCK
+ * it is cast from CRYPTO_RCU_LOCK
+ */
+struct rcu_lock_st {
+    /* Callbacks to call for next ossl_synchronize_rcu */
+    struct rcu_cb_item *cb_items;
+
+    /* The context we are being created against */
+    OSSL_LIB_CTX *ctx;
+
+    /* rcu generation counter for in-order retirement */
+    uint32_t id_ctr;
+
+    /* Array of quiescent points for synchronization */
+    struct rcu_qp *qp_group;
+
+    /* Number of elements in qp_group array */
+    size_t group_count;
+
+    /* Index of the current qp in the qp_group array */
+    uint64_t reader_idx;
+
+    /* value of the next id_ctr value to be retired */
+    uint32_t next_to_retire;
+
+    /* index of the next free rcu_qp in the qp_group */
+    uint64_t current_alloc_idx;
+
+    /* number of qp's in qp_group array currently being retired */
+    uint32_t writers_alloced;
+
+    /* lock protecting write side operations */
+    pthread_mutex_t write_lock;
+
+    /* lock protecting updates to writers_alloced/current_alloc_idx */
+    pthread_mutex_t alloc_lock;
+
+    /* signal to wake threads waiting on alloc_lock */
+    pthread_cond_t alloc_signal;
+
+    /* lock to enforce in-order retirement */
+    pthread_mutex_t prior_lock;
+
+    /* signal to wake threads waiting on prior_lock */
+    pthread_cond_t prior_signal;
+};
+
+/* Read side acquisition of the current qp */
+static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
+{
+    uint64_t qp_idx;
+
+    /* get the current qp index */
+    for (;;) {
+        /*
+         * Notes on use of __ATOMIC_ACQUIRE
+         * We need to ensure the following:
+         * 1) That subsequent operations aren't optimized by hoisting them above
+         * this operation.  Specifically, we don't want the below re-load of
+         * qp_idx to get optimized away
+         * 2) We want to ensure that any updating of reader_idx on the write side
+         * of the lock is flushed from a local cpu cache so that we see any
+         * updates prior to the load.  This is a non-issue on cache coherent
+         * systems like x86, but is relevant on other arches
+         * Note: This applies to the reload below as well
+         */
+        qp_idx = ATOMIC_LOAD_N(uint64_t, &lock->reader_idx, __ATOMIC_ACQUIRE);
+
+        /*
+         * Notes of use of __ATOMIC_RELEASE
+         * This counter is only read by the write side of the lock, and so we
+         * specify __ATOMIC_RELEASE here to ensure that the write side of the
+         * lock see this during the spin loop read of users, as it waits for the
+         * reader count to approach zero
+         */
+        ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
+                         __ATOMIC_RELEASE);
+
+        /* if the idx hasn't changed, we're good, else try again */
+        if (qp_idx == ATOMIC_LOAD_N(uint64_t, &lock->reader_idx, __ATOMIC_ACQUIRE))
+            break;
+
+        /*
+         * Notes on use of __ATOMIC_RELEASE
+         * As with the add above, we want to ensure that this decrement is
+         * seen by the write side of the lock as soon as it happens to prevent
+         * undue spinning waiting for write side completion
+         */
+        ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
+                         __ATOMIC_RELEASE);
+    }
+
+    return &lock->qp_group[qp_idx];
+}
+
+static void ossl_rcu_free_local_data(void *arg)
+{
+    OSSL_LIB_CTX *ctx = arg;
+    CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
+    struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
+    OPENSSL_free(data);
+}
+
+void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
+{
+    struct rcu_thr_data *data;
+    int i, available_qp = -1;
+    CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
+
+    /*
+     * we're going to access current_qp here so ask the
+     * processor to fetch it
+     */
+    data = CRYPTO_THREAD_get_local(lkey);
+
+    if (data == NULL) {
+        data = OPENSSL_zalloc(sizeof(*data));
+        OPENSSL_assert(data != NULL);
+        CRYPTO_THREAD_set_local(lkey, data);
+        ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
+    }
+
+    for (i = 0; i < MAX_QPS; i++) {
+        if (data->thread_qps[i].qp == NULL && available_qp == -1)
+            available_qp = i;
+        /* If we have a hold on this lock already, we're good */
+        if (data->thread_qps[i].lock == lock) {
+            data->thread_qps[i].depth++;
+            return;
+        }
+    }
+
+    /*
+     * if we get here, then we don't have a hold on this lock yet
+     */
+    assert(available_qp != -1);
+
+    data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
+    data->thread_qps[available_qp].depth = 1;
+    data->thread_qps[available_qp].lock = lock;
+}
+
+void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
+{
+    int i;
+    CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
+    struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
+    uint64_t ret;
+
+    assert(data != NULL);
+
+    for (i = 0; i < MAX_QPS; i++) {
+        if (data->thread_qps[i].lock == lock) {
+            /*
+             * As with read side acquisition, we use __ATOMIC_RELEASE here
+             * to ensure that the decrement is published immediately
+             * to any write side waiters
+             */
+            data->thread_qps[i].depth--;
+            if (data->thread_qps[i].depth == 0) {
+                ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, VAL_READER,
+                                       __ATOMIC_RELEASE);
+                OPENSSL_assert(ret != UINT64_MAX);
+                data->thread_qps[i].qp = NULL;
+                data->thread_qps[i].lock = NULL;
+            }
+            return;
+        }
+    }
+    /*
+     * If we get here, we're trying to unlock a lock that we never acquired -
+     * that's fatal.
+     */
+    assert(0);
+}
+
+/*
+ * Write side allocation routine to get the current qp
+ * and replace it with a new one
+ */
+static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
+{
+    uint64_t new_id;
+    uint64_t current_idx;
+
+    pthread_mutex_lock(&lock->alloc_lock);
+
+    /*
+     * we need at least one qp to be available with one
+     * left over, so that readers can start working on
+     * one that isn't yet being waited on
+     */
+    while (lock->group_count - lock->writers_alloced < 2)
+        /* we have to wait for one to be free */
+        pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
+
+    current_idx = lock->current_alloc_idx;
+
+    /* Allocate the qp */
+    lock->writers_alloced++;
+
+    /* increment the allocation index */
+    lock->current_alloc_idx =
+        (lock->current_alloc_idx + 1) % lock->group_count;
+
+    /* get and insert a new id */
+    new_id = lock->id_ctr;
+    lock->id_ctr++;
+
+    new_id = VAL_ID(new_id);
+    /*
+     * Even though we are under a write side lock here
+     * We need to use atomic instructions to ensure that the results
+     * of this update are published to the read side prior to updating the
+     * reader idx below
+     */
+    ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
+                     __ATOMIC_RELEASE);
+    ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
+                    __ATOMIC_RELEASE);
+
+    /*
+     * Update the reader index to be the prior qp.
+     * Note the use of __ATOMIC_RELEASE here is based on the corresponding use
+     * of __ATOMIC_ACQUIRE in get_hold_current_qp, as we want any publication
+     * of this value to be seen on the read side immediately after it happens
+     */
+    ATOMIC_STORE_N(uint64_t, &lock->reader_idx, lock->current_alloc_idx,
+                   __ATOMIC_RELEASE);
+
+    /* wake up any waiters */
+    pthread_cond_signal(&lock->alloc_signal);
+    pthread_mutex_unlock(&lock->alloc_lock);
+    return &lock->qp_group[current_idx];
+}
+
+static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
+{
+    pthread_mutex_lock(&lock->alloc_lock);
+    lock->writers_alloced--;
+    pthread_cond_signal(&lock->alloc_signal);
+    pthread_mutex_unlock(&lock->alloc_lock);
+}
+
+static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
+                                            int count)
+{
+    struct rcu_qp *new =
+        OPENSSL_zalloc(sizeof(*new) * count);
+
+    lock->group_count = count;
+    return new;
+}
+
+void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
+{
+    pthread_mutex_lock(&lock->write_lock);
+    TSAN_FAKE_UNLOCK(&lock->write_lock);
+}
+
+void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
+{
+    TSAN_FAKE_LOCK(&lock->write_lock);
+    pthread_mutex_unlock(&lock->write_lock);
+}
+
+void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
+{
+    struct rcu_qp *qp;
+    uint64_t count;
+    struct rcu_cb_item *cb_items, *tmpcb;
+
+    pthread_mutex_lock(&lock->write_lock);
+    cb_items = lock->cb_items;
+    lock->cb_items = NULL;
+    pthread_mutex_unlock(&lock->write_lock);
+
+    qp = update_qp(lock);
+
+    /*
+     * wait for the reader count to reach zero
+     * Note the use of __ATOMIC_ACQUIRE here to ensure that any
+     * prior __ATOMIC_RELEASE write operation in get_hold_current_qp
+     * is visible prior to our read
+     */
+    do {
+        count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
+    } while (READER_COUNT(count) != 0);
+
+    /* retire in order */
+    pthread_mutex_lock(&lock->prior_lock);
+    while (lock->next_to_retire != ID_VAL(count))
+        pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
+    lock->next_to_retire++;
+    pthread_cond_broadcast(&lock->prior_signal);
+    pthread_mutex_unlock(&lock->prior_lock);
+
+    retire_qp(lock, qp);
+
+    /* handle any callbacks that we have */
+    while (cb_items != NULL) {
+        tmpcb = cb_items;
+        cb_items = cb_items->next;
+        tmpcb->fn(tmpcb->data);
+        OPENSSL_free(tmpcb);
+    }
+}
+
+int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
+{
+    struct rcu_cb_item *new =
+        OPENSSL_zalloc(sizeof(*new));
+
+    if (new == NULL)
+        return 0;
+
+    new->data = data;
+    new->fn = cb;
+    /*
+     * Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
+     * list are visible to us prior to reading, and publish the new value
+     * immediately
+     */
+    new->next = ATOMIC_EXCHANGE_N(prcu_cb_item, &lock->cb_items, new,
+                                  __ATOMIC_ACQ_REL);
+
+    return 1;
+}
+
+void *ossl_rcu_uptr_deref(void **p)
+{
+    return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
+}
+
+void ossl_rcu_assign_uptr(void **p, void **v)
+{
+    ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
+}
+
+CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
+{
+    struct rcu_lock_st *new;
+
+    if (num_writers < 1)
+        num_writers = 1;
+
+    ctx = ossl_lib_ctx_get_concrete(ctx);
+    if (ctx == NULL)
+        return 0;
+
+    new = OPENSSL_zalloc(sizeof(*new));
+    if (new == NULL)
+        return NULL;
+
+    new->ctx = ctx;
+    pthread_mutex_init(&new->write_lock, NULL);
+    pthread_mutex_init(&new->prior_lock, NULL);
+    pthread_mutex_init(&new->alloc_lock, NULL);
+    pthread_cond_init(&new->prior_signal, NULL);
+    pthread_cond_init(&new->alloc_signal, NULL);
+    new->qp_group = allocate_new_qp_group(new, num_writers + 1);
+    if (new->qp_group == NULL) {
+        OPENSSL_free(new);
+        new = NULL;
+    }
+    return new;
+}
+
+void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
+{
+    struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
+
+    if (lock == NULL)
+        return;
+
+    /* make sure we're synchronized */
+    ossl_synchronize_rcu(rlock);
+
+    OPENSSL_free(rlock->qp_group);
+    /* There should only be a single qp left now */
+    OPENSSL_free(rlock);
+}
+
 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
 {
 # ifdef USE_RWLOCK
     CRYPTO_RWLOCK *lock;
 
-    if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) {
+    if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
         /* Don't set error, to avoid recursion blowup. */
         return NULL;
-    }
 
     if (pthread_rwlock_init(lock, NULL) != 0) {
         OPENSSL_free(lock);
@@ -38,13 +709,21 @@ CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
     pthread_mutexattr_t attr;
     CRYPTO_RWLOCK *lock;
 
-    if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) {
+    if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
         /* Don't set error, to avoid recursion blowup. */
         return NULL;
-    }
 
+    /*
+     * We don't use recursive mutexes, but try to catch errors if we do.
+     */
     pthread_mutexattr_init(&attr);
-    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
+#  if !defined (__TANDEM) && !defined (_SPT_MODEL_)
+#   if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
+    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
+#   endif
+#  else
+    /* The SPT Thread Library does not define MUTEX attributes. */
+#  endif
 
     if (pthread_mutex_init(lock, &attr) != 0) {
         pthread_mutexattr_destroy(&attr);
@@ -58,27 +737,31 @@ CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
     return lock;
 }
 
-int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
+__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
 {
 # ifdef USE_RWLOCK
     if (pthread_rwlock_rdlock(lock) != 0)
         return 0;
 # else
-    if (pthread_mutex_lock(lock) != 0)
+    if (pthread_mutex_lock(lock) != 0) {
+        assert(errno != EDEADLK && errno != EBUSY);
         return 0;
+    }
 # endif
 
     return 1;
 }
 
-int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
+__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
 {
 # ifdef USE_RWLOCK
     if (pthread_rwlock_wrlock(lock) != 0)
         return 0;
 # else
-    if (pthread_mutex_lock(lock) != 0)
+    if (pthread_mutex_lock(lock) != 0) {
+        assert(errno != EDEADLK && errno != EBUSY);
         return 0;
+    }
 # endif
 
     return 1;
@@ -90,8 +773,10 @@ int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
     if (pthread_rwlock_unlock(lock) != 0)
         return 0;
 # else
-    if (pthread_mutex_unlock(lock) != 0)
+    if (pthread_mutex_unlock(lock) != 0) {
+        assert(errno != EPERM);
         return 0;
+    }
 # endif
 
     return 1;
@@ -161,7 +846,7 @@ int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
 
 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
 {
-# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL)
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
     if (__atomic_is_lock_free(sizeof(*val), val)) {
         *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
         return 1;
@@ -173,7 +858,7 @@ int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
         return 1;
     }
 # endif
-    if (!CRYPTO_THREAD_write_lock(lock))
+    if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
         return 0;
 
     *val += amount;
@@ -185,26 +870,110 @@ int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
     return 1;
 }
 
-# ifndef FIPS_MODE
-/* TODO(3.0): No fork protection in FIPS module yet! */
+int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
+                     CRYPTO_RWLOCK *lock)
+{
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
+    if (__atomic_is_lock_free(sizeof(*val), val)) {
+        *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
+        return 1;
+    }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+    /* This will work for all future Solaris versions. */
+    if (ret != NULL) {
+        *ret = atomic_or_64_nv(val, op);
+        return 1;
+    }
+# endif
+    if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
+        return 0;
+    *val |= op;
+    *ret  = *val;
+
+    if (!CRYPTO_THREAD_unlock(lock))
+        return 0;
+
+    return 1;
+}
+
+int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
+{
+# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
+    if (__atomic_is_lock_free(sizeof(*val), val)) {
+        __atomic_load(val, ret, __ATOMIC_ACQUIRE);
+        return 1;
+    }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+    /* This will work for all future Solaris versions. */
+    if (ret != NULL) {
+        *ret = atomic_or_64_nv(val, 0);
+        return 1;
+    }
+# endif
+    if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
+        return 0;
+    *ret  = *val;
+    if (!CRYPTO_THREAD_unlock(lock))
+        return 0;
 
-#  ifdef OPENSSL_SYS_UNIX
-static pthread_once_t fork_once_control = PTHREAD_ONCE_INIT;
+    return 1;
+}
 
-static void fork_once_func(void)
+int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
 {
-    pthread_atfork(OPENSSL_fork_prepare,
-                   OPENSSL_fork_parent, OPENSSL_fork_child);
+# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
+    if (__atomic_is_lock_free(sizeof(*dst), dst)) {
+        __atomic_store(dst, &val, __ATOMIC_RELEASE);
+        return 1;
+    }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+    /* This will work for all future Solaris versions. */
+    if (ret != NULL) {
+        atomic_swap_64(dst, val);
+        return 1;
+    }
+# endif
+    if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
+        return 0;
+    *dst  = val;
+    if (!CRYPTO_THREAD_unlock(lock))
+        return 0;
+
+    return 1;
 }
-#  endif
 
-int openssl_init_fork_handlers(void)
+int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
 {
-#  ifdef OPENSSL_SYS_UNIX
-    if (pthread_once(&fork_once_control, fork_once_func) == 0)
+# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
+    if (__atomic_is_lock_free(sizeof(*val), val)) {
+        __atomic_load(val, ret, __ATOMIC_ACQUIRE);
         return 1;
-#  endif
-    return 0;
+    }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+    /* This will work for all future Solaris versions. */
+    if (ret != NULL) {
+        *ret = (int *)atomic_or_uint_nv((unsigned int *)val, 0);
+        return 1;
+    }
+# endif
+    if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
+        return 0;
+    *ret  = *val;
+    if (!CRYPTO_THREAD_unlock(lock))
+        return 0;
+
+    return 1;
+}
+
+# ifndef FIPS_MODULE
+int openssl_init_fork_handlers(void)
+{
+    return 1;
+}
+# endif /* FIPS_MODULE */
+
+int openssl_get_fork_id(void)
+{
+    return getpid();
 }
-# endif /* FIPS_MODE */
 #endif