b0a08654cc2a53bae7a8d970c7a66523cce1aa7b
[openssl.git] / engines / e_dasync.c
1 /*
2  * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /* We need to use some engine deprecated APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 /*
14  * SHA-1 low level APIs are deprecated for public use, but still ok for
15  * internal use.  Note, that due to symbols not being exported, only the
16  * #defines and strucures can be accessed, in this case SHA_CBLOCK and
17  * sizeof(SHA_CTX).
18  */
19 #include "internal/deprecated.h"
20
21 #include <openssl/opensslconf.h>
22 #if defined(_WIN32)
23 # include <windows.h>
24 #endif
25
26 #include <stdio.h>
27 #include <string.h>
28
29 #include <openssl/engine.h>
30 #include <openssl/sha.h>
31 #include <openssl/aes.h>
32 #include <openssl/rsa.h>
33 #include <openssl/evp.h>
34 #include <openssl/async.h>
35 #include <openssl/bn.h>
36 #include <openssl/crypto.h>
37 #include <openssl/ssl.h>
38 #include <openssl/modes.h>
39
40 #if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
41 # undef ASYNC_POSIX
42 # define ASYNC_POSIX
43 # include <unistd.h>
44 #elif defined(_WIN32)
45 # undef ASYNC_WIN
46 # define ASYNC_WIN
47 #endif
48
49 #include "e_dasync_err.c"
50
51 /* Engine Id and Name */
52 static const char *engine_dasync_id = "dasync";
53 static const char *engine_dasync_name = "Dummy Async engine support";
54
55
56 /* Engine Lifetime functions */
57 static int dasync_destroy(ENGINE *e);
58 static int dasync_init(ENGINE *e);
59 static int dasync_finish(ENGINE *e);
60 void engine_load_dasync_int(void);
61
62
63 /* Set up digests. Just SHA1 for now */
64 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
65                           const int **nids, int nid);
66
67 static void dummy_pause_job(void);
68
69 /* SHA1 */
70 static int dasync_sha1_init(EVP_MD_CTX *ctx);
71 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
72                              size_t count);
73 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
74
75 /*
76  * Holds the EVP_MD object for sha1 in this engine. Set up once only during
77  * engine bind and can then be reused many times.
78  */
79 static EVP_MD *_hidden_sha1_md = NULL;
80 static const EVP_MD *dasync_sha1(void)
81 {
82     return _hidden_sha1_md;
83 }
84 static void destroy_digests(void)
85 {
86     EVP_MD_meth_free(_hidden_sha1_md);
87     _hidden_sha1_md = NULL;
88 }
89
90 static int dasync_digest_nids(const int **nids)
91 {
92     static int digest_nids[2] = { 0, 0 };
93     static int pos = 0;
94     static int init = 0;
95
96     if (!init) {
97         const EVP_MD *md;
98         if ((md = dasync_sha1()) != NULL)
99             digest_nids[pos++] = EVP_MD_get_type(md);
100         digest_nids[pos] = 0;
101         init = 1;
102     }
103     *nids = digest_nids;
104     return pos;
105 }
106
107 /* RSA */
108 static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
109                        const int **pnids, int nid);
110
111 static int dasync_rsa_init(EVP_PKEY_CTX *ctx);
112 static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx);
113 static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx);
114 static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
115 static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx);
116 static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
117 static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx);
118 static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
119                               size_t *outlen, const unsigned char *in,
120                               size_t inlen);
121 static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx);
122 static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
123                               size_t *outlen, const unsigned char *in,
124                               size_t inlen);
125 static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
126 static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
127                                const char *value);
128
129 static EVP_PKEY_METHOD *dasync_rsa;
130 static const EVP_PKEY_METHOD *dasync_rsa_orig;
131
132 /* AES */
133
134 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
135                                   void *ptr);
136 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
137                                   const unsigned char *iv, int enc);
138 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
139                                     const unsigned char *in, size_t inl);
140 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
141
142 static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
143                                              int arg, void *ptr);
144 static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
145                                                  const unsigned char *key,
146                                                  const unsigned char *iv,
147                                                  int enc);
148 static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
149                                                unsigned char *out,
150                                                const unsigned char *in,
151                                                size_t inl);
152 static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
153
154 struct dasync_pipeline_ctx {
155     void *inner_cipher_data;
156     unsigned int numpipes;
157     unsigned char **inbufs;
158     unsigned char **outbufs;
159     size_t *lens;
160     unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
161     unsigned int aadctr;
162 };
163
164 /*
165  * Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
166  * during engine bind and can then be reused many times.
167  */
168 static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
169 static const EVP_CIPHER *dasync_aes_128_cbc(void)
170 {
171     return _hidden_aes_128_cbc;
172 }
173
174 /*
175  * Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
176  * once only during engine bind and can then be reused many times.
177  *
178  * This 'stitched' cipher depends on the EVP_aes_128_cbc_hmac_sha1() cipher,
179  * which is implemented only if the AES-NI instruction set extension is available
180  * (see OPENSSL_IA32CAP(3)). If that's not the case, then this cipher will not
181  * be available either.
182  *
183  * Note: Since it is a legacy mac-then-encrypt cipher, modern TLS peers (which
184  * negotiate the encrypt-then-mac extension) won't negotiate it anyway.
185  */
186 static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
187 static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
188 {
189     return _hidden_aes_128_cbc_hmac_sha1;
190 }
191
192 static void destroy_ciphers(void)
193 {
194     EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
195     EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
196     _hidden_aes_128_cbc = NULL;
197     _hidden_aes_128_cbc_hmac_sha1 = NULL;
198 }
199
200 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
201                                    const int **nids, int nid);
202
203 static int dasync_cipher_nids[] = {
204     NID_aes_128_cbc,
205     NID_aes_128_cbc_hmac_sha1,
206     0
207 };
208
209 static int bind_dasync(ENGINE *e)
210 {
211     /* Setup RSA */
212     if ((dasync_rsa_orig = EVP_PKEY_meth_find(EVP_PKEY_RSA)) == NULL
213         || (dasync_rsa = EVP_PKEY_meth_new(EVP_PKEY_RSA,
214                                            EVP_PKEY_FLAG_AUTOARGLEN)) == NULL)
215         return 0;
216     EVP_PKEY_meth_set_init(dasync_rsa, dasync_rsa_init);
217     EVP_PKEY_meth_set_cleanup(dasync_rsa, dasync_rsa_cleanup);
218     EVP_PKEY_meth_set_paramgen(dasync_rsa, dasync_rsa_paramgen_init,
219                                dasync_rsa_paramgen);
220     EVP_PKEY_meth_set_keygen(dasync_rsa, dasync_rsa_keygen_init,
221                              dasync_rsa_keygen);
222     EVP_PKEY_meth_set_encrypt(dasync_rsa, dasync_rsa_encrypt_init,
223                               dasync_rsa_encrypt);
224     EVP_PKEY_meth_set_decrypt(dasync_rsa, dasync_rsa_decrypt_init,
225                               dasync_rsa_decrypt);
226     EVP_PKEY_meth_set_ctrl(dasync_rsa, dasync_rsa_ctrl,
227                            dasync_rsa_ctrl_str);
228
229     /* Ensure the dasync error handling is set up */
230     ERR_load_DASYNC_strings();
231
232     if (!ENGINE_set_id(e, engine_dasync_id)
233         || !ENGINE_set_name(e, engine_dasync_name)
234         || !ENGINE_set_pkey_meths(e, dasync_pkey)
235         || !ENGINE_set_digests(e, dasync_digests)
236         || !ENGINE_set_ciphers(e, dasync_ciphers)
237         || !ENGINE_set_destroy_function(e, dasync_destroy)
238         || !ENGINE_set_init_function(e, dasync_init)
239         || !ENGINE_set_finish_function(e, dasync_finish)) {
240         DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
241         return 0;
242     }
243
244     /*
245      * Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
246      * supplied by this engine
247      */
248     _hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
249     if (_hidden_sha1_md == NULL
250         || !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
251         || !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
252         || !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
253                                          sizeof(EVP_MD *) + sizeof(SHA_CTX))
254         || !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
255         || !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
256         || !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
257         || !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
258         EVP_MD_meth_free(_hidden_sha1_md);
259         _hidden_sha1_md = NULL;
260     }
261
262     _hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
263                                               16 /* block size */,
264                                               16 /* key len */);
265     if (_hidden_aes_128_cbc == NULL
266             || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
267             || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
268                                           EVP_CIPH_FLAG_DEFAULT_ASN1
269                                           | EVP_CIPH_CBC_MODE
270                                           | EVP_CIPH_FLAG_PIPELINE
271                                           | EVP_CIPH_CUSTOM_COPY)
272             || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
273                                          dasync_aes128_init_key)
274             || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
275                                               dasync_aes128_cbc_cipher)
276             || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
277                                             dasync_aes128_cbc_cleanup)
278             || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
279                                          dasync_aes128_cbc_ctrl)
280             || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
281                                 sizeof(struct dasync_pipeline_ctx))) {
282         EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
283         _hidden_aes_128_cbc = NULL;
284     }
285
286     _hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
287                                                 NID_aes_128_cbc_hmac_sha1,
288                                                 16 /* block size */,
289                                                 16 /* key len */);
290     if (_hidden_aes_128_cbc_hmac_sha1 == NULL
291             || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
292             || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
293                                             EVP_CIPH_CBC_MODE
294                                           | EVP_CIPH_FLAG_DEFAULT_ASN1
295                                           | EVP_CIPH_FLAG_AEAD_CIPHER
296                                           | EVP_CIPH_FLAG_PIPELINE
297                                           | EVP_CIPH_CUSTOM_COPY)
298             || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
299                                          dasync_aes128_cbc_hmac_sha1_init_key)
300             || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
301                                             dasync_aes128_cbc_hmac_sha1_cipher)
302             || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
303                                             dasync_aes128_cbc_hmac_sha1_cleanup)
304             || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
305                                          dasync_aes128_cbc_hmac_sha1_ctrl)
306             || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
307                                 sizeof(struct dasync_pipeline_ctx))) {
308         EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
309         _hidden_aes_128_cbc_hmac_sha1 = NULL;
310     }
311
312     return 1;
313 }
314
315 static void destroy_pkey(void)
316 {
317     /*
318      * We don't actually need to free the dasync_rsa method since this is
319      * automatically freed for us by libcrypto.
320      */
321     dasync_rsa_orig = NULL;
322     dasync_rsa = NULL;
323 }
324
325 # ifndef OPENSSL_NO_DYNAMIC_ENGINE
326 static int bind_helper(ENGINE *e, const char *id)
327 {
328     if (id && (strcmp(id, engine_dasync_id) != 0))
329         return 0;
330     if (!bind_dasync(e))
331         return 0;
332     return 1;
333 }
334
335 IMPLEMENT_DYNAMIC_CHECK_FN()
336     IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
337 # endif
338
339 static ENGINE *engine_dasync(void)
340 {
341     ENGINE *ret = ENGINE_new();
342     if (!ret)
343         return NULL;
344     if (!bind_dasync(ret)) {
345         ENGINE_free(ret);
346         return NULL;
347     }
348     return ret;
349 }
350
351 void engine_load_dasync_int(void)
352 {
353     ENGINE *toadd = engine_dasync();
354     if (!toadd)
355         return;
356     ERR_set_mark();
357     ENGINE_add(toadd);
358     /*
359      * If the "add" worked, it gets a structural reference. So either way, we
360      * release our just-created reference.
361      */
362     ENGINE_free(toadd);
363     /*
364      * If the "add" didn't work, it was probably a conflict because it was
365      * already added (eg. someone calling ENGINE_load_blah then calling
366      * ENGINE_load_builtin_engines() perhaps).
367      */
368     ERR_pop_to_mark();
369 }
370
371 static int dasync_init(ENGINE *e)
372 {
373     return 1;
374 }
375
376
377 static int dasync_finish(ENGINE *e)
378 {
379     return 1;
380 }
381
382
383 static int dasync_destroy(ENGINE *e)
384 {
385     destroy_digests();
386     destroy_ciphers();
387     destroy_pkey();
388     ERR_unload_DASYNC_strings();
389     return 1;
390 }
391
392 static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
393                        const int **pnids, int nid)
394 {
395     static const int rnid = EVP_PKEY_RSA;
396
397     if (pmeth == NULL) {
398         *pnids = &rnid;
399         return 1;
400     }
401
402     if (nid == EVP_PKEY_RSA) {
403         *pmeth = dasync_rsa;
404         return 1;
405     }
406
407     *pmeth = NULL;
408     return 0;
409 }
410
411 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
412                           const int **nids, int nid)
413 {
414     int ok = 1;
415     if (!digest) {
416         /* We are returning a list of supported nids */
417         return dasync_digest_nids(nids);
418     }
419     /* We are being asked for a specific digest */
420     switch (nid) {
421     case NID_sha1:
422         *digest = dasync_sha1();
423         break;
424     default:
425         ok = 0;
426         *digest = NULL;
427         break;
428     }
429     return ok;
430 }
431
432 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
433                                    const int **nids, int nid)
434 {
435     int ok = 1;
436     if (cipher == NULL) {
437         /* We are returning a list of supported nids */
438         *nids = dasync_cipher_nids;
439         return (sizeof(dasync_cipher_nids) -
440                 1) / sizeof(dasync_cipher_nids[0]);
441     }
442     /* We are being asked for a specific cipher */
443     switch (nid) {
444     case NID_aes_128_cbc:
445         *cipher = dasync_aes_128_cbc();
446         break;
447     case NID_aes_128_cbc_hmac_sha1:
448         *cipher = dasync_aes_128_cbc_hmac_sha1();
449         break;
450     default:
451         ok = 0;
452         *cipher = NULL;
453         break;
454     }
455     return ok;
456 }
457
458 static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
459                          OSSL_ASYNC_FD readfd, void *pvwritefd)
460 {
461     OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
462 #if defined(ASYNC_WIN)
463     CloseHandle(readfd);
464     CloseHandle(*pwritefd);
465 #elif defined(ASYNC_POSIX)
466     close(readfd);
467     close(*pwritefd);
468 #endif
469     OPENSSL_free(pwritefd);
470 }
471
472 #define DUMMY_CHAR 'X'
473
474 static void dummy_pause_job(void) {
475     ASYNC_JOB *job;
476     ASYNC_WAIT_CTX *waitctx;
477     ASYNC_callback_fn callback;
478     void * callback_arg;
479     OSSL_ASYNC_FD pipefds[2] = {0, 0};
480     OSSL_ASYNC_FD *writefd;
481 #if defined(ASYNC_WIN)
482     DWORD numwritten, numread;
483     char buf = DUMMY_CHAR;
484 #elif defined(ASYNC_POSIX)
485     char buf = DUMMY_CHAR;
486 #endif
487
488     if ((job = ASYNC_get_current_job()) == NULL)
489         return;
490
491     waitctx = ASYNC_get_wait_ctx(job);
492
493     if (ASYNC_WAIT_CTX_get_callback(waitctx, &callback, &callback_arg) && callback != NULL) {
494         /*
495          * In the Dummy async engine we are cheating. We call the callback that the job
496          * is complete before the call to ASYNC_pause_job(). A real
497          * async engine would only call the callback when the job was actually complete
498          */
499         (*callback)(callback_arg);
500         ASYNC_pause_job();
501         return;
502     }
503
504
505     if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
506                               (void **)&writefd)) {
507         pipefds[1] = *writefd;
508     } else {
509         writefd = OPENSSL_malloc(sizeof(*writefd));
510         if (writefd == NULL)
511             return;
512 #if defined(ASYNC_WIN)
513         if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
514             OPENSSL_free(writefd);
515             return;
516         }
517 #elif defined(ASYNC_POSIX)
518         if (pipe(pipefds) != 0) {
519             OPENSSL_free(writefd);
520             return;
521         }
522 #endif
523         *writefd = pipefds[1];
524
525         if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
526                                         writefd, wait_cleanup)) {
527             wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
528             return;
529         }
530     }
531     /*
532      * In the Dummy async engine we are cheating. We signal that the job
533      * is complete by waking it before the call to ASYNC_pause_job(). A real
534      * async engine would only wake when the job was actually complete
535      */
536 #if defined(ASYNC_WIN)
537     WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
538 #elif defined(ASYNC_POSIX)
539     if (write(pipefds[1], &buf, 1) < 0)
540         return;
541 #endif
542
543     /* Ignore errors - we carry on anyway */
544     ASYNC_pause_job();
545
546     /* Clear the wake signal */
547 #if defined(ASYNC_WIN)
548     ReadFile(pipefds[0], &buf, 1, &numread, NULL);
549 #elif defined(ASYNC_POSIX)
550     if (read(pipefds[0], &buf, 1) < 0)
551         return;
552 #endif
553 }
554
555 /*
556  * SHA1 implementation. At the moment we just defer to the standard
557  * implementation
558  */
559 static int dasync_sha1_init(EVP_MD_CTX *ctx)
560 {
561     dummy_pause_job();
562
563     return EVP_MD_meth_get_init(EVP_sha1())(ctx);
564 }
565
566 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
567                              size_t count)
568 {
569     dummy_pause_job();
570
571     return EVP_MD_meth_get_update(EVP_sha1())(ctx, data, count);
572 }
573
574 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
575 {
576     dummy_pause_job();
577
578     return EVP_MD_meth_get_final(EVP_sha1())(ctx, md);
579 }
580
581 /* Cipher helper functions */
582
583 static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
584                                      void *ptr, int aeadcapable,
585                                      const EVP_CIPHER *ciph)
586 {
587     int ret;
588     struct dasync_pipeline_ctx *pipe_ctx =
589         (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
590
591     if (pipe_ctx == NULL)
592         return 0;
593
594     switch (type) {
595         case EVP_CTRL_COPY:
596             {
597                 size_t sz = EVP_CIPHER_impl_ctx_size(ciph);
598                 void *inner_cipher_data = OPENSSL_malloc(sz);
599
600                 if (inner_cipher_data == NULL)
601                     return -1;
602                 memcpy(inner_cipher_data, pipe_ctx->inner_cipher_data, sz);
603                 pipe_ctx->inner_cipher_data = inner_cipher_data;
604             }
605             break;
606
607         case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
608             pipe_ctx->numpipes = arg;
609             pipe_ctx->outbufs = (unsigned char **)ptr;
610             break;
611
612         case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
613             pipe_ctx->numpipes = arg;
614             pipe_ctx->inbufs = (unsigned char **)ptr;
615             break;
616
617         case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
618             pipe_ctx->numpipes = arg;
619             pipe_ctx->lens = (size_t *)ptr;
620             break;
621
622         case EVP_CTRL_AEAD_SET_MAC_KEY:
623             if (!aeadcapable)
624                 return -1;
625             EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
626             ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
627                                           (ctx, type, arg, ptr);
628             EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
629             return ret;
630
631         case EVP_CTRL_AEAD_TLS1_AAD:
632         {
633             unsigned char *p = ptr;
634             unsigned int len;
635
636             if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
637                 return -1;
638
639             if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
640                 return -1;
641
642             memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
643                    EVP_AEAD_TLS1_AAD_LEN);
644             pipe_ctx->aadctr++;
645
646             len = p[arg - 2] << 8 | p[arg - 1];
647
648             if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
649                 if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
650                     if (len < AES_BLOCK_SIZE)
651                         return 0;
652                     len -= AES_BLOCK_SIZE;
653                 }
654
655                 return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
656                         & -AES_BLOCK_SIZE) - len;
657             } else {
658                 return SHA_DIGEST_LENGTH;
659             }
660         }
661
662         default:
663             return 0;
664     }
665
666     return 1;
667 }
668
669 static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
670                                          const unsigned char *key,
671                                          const unsigned char *iv, int enc,
672                                          const EVP_CIPHER *cipher)
673 {
674     int ret;
675     struct dasync_pipeline_ctx *pipe_ctx =
676         (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
677
678     if (pipe_ctx->inner_cipher_data == NULL
679             && EVP_CIPHER_impl_ctx_size(cipher) != 0) {
680         pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
681             EVP_CIPHER_impl_ctx_size(cipher));
682         if (pipe_ctx->inner_cipher_data == NULL)
683             return 0;
684     }
685
686     pipe_ctx->numpipes = 0;
687     pipe_ctx->aadctr = 0;
688
689     EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
690     ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
691     EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
692
693     return ret;
694 }
695
696 static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
697                                 const unsigned char *in, size_t inl,
698                                 const EVP_CIPHER *cipher)
699 {
700     int ret = 1;
701     unsigned int i, pipes;
702     struct dasync_pipeline_ctx *pipe_ctx =
703         (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
704
705     pipes = pipe_ctx->numpipes;
706     EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
707     if (pipes == 0) {
708         if (pipe_ctx->aadctr != 0) {
709             if (pipe_ctx->aadctr != 1)
710                 return -1;
711             EVP_CIPHER_meth_get_ctrl(cipher)
712                                     (ctx, EVP_CTRL_AEAD_TLS1_AAD,
713                                      EVP_AEAD_TLS1_AAD_LEN,
714                                      pipe_ctx->tlsaad[0]);
715         }
716         ret = EVP_CIPHER_meth_get_do_cipher(cipher)
717                                            (ctx, out, in, inl);
718     } else {
719         if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
720             return -1;
721         for (i = 0; i < pipes; i++) {
722             if (pipe_ctx->aadctr > 0) {
723                 EVP_CIPHER_meth_get_ctrl(cipher)
724                                         (ctx, EVP_CTRL_AEAD_TLS1_AAD,
725                                          EVP_AEAD_TLS1_AAD_LEN,
726                                          pipe_ctx->tlsaad[i]);
727             }
728             ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
729                                 (ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
730                                  pipe_ctx->lens[i]);
731         }
732         pipe_ctx->numpipes = 0;
733     }
734     pipe_ctx->aadctr = 0;
735     EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
736     return ret;
737 }
738
739 static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
740                                         const EVP_CIPHER *cipher)
741 {
742     struct dasync_pipeline_ctx *pipe_ctx =
743         (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
744
745     OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
746                        EVP_CIPHER_impl_ctx_size(cipher));
747
748     return 1;
749 }
750
751 /*
752  * AES128 CBC Implementation
753  */
754
755 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
756                                   void *ptr)
757 {
758     return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0, EVP_aes_128_cbc());
759 }
760
761 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
762                              const unsigned char *iv, int enc)
763 {
764     return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
765 }
766
767 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
768                                const unsigned char *in, size_t inl)
769 {
770     return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
771 }
772
773 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
774 {
775     return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
776 }
777
778
779 /*
780  * AES128 CBC HMAC SHA1 Implementation
781  */
782
783 static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
784                                              int arg, void *ptr)
785 {
786     return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1, EVP_aes_128_cbc_hmac_sha1());
787 }
788
789 static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
790                                                 const unsigned char *key,
791                                                 const unsigned char *iv,
792                                                 int enc)
793 {
794     /*
795      * We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
796      * see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
797      */
798     return dasync_cipher_init_key_helper(ctx, key, iv, enc,
799                                          EVP_aes_128_cbc_hmac_sha1());
800 }
801
802 static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
803                                                unsigned char *out,
804                                                const unsigned char *in,
805                                                size_t inl)
806 {
807     return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
808 }
809
810 static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
811 {
812     /*
813      * We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
814      * see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
815      */
816     return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
817 }
818
819
820 /*
821  * RSA implementation
822  */
823 static int dasync_rsa_init(EVP_PKEY_CTX *ctx)
824 {
825     static int (*pinit)(EVP_PKEY_CTX *ctx);
826
827     if (pinit == NULL)
828         EVP_PKEY_meth_get_init(dasync_rsa_orig, &pinit);
829     return pinit(ctx);
830 }
831
832 static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx)
833 {
834     static void (*pcleanup)(EVP_PKEY_CTX *ctx);
835
836     if (pcleanup == NULL)
837         EVP_PKEY_meth_get_cleanup(dasync_rsa_orig, &pcleanup);
838     pcleanup(ctx);
839 }
840
841 static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx)
842 {
843     static int (*pparamgen_init)(EVP_PKEY_CTX *ctx);
844
845     if (pparamgen_init == NULL)
846         EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, &pparamgen_init, NULL);
847     return pparamgen_init != NULL ? pparamgen_init(ctx) : 1;
848 }
849
850 static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
851 {
852     static int (*pparamgen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
853
854     if (pparamgen == NULL)
855         EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, NULL, &pparamgen);
856     return pparamgen != NULL ? pparamgen(ctx, pkey) : 1;
857 }
858
859 static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx)
860 {
861     static int (*pkeygen_init)(EVP_PKEY_CTX *ctx);
862
863     if (pkeygen_init == NULL)
864         EVP_PKEY_meth_get_keygen(dasync_rsa_orig, &pkeygen_init, NULL);
865     return pkeygen_init != NULL ? pkeygen_init(ctx) : 1;
866 }
867
868 static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
869 {
870     static int (*pkeygen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
871
872     if (pkeygen == NULL)
873         EVP_PKEY_meth_get_keygen(dasync_rsa_orig, NULL, &pkeygen);
874     return pkeygen(ctx, pkey);
875 }
876
877 static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx)
878 {
879     static int (*pencrypt_init)(EVP_PKEY_CTX *ctx);
880
881     if (pencrypt_init == NULL)
882         EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, &pencrypt_init, NULL);
883     return pencrypt_init != NULL ? pencrypt_init(ctx) : 1;
884 }
885
886 static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
887                               size_t *outlen, const unsigned char *in,
888                               size_t inlen)
889 {
890     static int (*pencryptfn)(EVP_PKEY_CTX *ctx, unsigned char *out,
891                              size_t *outlen, const unsigned char *in,
892                              size_t inlen);
893
894     if (pencryptfn == NULL)
895         EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, NULL, &pencryptfn);
896     return pencryptfn(ctx, out, outlen, in, inlen);
897 }
898
899 static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx)
900 {
901     static int (*pdecrypt_init)(EVP_PKEY_CTX *ctx);
902
903     if (pdecrypt_init == NULL)
904         EVP_PKEY_meth_get_decrypt(dasync_rsa_orig, &pdecrypt_init, NULL);
905     return pdecrypt_init != NULL ? pdecrypt_init(ctx) : 1;
906 }
907
908 static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
909                               size_t *outlen, const unsigned char *in,
910                               size_t inlen)
911 {
912     static int (*pdecrypt)(EVP_PKEY_CTX *ctx, unsigned char *out,
913                              size_t *outlen, const unsigned char *in,
914                              size_t inlen);
915
916     if (pdecrypt == NULL)
917         EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, NULL, &pdecrypt);
918     return pdecrypt(ctx, out, outlen, in, inlen);
919 }
920
921 static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
922 {
923     static int (*pctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
924
925     if (pctrl == NULL)
926         EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, &pctrl, NULL);
927     return pctrl(ctx, type, p1, p2);
928 }
929
930 static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
931                                const char *value)
932 {
933     static int (*pctrl_str)(EVP_PKEY_CTX *ctx, const char *type,
934                             const char *value);
935
936     if (pctrl_str == NULL)
937         EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, NULL, &pctrl_str);
938     return pctrl_str(ctx, type, value);
939 }