Update copyright year
[openssl.git] / providers / implementations / ciphers / cipher_aes_cbc_hmac_sha256_hw.c
1 /*
2  * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /*
11  * All low level APIs are deprecated for public use, but still ok for internal
12  * use where we're using them to implement the higher level EVP interface, as is
13  * the case here.
14  */
15 #include "internal/deprecated.h"
16
17 #include "cipher_aes_cbc_hmac_sha.h"
18
19 #if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE)
20 int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
21 {
22     return 0;
23 }
24
25 const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
26 {
27     return NULL;
28 }
29 #else
30
31 # include <openssl/rand.h>
32 # include "crypto/evp.h"
33 # include "internal/constant_time.h"
34
35 void sha256_block_data_order(void *c, const void *p, size_t len);
36 int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
37                          const AES_KEY *key, unsigned char iv[16],
38                          SHA256_CTX *ctx, const void *in0);
39
40 int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
41 {
42     return AESNI_CBC_HMAC_SHA_CAPABLE
43            && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL);
44 }
45
46 static int aesni_cbc_hmac_sha256_init_key(PROV_CIPHER_CTX *vctx,
47                                           const unsigned char *key,
48                                           size_t keylen)
49 {
50     int ret;
51     PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
52     PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
53
54     if (ctx->base.enc)
55         ret = aesni_set_encrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
56     else
57         ret = aesni_set_decrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
58
59     SHA256_Init(&sctx->head);    /* handy when benchmarking */
60     sctx->tail = sctx->head;
61     sctx->md = sctx->head;
62
63     ctx->payload_length = NO_PAYLOAD_LENGTH;
64
65     vctx->removetlspad = 1;
66     vctx->removetlsfixed = SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE;
67
68     return ret < 0 ? 0 : 1;
69 }
70
71 void sha256_block_data_order(void *c, const void *p, size_t len);
72
73 static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
74 {
75     const unsigned char *ptr = data;
76     size_t res;
77
78     if ((res = c->num)) {
79         res = SHA256_CBLOCK - res;
80         if (len < res)
81             res = len;
82         SHA256_Update(c, ptr, res);
83         ptr += res;
84         len -= res;
85     }
86
87     res = len % SHA256_CBLOCK;
88     len -= res;
89
90     if (len) {
91         sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
92
93         ptr += len;
94         c->Nh += len >> 29;
95         c->Nl += len <<= 3;
96         if (c->Nl < (unsigned int)len)
97             c->Nh++;
98     }
99
100     if (res)
101         SHA256_Update(c, ptr, res);
102 }
103
104 # if !defined(OPENSSL_NO_MULTIBLOCK)
105
106 typedef struct {
107     unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
108 } SHA256_MB_CTX;
109
110 typedef struct {
111     const unsigned char *ptr;
112     int blocks;
113 } HASH_DESC;
114
115 typedef struct {
116     const unsigned char *inp;
117     unsigned char *out;
118     int blocks;
119     u64 iv[2];
120 } CIPH_DESC;
121
122 void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
123 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
124
125 static size_t tls1_multi_block_encrypt(void *vctx,
126                                        unsigned char *out,
127                                        const unsigned char *inp,
128                                        size_t inp_len, int n4x)
129 {                               /* n4x is 1 or 2 */
130     PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
131     PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
132     HASH_DESC hash_d[8], edges[8];
133     CIPH_DESC ciph_d[8];
134     unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
135     union {
136         u64 q[16];
137         u32 d[32];
138         u8 c[128];
139     } blocks[8];
140     SHA256_MB_CTX *mctx;
141     unsigned int frag, last, packlen, i;
142     unsigned int x4 = 4 * n4x, minblocks, processed = 0;
143     size_t ret = 0;
144     u8 *IVs;
145 #  if defined(BSWAP8)
146     u64 seqnum;
147 #  endif
148
149     /* ask for IVs in bulk */
150     if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4) <= 0)
151         return 0;
152
153     mctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
154
155     frag = (unsigned int)inp_len >> (1 + n4x);
156     last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
157     if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
158         frag++;
159         last -= x4 - 1;
160     }
161
162     packlen = 5 + 16 + ((frag + 32 + 16) & -16);
163
164     /* populate descriptors with pointers and IVs */
165     hash_d[0].ptr = inp;
166     ciph_d[0].inp = inp;
167     /* 5+16 is place for header and explicit IV */
168     ciph_d[0].out = out + 5 + 16;
169     memcpy(ciph_d[0].out - 16, IVs, 16);
170     memcpy(ciph_d[0].iv, IVs, 16);
171     IVs += 16;
172
173     for (i = 1; i < x4; i++) {
174         ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
175         ciph_d[i].out = ciph_d[i - 1].out + packlen;
176         memcpy(ciph_d[i].out - 16, IVs, 16);
177         memcpy(ciph_d[i].iv, IVs, 16);
178         IVs += 16;
179     }
180
181 #  if defined(BSWAP8)
182     memcpy(blocks[0].c, sctx->md.data, 8);
183     seqnum = BSWAP8(blocks[0].q[0]);
184 #  endif
185
186     for (i = 0; i < x4; i++) {
187         unsigned int len = (i == (x4 - 1) ? last : frag);
188 #  if !defined(BSWAP8)
189         unsigned int carry, j;
190 #  endif
191
192         mctx->A[i] = sctx->md.h[0];
193         mctx->B[i] = sctx->md.h[1];
194         mctx->C[i] = sctx->md.h[2];
195         mctx->D[i] = sctx->md.h[3];
196         mctx->E[i] = sctx->md.h[4];
197         mctx->F[i] = sctx->md.h[5];
198         mctx->G[i] = sctx->md.h[6];
199         mctx->H[i] = sctx->md.h[7];
200
201         /* fix seqnum */
202 #  if defined(BSWAP8)
203         blocks[i].q[0] = BSWAP8(seqnum + i);
204 #  else
205         for (carry = i, j = 8; j--;) {
206             blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
207             carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
208         }
209 #  endif
210         blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
211         blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
212         blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
213         /* fix length */
214         blocks[i].c[11] = (u8)(len >> 8);
215         blocks[i].c[12] = (u8)(len);
216
217         memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
218         hash_d[i].ptr += 64 - 13;
219         hash_d[i].blocks = (len - (64 - 13)) / 64;
220
221         edges[i].ptr = blocks[i].c;
222         edges[i].blocks = 1;
223     }
224
225     /* hash 13-byte headers and first 64-13 bytes of inputs */
226     sha256_multi_block(mctx, edges, n4x);
227     /* hash bulk inputs */
228 #  define MAXCHUNKSIZE    2048
229 #  if     MAXCHUNKSIZE%64
230 #   error  "MAXCHUNKSIZE is not divisible by 64"
231 #  elif   MAXCHUNKSIZE
232     /*
233      * goal is to minimize pressure on L1 cache by moving in shorter steps,
234      * so that hashed data is still in the cache by the time we encrypt it
235      */
236     minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
237     if (minblocks > MAXCHUNKSIZE / 64) {
238         for (i = 0; i < x4; i++) {
239             edges[i].ptr = hash_d[i].ptr;
240             edges[i].blocks = MAXCHUNKSIZE / 64;
241             ciph_d[i].blocks = MAXCHUNKSIZE / 16;
242         }
243         do {
244             sha256_multi_block(mctx, edges, n4x);
245             aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
246
247             for (i = 0; i < x4; i++) {
248                 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
249                 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
250                 edges[i].blocks = MAXCHUNKSIZE / 64;
251                 ciph_d[i].inp += MAXCHUNKSIZE;
252                 ciph_d[i].out += MAXCHUNKSIZE;
253                 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
254                 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
255             }
256             processed += MAXCHUNKSIZE;
257             minblocks -= MAXCHUNKSIZE / 64;
258         } while (minblocks > MAXCHUNKSIZE / 64);
259     }
260 #  endif
261 #  undef  MAXCHUNKSIZE
262     sha256_multi_block(mctx, hash_d, n4x);
263
264     memset(blocks, 0, sizeof(blocks));
265     for (i = 0; i < x4; i++) {
266         unsigned int len = (i == (x4 - 1) ? last : frag),
267             off = hash_d[i].blocks * 64;
268         const unsigned char *ptr = hash_d[i].ptr + off;
269
270         off = (len - processed) - (64 - 13) - off; /* remainder actually */
271         memcpy(blocks[i].c, ptr, off);
272         blocks[i].c[off] = 0x80;
273         len += 64 + 13;         /* 64 is HMAC header */
274         len *= 8;               /* convert to bits */
275         if (off < (64 - 8)) {
276 #  ifdef BSWAP4
277             blocks[i].d[15] = BSWAP4(len);
278 #  else
279             PUTU32(blocks[i].c + 60, len);
280 #  endif
281             edges[i].blocks = 1;
282         } else {
283 #  ifdef BSWAP4
284             blocks[i].d[31] = BSWAP4(len);
285 #  else
286             PUTU32(blocks[i].c + 124, len);
287 #  endif
288             edges[i].blocks = 2;
289         }
290         edges[i].ptr = blocks[i].c;
291     }
292
293     /* hash input tails and finalize */
294     sha256_multi_block(mctx, edges, n4x);
295
296     memset(blocks, 0, sizeof(blocks));
297     for (i = 0; i < x4; i++) {
298 #  ifdef BSWAP4
299         blocks[i].d[0] = BSWAP4(mctx->A[i]);
300         mctx->A[i] = sctx->tail.h[0];
301         blocks[i].d[1] = BSWAP4(mctx->B[i]);
302         mctx->B[i] = sctx->tail.h[1];
303         blocks[i].d[2] = BSWAP4(mctx->C[i]);
304         mctx->C[i] = sctx->tail.h[2];
305         blocks[i].d[3] = BSWAP4(mctx->D[i]);
306         mctx->D[i] = sctx->tail.h[3];
307         blocks[i].d[4] = BSWAP4(mctx->E[i]);
308         mctx->E[i] = sctx->tail.h[4];
309         blocks[i].d[5] = BSWAP4(mctx->F[i]);
310         mctx->F[i] = sctx->tail.h[5];
311         blocks[i].d[6] = BSWAP4(mctx->G[i]);
312         mctx->G[i] = sctx->tail.h[6];
313         blocks[i].d[7] = BSWAP4(mctx->H[i]);
314         mctx->H[i] = sctx->tail.h[7];
315         blocks[i].c[32] = 0x80;
316         blocks[i].d[15] = BSWAP4((64 + 32) * 8);
317 #  else
318         PUTU32(blocks[i].c + 0, mctx->A[i]);
319         mctx->A[i] = sctx->tail.h[0];
320         PUTU32(blocks[i].c + 4, mctx->B[i]);
321         mctx->B[i] = sctx->tail.h[1];
322         PUTU32(blocks[i].c + 8, mctx->C[i]);
323         mctx->C[i] = sctx->tail.h[2];
324         PUTU32(blocks[i].c + 12, mctx->D[i]);
325         mctx->D[i] = sctx->tail.h[3];
326         PUTU32(blocks[i].c + 16, mctx->E[i]);
327         mctx->E[i] = sctx->tail.h[4];
328         PUTU32(blocks[i].c + 20, mctx->F[i]);
329         mctx->F[i] = sctx->tail.h[5];
330         PUTU32(blocks[i].c + 24, mctx->G[i]);
331         mctx->G[i] = sctx->tail.h[6];
332         PUTU32(blocks[i].c + 28, mctx->H[i]);
333         mctx->H[i] = sctx->tail.h[7];
334         blocks[i].c[32] = 0x80;
335         PUTU32(blocks[i].c + 60, (64 + 32) * 8);
336 #  endif /* BSWAP */
337         edges[i].ptr = blocks[i].c;
338         edges[i].blocks = 1;
339     }
340
341     /* finalize MACs */
342     sha256_multi_block(mctx, edges, n4x);
343
344     for (i = 0; i < x4; i++) {
345         unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
346         unsigned char *out0 = out;
347
348         memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
349         ciph_d[i].inp = ciph_d[i].out;
350
351         out += 5 + 16 + len;
352
353         /* write MAC */
354         PUTU32(out + 0, mctx->A[i]);
355         PUTU32(out + 4, mctx->B[i]);
356         PUTU32(out + 8, mctx->C[i]);
357         PUTU32(out + 12, mctx->D[i]);
358         PUTU32(out + 16, mctx->E[i]);
359         PUTU32(out + 20, mctx->F[i]);
360         PUTU32(out + 24, mctx->G[i]);
361         PUTU32(out + 28, mctx->H[i]);
362         out += 32;
363         len += 32;
364
365         /* pad */
366         pad = 15 - len % 16;
367         for (j = 0; j <= pad; j++)
368             *(out++) = pad;
369         len += pad + 1;
370
371         ciph_d[i].blocks = (len - processed) / 16;
372         len += 16;              /* account for explicit iv */
373
374         /* arrange header */
375         out0[0] = ((u8 *)sctx->md.data)[8];
376         out0[1] = ((u8 *)sctx->md.data)[9];
377         out0[2] = ((u8 *)sctx->md.data)[10];
378         out0[3] = (u8)(len >> 8);
379         out0[4] = (u8)(len);
380
381         ret += len + 5;
382         inp += frag;
383     }
384
385     aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
386
387     OPENSSL_cleanse(blocks, sizeof(blocks));
388     OPENSSL_cleanse(mctx, sizeof(*mctx));
389
390     ctx->multiblock_encrypt_len = ret;
391     return ret;
392 }
393 # endif /* !OPENSSL_NO_MULTIBLOCK */
394
395 static int aesni_cbc_hmac_sha256_cipher(PROV_CIPHER_CTX *vctx,
396                                         unsigned char *out,
397                                         const unsigned char *in, size_t len)
398 {
399     PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
400     PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
401     unsigned int l;
402     size_t plen = ctx->payload_length;
403     size_t iv = 0; /* explicit IV in TLS 1.1 and * later */
404     size_t aes_off = 0, blocks;
405     size_t sha_off = SHA256_CBLOCK - sctx->md.num;
406
407     ctx->payload_length = NO_PAYLOAD_LENGTH;
408
409     if (len % AES_BLOCK_SIZE)
410         return 0;
411
412     if (ctx->base.enc) {
413         if (plen == NO_PAYLOAD_LENGTH)
414             plen = len;
415         else if (len !=
416                  ((plen + SHA256_DIGEST_LENGTH +
417                    AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
418             return 0;
419         else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
420             iv = AES_BLOCK_SIZE;
421
422         /*
423          * Assembly stitch handles AVX-capable processors, but its
424          * performance is not optimal on AMD Jaguar, ~40% worse, for
425          * unknown reasons. Incidentally processor in question supports
426          * AVX, but not AMD-specific XOP extension, which can be used
427          * to identify it and avoid stitch invocation. So that after we
428          * establish that current CPU supports AVX, we even see if it's
429          * either even XOP-capable Bulldozer-based or GenuineIntel one.
430          * But SHAEXT-capable go ahead...
431          */
432         if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
433              ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
434               ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
435                | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
436             plen > (sha_off + iv) &&
437             (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
438             sha256_update(&sctx->md, in + iv, sha_off);
439
440             (void)aesni_cbc_sha256_enc(in, out, blocks, &ctx->ks,
441                                        ctx->base.iv,
442                                        &sctx->md, in + iv + sha_off);
443             blocks *= SHA256_CBLOCK;
444             aes_off += blocks;
445             sha_off += blocks;
446             sctx->md.Nh += blocks >> 29;
447             sctx->md.Nl += blocks <<= 3;
448             if (sctx->md.Nl < (unsigned int)blocks)
449                 sctx->md.Nh++;
450         } else {
451             sha_off = 0;
452         }
453         sha_off += iv;
454         sha256_update(&sctx->md, in + sha_off, plen - sha_off);
455
456         if (plen != len) {      /* "TLS" mode of operation */
457             if (in != out)
458                 memcpy(out + aes_off, in + aes_off, plen - aes_off);
459
460             /* calculate HMAC and append it to payload */
461             SHA256_Final(out + plen, &sctx->md);
462             sctx->md = sctx->tail;
463             sha256_update(&sctx->md, out + plen, SHA256_DIGEST_LENGTH);
464             SHA256_Final(out + plen, &sctx->md);
465
466             /* pad the payload|hmac */
467             plen += SHA256_DIGEST_LENGTH;
468             for (l = len - plen - 1; plen < len; plen++)
469                 out[plen] = l;
470             /* encrypt HMAC|padding at once */
471             aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
472                               &ctx->ks, ctx->base.iv, 1);
473         } else {
474             aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
475                               &ctx->ks, ctx->base.iv, 1);
476         }
477     } else {
478         union {
479             unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
480             unsigned char c[64 + SHA256_DIGEST_LENGTH];
481         } mac, *pmac;
482
483         /* arrange cache line alignment */
484         pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
485
486         /* decrypt HMAC|padding at once */
487         aesni_cbc_encrypt(in, out, len, &ctx->ks,
488                           ctx->base.iv, 0);
489
490         if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
491             size_t inp_len, mask, j, i;
492             unsigned int res, maxpad, pad, bitlen;
493             int ret = 1;
494             union {
495                 unsigned int u[SHA_LBLOCK];
496                 unsigned char c[SHA256_CBLOCK];
497             } *data = (void *)sctx->md.data;
498
499             if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
500                 >= TLS1_1_VERSION)
501                 iv = AES_BLOCK_SIZE;
502
503             if (len < (iv + SHA256_DIGEST_LENGTH + 1))
504                 return 0;
505
506             /* omit explicit iv */
507             out += iv;
508             len -= iv;
509
510             /* figure out payload length */
511             pad = out[len - 1];
512             maxpad = len - (SHA256_DIGEST_LENGTH + 1);
513             maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
514             maxpad &= 255;
515
516             mask = constant_time_ge(maxpad, pad);
517             ret &= mask;
518             /*
519              * If pad is invalid then we will fail the above test but we must
520              * continue anyway because we are in constant time code. However,
521              * we'll use the maxpad value instead of the supplied pad to make
522              * sure we perform well defined pointer arithmetic.
523              */
524             pad = constant_time_select(mask, pad, maxpad);
525
526             inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
527
528             ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
529             ctx->aux.tls_aad[plen - 1] = inp_len;
530
531             /* calculate HMAC */
532             sctx->md = sctx->head;
533             sha256_update(&sctx->md, ctx->aux.tls_aad, plen);
534
535             /* code with lucky-13 fix */
536             len -= SHA256_DIGEST_LENGTH; /* amend mac */
537             if (len >= (256 + SHA256_CBLOCK)) {
538                 j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
539                 j += SHA256_CBLOCK - sctx->md.num;
540                 sha256_update(&sctx->md, out, j);
541                 out += j;
542                 len -= j;
543                 inp_len -= j;
544             }
545
546             /* but pretend as if we hashed padded payload */
547             bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
548 # ifdef BSWAP4
549             bitlen = BSWAP4(bitlen);
550 # else
551             mac.c[0] = 0;
552             mac.c[1] = (unsigned char)(bitlen >> 16);
553             mac.c[2] = (unsigned char)(bitlen >> 8);
554             mac.c[3] = (unsigned char)bitlen;
555             bitlen = mac.u[0];
556 # endif /* BSWAP */
557
558             pmac->u[0] = 0;
559             pmac->u[1] = 0;
560             pmac->u[2] = 0;
561             pmac->u[3] = 0;
562             pmac->u[4] = 0;
563             pmac->u[5] = 0;
564             pmac->u[6] = 0;
565             pmac->u[7] = 0;
566
567             for (res = sctx->md.num, j = 0; j < len; j++) {
568                 size_t c = out[j];
569                 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
570                 c &= mask;
571                 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
572                 data->c[res++] = (unsigned char)c;
573
574                 if (res != SHA256_CBLOCK)
575                     continue;
576
577                 /* j is not incremented yet */
578                 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
579                 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
580                 sha256_block_data_order(&sctx->md, data, 1);
581                 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
582                 pmac->u[0] |= sctx->md.h[0] & mask;
583                 pmac->u[1] |= sctx->md.h[1] & mask;
584                 pmac->u[2] |= sctx->md.h[2] & mask;
585                 pmac->u[3] |= sctx->md.h[3] & mask;
586                 pmac->u[4] |= sctx->md.h[4] & mask;
587                 pmac->u[5] |= sctx->md.h[5] & mask;
588                 pmac->u[6] |= sctx->md.h[6] & mask;
589                 pmac->u[7] |= sctx->md.h[7] & mask;
590                 res = 0;
591             }
592
593             for (i = res; i < SHA256_CBLOCK; i++, j++)
594                 data->c[i] = 0;
595
596             if (res > SHA256_CBLOCK - 8) {
597                 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
598                 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
599                 sha256_block_data_order(&sctx->md, data, 1);
600                 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
601                 pmac->u[0] |= sctx->md.h[0] & mask;
602                 pmac->u[1] |= sctx->md.h[1] & mask;
603                 pmac->u[2] |= sctx->md.h[2] & mask;
604                 pmac->u[3] |= sctx->md.h[3] & mask;
605                 pmac->u[4] |= sctx->md.h[4] & mask;
606                 pmac->u[5] |= sctx->md.h[5] & mask;
607                 pmac->u[6] |= sctx->md.h[6] & mask;
608                 pmac->u[7] |= sctx->md.h[7] & mask;
609
610                 memset(data, 0, SHA256_CBLOCK);
611                 j += 64;
612             }
613             data->u[SHA_LBLOCK - 1] = bitlen;
614             sha256_block_data_order(&sctx->md, data, 1);
615             mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
616             pmac->u[0] |= sctx->md.h[0] & mask;
617             pmac->u[1] |= sctx->md.h[1] & mask;
618             pmac->u[2] |= sctx->md.h[2] & mask;
619             pmac->u[3] |= sctx->md.h[3] & mask;
620             pmac->u[4] |= sctx->md.h[4] & mask;
621             pmac->u[5] |= sctx->md.h[5] & mask;
622             pmac->u[6] |= sctx->md.h[6] & mask;
623             pmac->u[7] |= sctx->md.h[7] & mask;
624
625 # ifdef BSWAP4
626             pmac->u[0] = BSWAP4(pmac->u[0]);
627             pmac->u[1] = BSWAP4(pmac->u[1]);
628             pmac->u[2] = BSWAP4(pmac->u[2]);
629             pmac->u[3] = BSWAP4(pmac->u[3]);
630             pmac->u[4] = BSWAP4(pmac->u[4]);
631             pmac->u[5] = BSWAP4(pmac->u[5]);
632             pmac->u[6] = BSWAP4(pmac->u[6]);
633             pmac->u[7] = BSWAP4(pmac->u[7]);
634 # else
635             for (i = 0; i < 8; i++) {
636                 res = pmac->u[i];
637                 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
638                 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
639                 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
640                 pmac->c[4 * i + 3] = (unsigned char)res;
641             }
642 # endif /* BSWAP */
643             len += SHA256_DIGEST_LENGTH;
644             sctx->md = sctx->tail;
645             sha256_update(&sctx->md, pmac->c, SHA256_DIGEST_LENGTH);
646             SHA256_Final(pmac->c, &sctx->md);
647
648             /* verify HMAC */
649             out += inp_len;
650             len -= inp_len;
651             /* code containing lucky-13 fix */
652             {
653                 unsigned char *p =
654                     out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
655                 size_t off = out - p;
656                 unsigned int c, cmask;
657
658                 for (res = 0, i = 0, j = 0;
659                      j < maxpad + SHA256_DIGEST_LENGTH;
660                      j++) {
661                     c = p[j];
662                     cmask =
663                         ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
664                         (sizeof(int) * 8 - 1);
665                     res |= (c ^ pad) & ~cmask; /* ... and padding */
666                     cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
667                     res |= (c ^ pmac->c[i]) & cmask;
668                     i += 1 & cmask;
669                 }
670
671                 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
672                 ret &= (int)~res;
673             }
674             return ret;
675         } else {
676             sha256_update(&sctx->md, out, len);
677         }
678     }
679
680     return 1;
681 }
682
683 /* EVP_CTRL_AEAD_SET_MAC_KEY */
684 static void aesni_cbc_hmac_sha256_set_mac_key(void *vctx,
685                                               const unsigned char *mackey,
686                                               size_t len)
687 {
688     PROV_AES_HMAC_SHA256_CTX *ctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
689     unsigned int i;
690     unsigned char hmac_key[64];
691
692     memset(hmac_key, 0, sizeof(hmac_key));
693
694     if (len > sizeof(hmac_key)) {
695         SHA256_Init(&ctx->head);
696         sha256_update(&ctx->head, mackey, len);
697         SHA256_Final(hmac_key, &ctx->head);
698     } else {
699         memcpy(hmac_key, mackey, len);
700     }
701
702     for (i = 0; i < sizeof(hmac_key); i++)
703         hmac_key[i] ^= 0x36; /* ipad */
704     SHA256_Init(&ctx->head);
705     sha256_update(&ctx->head, hmac_key, sizeof(hmac_key));
706
707     for (i = 0; i < sizeof(hmac_key); i++)
708         hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
709     SHA256_Init(&ctx->tail);
710     sha256_update(&ctx->tail, hmac_key, sizeof(hmac_key));
711
712     OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
713 }
714
715 /* EVP_CTRL_AEAD_TLS1_AAD */
716 static int aesni_cbc_hmac_sha256_set_tls1_aad(void *vctx,
717                                               unsigned char *aad_rec, int aad_len)
718 {
719     PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
720     PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
721     unsigned char *p = aad_rec;
722     unsigned int len;
723
724     if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
725         return -1;
726
727     len = p[aad_len - 2] << 8 | p[aad_len - 1];
728
729     if (ctx->base.enc) {
730         ctx->payload_length = len;
731         if ((ctx->aux.tls_ver =
732              p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
733             if (len < AES_BLOCK_SIZE)
734                 return 0;
735             len -= AES_BLOCK_SIZE;
736             p[aad_len] = len >> 8;
737             p[aad_len - 1] = len;
738         }
739         sctx->md = sctx->head;
740         sha256_update(&sctx->md, p, aad_len);
741         ctx->tls_aad_pad = (int)(((len + SHA256_DIGEST_LENGTH +
742                                    AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
743                                    - len);
744         return 1;
745     } else {
746         memcpy(ctx->aux.tls_aad, p, aad_len);
747         ctx->payload_length = aad_len;
748         ctx->tls_aad_pad = SHA256_DIGEST_LENGTH;
749         return 1;
750     }
751 }
752
753 # if !defined(OPENSSL_NO_MULTIBLOCK)
754 /* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
755 static int aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize(
756     void *vctx)
757 {
758     PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
759
760     OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
761     return (int)(5 + 16
762                  + (((int)ctx->multiblock_max_send_fragment + 32 + 16) & -16));
763 }
764
765 /* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
766 static int aesni_cbc_hmac_sha256_tls1_multiblock_aad(
767     void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
768 {
769     PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
770     PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
771     unsigned int n4x = 1, x4;
772     unsigned int frag, last, packlen, inp_len;
773
774     inp_len = param->inp[11] << 8 | param->inp[12];
775
776     if (ctx->base.enc) {
777         if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
778             return -1;
779
780         if (inp_len) {
781             if (inp_len < 4096)
782                 return 0; /* too short */
783
784             if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
785                 n4x = 2; /* AVX2 */
786         } else if ((n4x = param->interleave / 4) && n4x <= 2)
787             inp_len = param->len;
788         else
789             return -1;
790
791         sctx->md = sctx->head;
792         sha256_update(&sctx->md, param->inp, 13);
793
794         x4 = 4 * n4x;
795         n4x += 1;
796
797         frag = inp_len >> n4x;
798         last = inp_len + frag - (frag << n4x);
799         if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
800             frag++;
801             last -= x4 - 1;
802         }
803
804         packlen = 5 + 16 + ((frag + 32 + 16) & -16);
805         packlen = (packlen << n4x) - packlen;
806         packlen += 5 + 16 + ((last + 32 + 16) & -16);
807
808         param->interleave = x4;
809         /* The returned values used by get need to be stored */
810         ctx->multiblock_interleave = x4;
811         ctx->multiblock_aad_packlen = packlen;
812         return 1;
813     }
814     return -1;      /* not yet */
815 }
816
817 /* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
818 static int aesni_cbc_hmac_sha256_tls1_multiblock_encrypt(
819     void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
820 {
821     return (int)tls1_multi_block_encrypt(ctx, param->out,
822                                          param->inp, param->len,
823                                          param->interleave / 4);
824 }
825 # endif
826
827 static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha256 = {
828     {
829       aesni_cbc_hmac_sha256_init_key,
830       aesni_cbc_hmac_sha256_cipher
831     },
832     aesni_cbc_hmac_sha256_set_mac_key,
833     aesni_cbc_hmac_sha256_set_tls1_aad,
834 # if !defined(OPENSSL_NO_MULTIBLOCK)
835     aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize,
836     aesni_cbc_hmac_sha256_tls1_multiblock_aad,
837     aesni_cbc_hmac_sha256_tls1_multiblock_encrypt
838 # endif
839 };
840
841 const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
842 {
843     return &cipher_hw_aes_hmac_sha256;
844 }
845
846 #endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */