Fix range_should_be_prefix() to actually return the correct result
[openssl.git] / crypto / x509 / v3_addr.c
1 /*
2  * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /*
11  * Implementation of RFC 3779 section 2.2.
12  */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <assert.h>
17 #include <string.h>
18
19 #include "internal/cryptlib.h"
20 #include <openssl/conf.h>
21 #include <openssl/asn1.h>
22 #include <openssl/asn1t.h>
23 #include <openssl/buffer.h>
24 #include <openssl/x509v3.h>
25 #include "crypto/x509.h"
26 #include "ext_dat.h"
27 #include "x509_local.h"
28
29 #ifndef OPENSSL_NO_RFC3779
30
31 /*
32  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
33  */
34
35 ASN1_SEQUENCE(IPAddressRange) = {
36   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
37   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
38 } ASN1_SEQUENCE_END(IPAddressRange)
39
40 ASN1_CHOICE(IPAddressOrRange) = {
41   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
42   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
43 } ASN1_CHOICE_END(IPAddressOrRange)
44
45 ASN1_CHOICE(IPAddressChoice) = {
46   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
47   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
48 } ASN1_CHOICE_END(IPAddressChoice)
49
50 ASN1_SEQUENCE(IPAddressFamily) = {
51   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
52   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
53 } ASN1_SEQUENCE_END(IPAddressFamily)
54
55 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
56   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
57                         IPAddrBlocks, IPAddressFamily)
58 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
59
60 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
61 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
62 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
63 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
64
65 /*
66  * How much buffer space do we need for a raw address?
67  */
68 #define ADDR_RAW_BUF_LEN        16
69
70 /*
71  * What's the address length associated with this AFI?
72  */
73 static int length_from_afi(const unsigned afi)
74 {
75     switch (afi) {
76     case IANA_AFI_IPV4:
77         return 4;
78     case IANA_AFI_IPV6:
79         return 16;
80     default:
81         return 0;
82     }
83 }
84
85 /*
86  * Extract the AFI from an IPAddressFamily.
87  */
88 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
89 {
90     if (f == NULL
91             || f->addressFamily == NULL
92             || f->addressFamily->data == NULL
93             || f->addressFamily->length < 2)
94         return 0;
95     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
96 }
97
98 /*
99  * Expand the bitstring form of an address into a raw byte array.
100  * At the moment this is coded for simplicity, not speed.
101  */
102 static int addr_expand(unsigned char *addr,
103                        const ASN1_BIT_STRING *bs,
104                        const int length, const unsigned char fill)
105 {
106     if (bs->length < 0 || bs->length > length)
107         return 0;
108     if (bs->length > 0) {
109         memcpy(addr, bs->data, bs->length);
110         if ((bs->flags & 7) != 0) {
111             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
112             if (fill == 0)
113                 addr[bs->length - 1] &= ~mask;
114             else
115                 addr[bs->length - 1] |= mask;
116         }
117     }
118     memset(addr + bs->length, fill, length - bs->length);
119     return 1;
120 }
121
122 /*
123  * Extract the prefix length from a bitstring.
124  */
125 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
126
127 /*
128  * i2r handler for one address bitstring.
129  */
130 static int i2r_address(BIO *out,
131                        const unsigned afi,
132                        const unsigned char fill, const ASN1_BIT_STRING *bs)
133 {
134     unsigned char addr[ADDR_RAW_BUF_LEN];
135     int i, n;
136
137     if (bs->length < 0)
138         return 0;
139     switch (afi) {
140     case IANA_AFI_IPV4:
141         if (!addr_expand(addr, bs, 4, fill))
142             return 0;
143         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
144         break;
145     case IANA_AFI_IPV6:
146         if (!addr_expand(addr, bs, 16, fill))
147             return 0;
148         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
149              n -= 2) ;
150         for (i = 0; i < n; i += 2)
151             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
152                        (i < 14 ? ":" : ""));
153         if (i < 16)
154             BIO_puts(out, ":");
155         if (i == 0)
156             BIO_puts(out, ":");
157         break;
158     default:
159         for (i = 0; i < bs->length; i++)
160             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
161         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
162         break;
163     }
164     return 1;
165 }
166
167 /*
168  * i2r handler for a sequence of addresses and ranges.
169  */
170 static int i2r_IPAddressOrRanges(BIO *out,
171                                  const int indent,
172                                  const IPAddressOrRanges *aors,
173                                  const unsigned afi)
174 {
175     int i;
176     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
177         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
178         BIO_printf(out, "%*s", indent, "");
179         switch (aor->type) {
180         case IPAddressOrRange_addressPrefix:
181             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
182                 return 0;
183             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
184             continue;
185         case IPAddressOrRange_addressRange:
186             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
187                 return 0;
188             BIO_puts(out, "-");
189             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
190                 return 0;
191             BIO_puts(out, "\n");
192             continue;
193         }
194     }
195     return 1;
196 }
197
198 /*
199  * i2r handler for an IPAddrBlocks extension.
200  */
201 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
202                             void *ext, BIO *out, int indent)
203 {
204     const IPAddrBlocks *addr = ext;
205     int i;
206     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
207         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
208         const unsigned int afi = X509v3_addr_get_afi(f);
209         switch (afi) {
210         case IANA_AFI_IPV4:
211             BIO_printf(out, "%*sIPv4", indent, "");
212             break;
213         case IANA_AFI_IPV6:
214             BIO_printf(out, "%*sIPv6", indent, "");
215             break;
216         default:
217             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
218             break;
219         }
220         if (f->addressFamily->length > 2) {
221             switch (f->addressFamily->data[2]) {
222             case 1:
223                 BIO_puts(out, " (Unicast)");
224                 break;
225             case 2:
226                 BIO_puts(out, " (Multicast)");
227                 break;
228             case 3:
229                 BIO_puts(out, " (Unicast/Multicast)");
230                 break;
231             case 4:
232                 BIO_puts(out, " (MPLS)");
233                 break;
234             case 64:
235                 BIO_puts(out, " (Tunnel)");
236                 break;
237             case 65:
238                 BIO_puts(out, " (VPLS)");
239                 break;
240             case 66:
241                 BIO_puts(out, " (BGP MDT)");
242                 break;
243             case 128:
244                 BIO_puts(out, " (MPLS-labeled VPN)");
245                 break;
246             default:
247                 BIO_printf(out, " (Unknown SAFI %u)",
248                            (unsigned)f->addressFamily->data[2]);
249                 break;
250             }
251         }
252         switch (f->ipAddressChoice->type) {
253         case IPAddressChoice_inherit:
254             BIO_puts(out, ": inherit\n");
255             break;
256         case IPAddressChoice_addressesOrRanges:
257             BIO_puts(out, ":\n");
258             if (!i2r_IPAddressOrRanges(out,
259                                        indent + 2,
260                                        f->ipAddressChoice->
261                                        u.addressesOrRanges, afi))
262                 return 0;
263             break;
264         }
265     }
266     return 1;
267 }
268
269 /*
270  * Sort comparison function for a sequence of IPAddressOrRange
271  * elements.
272  *
273  * There's no sane answer we can give if addr_expand() fails, and an
274  * assertion failure on externally supplied data is seriously uncool,
275  * so we just arbitrarily declare that if given invalid inputs this
276  * function returns -1.  If this messes up your preferred sort order
277  * for garbage input, tough noogies.
278  */
279 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
280                                 const IPAddressOrRange *b, const int length)
281 {
282     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
283     int prefixlen_a = 0, prefixlen_b = 0;
284     int r;
285
286     switch (a->type) {
287     case IPAddressOrRange_addressPrefix:
288         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
289             return -1;
290         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
291         break;
292     case IPAddressOrRange_addressRange:
293         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
294             return -1;
295         prefixlen_a = length * 8;
296         break;
297     }
298
299     switch (b->type) {
300     case IPAddressOrRange_addressPrefix:
301         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
302             return -1;
303         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
304         break;
305     case IPAddressOrRange_addressRange:
306         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
307             return -1;
308         prefixlen_b = length * 8;
309         break;
310     }
311
312     if ((r = memcmp(addr_a, addr_b, length)) != 0)
313         return r;
314     else
315         return prefixlen_a - prefixlen_b;
316 }
317
318 /*
319  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
320  * comparison routines are only allowed two arguments.
321  */
322 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
323                                   const IPAddressOrRange *const *b)
324 {
325     return IPAddressOrRange_cmp(*a, *b, 4);
326 }
327
328 /*
329  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
330  * comparison routines are only allowed two arguments.
331  */
332 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
333                                   const IPAddressOrRange *const *b)
334 {
335     return IPAddressOrRange_cmp(*a, *b, 16);
336 }
337
338 /*
339  * Calculate whether a range collapses to a prefix.
340  * See last paragraph of RFC 3779 2.2.3.7.
341  */
342 static int range_should_be_prefix(const unsigned char *min,
343                                   const unsigned char *max, const int length)
344 {
345     unsigned char mask;
346     int i, j;
347
348     /*
349      * It is the responsibility of the caller to confirm min <= max. We don't
350      * use ossl_assert() here since we have no way of signalling an error from
351      * this function - so we just use a plain assert instead.
352      */
353     assert(memcmp(min, max, length) <= 0);
354
355     for (i = 0; i < length && min[i] == max[i]; i++) ;
356     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
357     if (i < j)
358         return -1;
359     if (i > j)
360         return i * 8;
361     mask = min[i] ^ max[i];
362     switch (mask) {
363     case 0x01:
364         j = 7;
365         break;
366     case 0x03:
367         j = 6;
368         break;
369     case 0x07:
370         j = 5;
371         break;
372     case 0x0F:
373         j = 4;
374         break;
375     case 0x1F:
376         j = 3;
377         break;
378     case 0x3F:
379         j = 2;
380         break;
381     case 0x7F:
382         j = 1;
383         break;
384     default:
385         return -1;
386     }
387     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
388         return -1;
389     else
390         return i * 8 + j;
391 }
392
393 /*
394  * Construct a prefix.
395  */
396 static int make_addressPrefix(IPAddressOrRange **result,
397                               unsigned char *addr, const int prefixlen)
398 {
399     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
400     IPAddressOrRange *aor = IPAddressOrRange_new();
401
402     if (aor == NULL)
403         return 0;
404     aor->type = IPAddressOrRange_addressPrefix;
405     if (aor->u.addressPrefix == NULL &&
406         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
407         goto err;
408     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
409         goto err;
410     aor->u.addressPrefix->flags &= ~7;
411     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
412     if (bitlen > 0) {
413         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
414         aor->u.addressPrefix->flags |= 8 - bitlen;
415     }
416
417     *result = aor;
418     return 1;
419
420  err:
421     IPAddressOrRange_free(aor);
422     return 0;
423 }
424
425 /*
426  * Construct a range.  If it can be expressed as a prefix,
427  * return a prefix instead.  Doing this here simplifies
428  * the rest of the code considerably.
429  */
430 static int make_addressRange(IPAddressOrRange **result,
431                              unsigned char *min,
432                              unsigned char *max, const int length)
433 {
434     IPAddressOrRange *aor;
435     int i, prefixlen;
436
437     if (memcmp(min, max, length) > 0)
438         return 0;
439
440     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
441         return make_addressPrefix(result, min, prefixlen);
442
443     if ((aor = IPAddressOrRange_new()) == NULL)
444         return 0;
445     aor->type = IPAddressOrRange_addressRange;
446     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
447         goto err;
448     if (aor->u.addressRange->min == NULL &&
449         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
450         goto err;
451     if (aor->u.addressRange->max == NULL &&
452         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
453         goto err;
454
455     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
456     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
457         goto err;
458     aor->u.addressRange->min->flags &= ~7;
459     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
460     if (i > 0) {
461         unsigned char b = min[i - 1];
462         int j = 1;
463         while ((b & (0xFFU >> j)) != 0)
464             ++j;
465         aor->u.addressRange->min->flags |= 8 - j;
466     }
467
468     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
469     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
470         goto err;
471     aor->u.addressRange->max->flags &= ~7;
472     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
473     if (i > 0) {
474         unsigned char b = max[i - 1];
475         int j = 1;
476         while ((b & (0xFFU >> j)) != (0xFFU >> j))
477             ++j;
478         aor->u.addressRange->max->flags |= 8 - j;
479     }
480
481     *result = aor;
482     return 1;
483
484  err:
485     IPAddressOrRange_free(aor);
486     return 0;
487 }
488
489 /*
490  * Construct a new address family or find an existing one.
491  */
492 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
493                                              const unsigned afi,
494                                              const unsigned *safi)
495 {
496     IPAddressFamily *f;
497     unsigned char key[3];
498     int keylen;
499     int i;
500
501     key[0] = (afi >> 8) & 0xFF;
502     key[1] = afi & 0xFF;
503     if (safi != NULL) {
504         key[2] = *safi & 0xFF;
505         keylen = 3;
506     } else {
507         keylen = 2;
508     }
509
510     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
511         f = sk_IPAddressFamily_value(addr, i);
512         if (f->addressFamily->length == keylen &&
513             !memcmp(f->addressFamily->data, key, keylen))
514             return f;
515     }
516
517     if ((f = IPAddressFamily_new()) == NULL)
518         goto err;
519     if (f->ipAddressChoice == NULL &&
520         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
521         goto err;
522     if (f->addressFamily == NULL &&
523         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
524         goto err;
525     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
526         goto err;
527     if (!sk_IPAddressFamily_push(addr, f))
528         goto err;
529
530     return f;
531
532  err:
533     IPAddressFamily_free(f);
534     return NULL;
535 }
536
537 /*
538  * Add an inheritance element.
539  */
540 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
541                             const unsigned afi, const unsigned *safi)
542 {
543     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
544     if (f == NULL ||
545         f->ipAddressChoice == NULL ||
546         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
547          f->ipAddressChoice->u.addressesOrRanges != NULL))
548         return 0;
549     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
550         f->ipAddressChoice->u.inherit != NULL)
551         return 1;
552     if (f->ipAddressChoice->u.inherit == NULL &&
553         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
554         return 0;
555     f->ipAddressChoice->type = IPAddressChoice_inherit;
556     return 1;
557 }
558
559 /*
560  * Construct an IPAddressOrRange sequence, or return an existing one.
561  */
562 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
563                                                const unsigned afi,
564                                                const unsigned *safi)
565 {
566     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
567     IPAddressOrRanges *aors = NULL;
568
569     if (f == NULL ||
570         f->ipAddressChoice == NULL ||
571         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
572          f->ipAddressChoice->u.inherit != NULL))
573         return NULL;
574     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
575         aors = f->ipAddressChoice->u.addressesOrRanges;
576     if (aors != NULL)
577         return aors;
578     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
579         return NULL;
580     switch (afi) {
581     case IANA_AFI_IPV4:
582         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
583         break;
584     case IANA_AFI_IPV6:
585         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
586         break;
587     }
588     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
589     f->ipAddressChoice->u.addressesOrRanges = aors;
590     return aors;
591 }
592
593 /*
594  * Add a prefix.
595  */
596 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
597                            const unsigned afi,
598                            const unsigned *safi,
599                            unsigned char *a, const int prefixlen)
600 {
601     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
602     IPAddressOrRange *aor;
603     if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
604         return 0;
605     if (sk_IPAddressOrRange_push(aors, aor))
606         return 1;
607     IPAddressOrRange_free(aor);
608     return 0;
609 }
610
611 /*
612  * Add a range.
613  */
614 int X509v3_addr_add_range(IPAddrBlocks *addr,
615                           const unsigned afi,
616                           const unsigned *safi,
617                           unsigned char *min, unsigned char *max)
618 {
619     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
620     IPAddressOrRange *aor;
621     int length = length_from_afi(afi);
622     if (aors == NULL)
623         return 0;
624     if (!make_addressRange(&aor, min, max, length))
625         return 0;
626     if (sk_IPAddressOrRange_push(aors, aor))
627         return 1;
628     IPAddressOrRange_free(aor);
629     return 0;
630 }
631
632 /*
633  * Extract min and max values from an IPAddressOrRange.
634  */
635 static int extract_min_max(IPAddressOrRange *aor,
636                            unsigned char *min, unsigned char *max, int length)
637 {
638     if (aor == NULL || min == NULL || max == NULL)
639         return 0;
640     switch (aor->type) {
641     case IPAddressOrRange_addressPrefix:
642         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
643                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
644     case IPAddressOrRange_addressRange:
645         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
646                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
647     }
648     return 0;
649 }
650
651 /*
652  * Public wrapper for extract_min_max().
653  */
654 int X509v3_addr_get_range(IPAddressOrRange *aor,
655                           const unsigned afi,
656                           unsigned char *min,
657                           unsigned char *max, const int length)
658 {
659     int afi_length = length_from_afi(afi);
660     if (aor == NULL || min == NULL || max == NULL ||
661         afi_length == 0 || length < afi_length ||
662         (aor->type != IPAddressOrRange_addressPrefix &&
663          aor->type != IPAddressOrRange_addressRange) ||
664         !extract_min_max(aor, min, max, afi_length))
665         return 0;
666
667     return afi_length;
668 }
669
670 /*
671  * Sort comparison function for a sequence of IPAddressFamily.
672  *
673  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
674  * the ordering: I can read it as meaning that IPv6 without a SAFI
675  * comes before IPv4 with a SAFI, which seems pretty weird.  The
676  * examples in appendix B suggest that the author intended the
677  * null-SAFI rule to apply only within a single AFI, which is what I
678  * would have expected and is what the following code implements.
679  */
680 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
681                                const IPAddressFamily *const *b_)
682 {
683     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
684     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
685     int len = ((a->length <= b->length) ? a->length : b->length);
686     int cmp = memcmp(a->data, b->data, len);
687     return cmp ? cmp : a->length - b->length;
688 }
689
690 /*
691  * Check whether an IPAddrBLocks is in canonical form.
692  */
693 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
694 {
695     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
696     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
697     IPAddressOrRanges *aors;
698     int i, j, k;
699
700     /*
701      * Empty extension is canonical.
702      */
703     if (addr == NULL)
704         return 1;
705
706     /*
707      * Check whether the top-level list is in order.
708      */
709     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
710         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
711         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
712         if (IPAddressFamily_cmp(&a, &b) >= 0)
713             return 0;
714     }
715
716     /*
717      * Top level's ok, now check each address family.
718      */
719     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
720         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
721         int length = length_from_afi(X509v3_addr_get_afi(f));
722
723         /*
724          * Inheritance is canonical.  Anything other than inheritance or
725          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
726          */
727         if (f == NULL || f->ipAddressChoice == NULL)
728             return 0;
729         switch (f->ipAddressChoice->type) {
730         case IPAddressChoice_inherit:
731             continue;
732         case IPAddressChoice_addressesOrRanges:
733             break;
734         default:
735             return 0;
736         }
737
738         /*
739          * It's an IPAddressOrRanges sequence, check it.
740          */
741         aors = f->ipAddressChoice->u.addressesOrRanges;
742         if (sk_IPAddressOrRange_num(aors) == 0)
743             return 0;
744         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
745             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
746             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
747
748             if (!extract_min_max(a, a_min, a_max, length) ||
749                 !extract_min_max(b, b_min, b_max, length))
750                 return 0;
751
752             /*
753              * Punt misordered list, overlapping start, or inverted range.
754              */
755             if (memcmp(a_min, b_min, length) >= 0 ||
756                 memcmp(a_min, a_max, length) > 0 ||
757                 memcmp(b_min, b_max, length) > 0)
758                 return 0;
759
760             /*
761              * Punt if adjacent or overlapping.  Check for adjacency by
762              * subtracting one from b_min first.
763              */
764             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
765             if (memcmp(a_max, b_min, length) >= 0)
766                 return 0;
767
768             /*
769              * Check for range that should be expressed as a prefix.
770              */
771             if (a->type == IPAddressOrRange_addressRange &&
772                 range_should_be_prefix(a_min, a_max, length) >= 0)
773                 return 0;
774         }
775
776         /*
777          * Check range to see if it's inverted or should be a
778          * prefix.
779          */
780         j = sk_IPAddressOrRange_num(aors) - 1;
781         {
782             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
783             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
784                 if (!extract_min_max(a, a_min, a_max, length))
785                     return 0;
786                 if (memcmp(a_min, a_max, length) > 0 ||
787                     range_should_be_prefix(a_min, a_max, length) >= 0)
788                     return 0;
789             }
790         }
791     }
792
793     /*
794      * If we made it through all that, we're happy.
795      */
796     return 1;
797 }
798
799 /*
800  * Whack an IPAddressOrRanges into canonical form.
801  */
802 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
803                                       const unsigned afi)
804 {
805     int i, j, length = length_from_afi(afi);
806
807     /*
808      * Sort the IPAddressOrRanges sequence.
809      */
810     sk_IPAddressOrRange_sort(aors);
811
812     /*
813      * Clean up representation issues, punt on duplicates or overlaps.
814      */
815     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
816         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
817         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
818         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
819         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
820
821         if (!extract_min_max(a, a_min, a_max, length) ||
822             !extract_min_max(b, b_min, b_max, length))
823             return 0;
824
825         /*
826          * Punt inverted ranges.
827          */
828         if (memcmp(a_min, a_max, length) > 0 ||
829             memcmp(b_min, b_max, length) > 0)
830             return 0;
831
832         /*
833          * Punt overlaps.
834          */
835         if (memcmp(a_max, b_min, length) >= 0)
836             return 0;
837
838         /*
839          * Merge if a and b are adjacent.  We check for
840          * adjacency by subtracting one from b_min first.
841          */
842         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
843         if (memcmp(a_max, b_min, length) == 0) {
844             IPAddressOrRange *merged;
845             if (!make_addressRange(&merged, a_min, b_max, length))
846                 return 0;
847             (void)sk_IPAddressOrRange_set(aors, i, merged);
848             (void)sk_IPAddressOrRange_delete(aors, i + 1);
849             IPAddressOrRange_free(a);
850             IPAddressOrRange_free(b);
851             --i;
852             continue;
853         }
854     }
855
856     /*
857      * Check for inverted final range.
858      */
859     j = sk_IPAddressOrRange_num(aors) - 1;
860     {
861         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
862         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
863             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
864             if (!extract_min_max(a, a_min, a_max, length))
865                 return 0;
866             if (memcmp(a_min, a_max, length) > 0)
867                 return 0;
868         }
869     }
870
871     return 1;
872 }
873
874 /*
875  * Whack an IPAddrBlocks extension into canonical form.
876  */
877 int X509v3_addr_canonize(IPAddrBlocks *addr)
878 {
879     int i;
880     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
881         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
882         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
883             !IPAddressOrRanges_canonize(f->ipAddressChoice->
884                                         u.addressesOrRanges,
885                                         X509v3_addr_get_afi(f)))
886             return 0;
887     }
888     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
889     sk_IPAddressFamily_sort(addr);
890     if (!ossl_assert(X509v3_addr_is_canonical(addr)))
891         return 0;
892     return 1;
893 }
894
895 /*
896  * v2i handler for the IPAddrBlocks extension.
897  */
898 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
899                               struct v3_ext_ctx *ctx,
900                               STACK_OF(CONF_VALUE) *values)
901 {
902     static const char v4addr_chars[] = "0123456789.";
903     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
904     IPAddrBlocks *addr = NULL;
905     char *s = NULL, *t;
906     int i;
907
908     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
909         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
910         return NULL;
911     }
912
913     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
914         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
915         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
916         unsigned afi, *safi = NULL, safi_;
917         const char *addr_chars = NULL;
918         int prefixlen, i1, i2, delim, length;
919
920         if (!ossl_v3_name_cmp(val->name, "IPv4")) {
921             afi = IANA_AFI_IPV4;
922         } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
923             afi = IANA_AFI_IPV6;
924         } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
925             afi = IANA_AFI_IPV4;
926             safi = &safi_;
927         } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
928             afi = IANA_AFI_IPV6;
929             safi = &safi_;
930         } else {
931             ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
932                            "%s", val->name);
933             goto err;
934         }
935
936         switch (afi) {
937         case IANA_AFI_IPV4:
938             addr_chars = v4addr_chars;
939             break;
940         case IANA_AFI_IPV6:
941             addr_chars = v6addr_chars;
942             break;
943         }
944
945         length = length_from_afi(afi);
946
947         /*
948          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
949          * the other input values.
950          */
951         if (safi != NULL) {
952             *safi = strtoul(val->value, &t, 0);
953             t += strspn(t, " \t");
954             if (*safi > 0xFF || *t++ != ':') {
955                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
956                 X509V3_conf_add_error_name_value(val);
957                 goto err;
958             }
959             t += strspn(t, " \t");
960             s = OPENSSL_strdup(t);
961         } else {
962             s = OPENSSL_strdup(val->value);
963         }
964         if (s == NULL) {
965             ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
966             goto err;
967         }
968
969         /*
970          * Check for inheritance.  Not worth additional complexity to
971          * optimize this (seldom-used) case.
972          */
973         if (strcmp(s, "inherit") == 0) {
974             if (!X509v3_addr_add_inherit(addr, afi, safi)) {
975                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
976                 X509V3_conf_add_error_name_value(val);
977                 goto err;
978             }
979             OPENSSL_free(s);
980             s = NULL;
981             continue;
982         }
983
984         i1 = strspn(s, addr_chars);
985         i2 = i1 + strspn(s + i1, " \t");
986         delim = s[i2++];
987         s[i1] = '\0';
988
989         if (ossl_a2i_ipadd(min, s) != length) {
990             ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
991             X509V3_conf_add_error_name_value(val);
992             goto err;
993         }
994
995         switch (delim) {
996         case '/':
997             prefixlen = (int)strtoul(s + i2, &t, 10);
998             if (t == s + i2 || *t != '\0') {
999                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1000                 X509V3_conf_add_error_name_value(val);
1001                 goto err;
1002             }
1003             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1004                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1005                 goto err;
1006             }
1007             break;
1008         case '-':
1009             i1 = i2 + strspn(s + i2, " \t");
1010             i2 = i1 + strspn(s + i1, addr_chars);
1011             if (i1 == i2 || s[i2] != '\0') {
1012                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1013                 X509V3_conf_add_error_name_value(val);
1014                 goto err;
1015             }
1016             if (ossl_a2i_ipadd(max, s + i1) != length) {
1017                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1018                 X509V3_conf_add_error_name_value(val);
1019                 goto err;
1020             }
1021             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1022                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1023                 X509V3_conf_add_error_name_value(val);
1024                 goto err;
1025             }
1026             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1027                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1028                 goto err;
1029             }
1030             break;
1031         case '\0':
1032             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1033                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1034                 goto err;
1035             }
1036             break;
1037         default:
1038             ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1039             X509V3_conf_add_error_name_value(val);
1040             goto err;
1041         }
1042
1043         OPENSSL_free(s);
1044         s = NULL;
1045     }
1046
1047     /*
1048      * Canonize the result, then we're done.
1049      */
1050     if (!X509v3_addr_canonize(addr))
1051         goto err;
1052     return addr;
1053
1054  err:
1055     OPENSSL_free(s);
1056     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1057     return NULL;
1058 }
1059
1060 /*
1061  * OpenSSL dispatch
1062  */
1063 const X509V3_EXT_METHOD ossl_v3_addr = {
1064     NID_sbgp_ipAddrBlock,       /* nid */
1065     0,                          /* flags */
1066     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1067     0, 0, 0, 0,                 /* old functions, ignored */
1068     0,                          /* i2s */
1069     0,                          /* s2i */
1070     0,                          /* i2v */
1071     v2i_IPAddrBlocks,           /* v2i */
1072     i2r_IPAddrBlocks,           /* i2r */
1073     0,                          /* r2i */
1074     NULL                        /* extension-specific data */
1075 };
1076
1077 /*
1078  * Figure out whether extension sues inheritance.
1079  */
1080 int X509v3_addr_inherits(IPAddrBlocks *addr)
1081 {
1082     int i;
1083     if (addr == NULL)
1084         return 0;
1085     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1086         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1087         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1088             return 1;
1089     }
1090     return 0;
1091 }
1092
1093 /*
1094  * Figure out whether parent contains child.
1095  */
1096 static int addr_contains(IPAddressOrRanges *parent,
1097                          IPAddressOrRanges *child, int length)
1098 {
1099     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1100     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1101     int p, c;
1102
1103     if (child == NULL || parent == child)
1104         return 1;
1105     if (parent == NULL)
1106         return 0;
1107
1108     p = 0;
1109     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1110         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1111                              c_min, c_max, length))
1112             return 0;
1113         for (;; p++) {
1114             if (p >= sk_IPAddressOrRange_num(parent))
1115                 return 0;
1116             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1117                                  p_min, p_max, length))
1118                 return 0;
1119             if (memcmp(p_max, c_max, length) < 0)
1120                 continue;
1121             if (memcmp(p_min, c_min, length) > 0)
1122                 return 0;
1123             break;
1124         }
1125     }
1126
1127     return 1;
1128 }
1129
1130 /*
1131  * Test whether a is a subset of b.
1132  */
1133 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1134 {
1135     int i;
1136     if (a == NULL || a == b)
1137         return 1;
1138     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1139         return 0;
1140     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1141     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1142         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1143         int j = sk_IPAddressFamily_find(b, fa);
1144         IPAddressFamily *fb;
1145         fb = sk_IPAddressFamily_value(b, j);
1146         if (fb == NULL)
1147             return 0;
1148         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1149                            fa->ipAddressChoice->u.addressesOrRanges,
1150                            length_from_afi(X509v3_addr_get_afi(fb))))
1151             return 0;
1152     }
1153     return 1;
1154 }
1155
1156 /*
1157  * Validation error handling via callback.
1158  */
1159 #define validation_err(_err_)           \
1160   do {                                  \
1161     if (ctx != NULL) {                  \
1162       ctx->error = _err_;               \
1163       ctx->error_depth = i;             \
1164       ctx->current_cert = x;            \
1165       ret = ctx->verify_cb(0, ctx);     \
1166     } else {                            \
1167       ret = 0;                          \
1168     }                                   \
1169     if (!ret)                           \
1170       goto done;                        \
1171   } while (0)
1172
1173 /*
1174  * Core code for RFC 3779 2.3 path validation.
1175  *
1176  * Returns 1 for success, 0 on error.
1177  *
1178  * When returning 0, ctx->error MUST be set to an appropriate value other than
1179  * X509_V_OK.
1180  */
1181 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1182                                        STACK_OF(X509) *chain,
1183                                        IPAddrBlocks *ext)
1184 {
1185     IPAddrBlocks *child = NULL;
1186     int i, j, ret = 1;
1187     X509 *x;
1188
1189     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1190             || !ossl_assert(ctx != NULL || ext != NULL)
1191             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1192         if (ctx != NULL)
1193             ctx->error = X509_V_ERR_UNSPECIFIED;
1194         return 0;
1195     }
1196
1197     /*
1198      * Figure out where to start.  If we don't have an extension to
1199      * check, we're done.  Otherwise, check canonical form and
1200      * set up for walking up the chain.
1201      */
1202     if (ext != NULL) {
1203         i = -1;
1204         x = NULL;
1205     } else {
1206         i = 0;
1207         x = sk_X509_value(chain, i);
1208         if ((ext = x->rfc3779_addr) == NULL)
1209             goto done;
1210     }
1211     if (!X509v3_addr_is_canonical(ext))
1212         validation_err(X509_V_ERR_INVALID_EXTENSION);
1213     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1214     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1215         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1216         if (ctx != NULL)
1217             ctx->error = X509_V_ERR_OUT_OF_MEM;
1218         ret = 0;
1219         goto done;
1220     }
1221
1222     /*
1223      * Now walk up the chain.  No cert may list resources that its
1224      * parent doesn't list.
1225      */
1226     for (i++; i < sk_X509_num(chain); i++) {
1227         x = sk_X509_value(chain, i);
1228         if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1229             validation_err(X509_V_ERR_INVALID_EXTENSION);
1230         if (x->rfc3779_addr == NULL) {
1231             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1232                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1233                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1234                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1235                     break;
1236                 }
1237             }
1238             continue;
1239         }
1240         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1241                                               IPAddressFamily_cmp);
1242         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1243             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1244             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1245             IPAddressFamily *fp =
1246                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1247             if (fp == NULL) {
1248                 if (fc->ipAddressChoice->type ==
1249                     IPAddressChoice_addressesOrRanges) {
1250                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1251                     break;
1252                 }
1253                 continue;
1254             }
1255             if (fp->ipAddressChoice->type ==
1256                 IPAddressChoice_addressesOrRanges) {
1257                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1258                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1259                                      fc->ipAddressChoice->u.addressesOrRanges,
1260                                      length_from_afi(X509v3_addr_get_afi(fc))))
1261                     (void)sk_IPAddressFamily_set(child, j, fp);
1262                 else
1263                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1264             }
1265         }
1266     }
1267
1268     /*
1269      * Trust anchor can't inherit.
1270      */
1271     if (x->rfc3779_addr != NULL) {
1272         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1273             IPAddressFamily *fp =
1274                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1275             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1276                 && sk_IPAddressFamily_find(child, fp) >= 0)
1277                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1278         }
1279     }
1280
1281  done:
1282     sk_IPAddressFamily_free(child);
1283     return ret;
1284 }
1285
1286 #undef validation_err
1287
1288 /*
1289  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1290  */
1291 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1292 {
1293     if (ctx->chain == NULL
1294             || sk_X509_num(ctx->chain) == 0
1295             || ctx->verify_cb == NULL) {
1296         ctx->error = X509_V_ERR_UNSPECIFIED;
1297         return 0;
1298     }
1299     return addr_validate_path_internal(ctx, ctx->chain, NULL);
1300 }
1301
1302 /*
1303  * RFC 3779 2.3 path validation of an extension.
1304  * Test whether chain covers extension.
1305  */
1306 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1307                                   IPAddrBlocks *ext, int allow_inheritance)
1308 {
1309     if (ext == NULL)
1310         return 1;
1311     if (chain == NULL || sk_X509_num(chain) == 0)
1312         return 0;
1313     if (!allow_inheritance && X509v3_addr_inherits(ext))
1314         return 0;
1315     return addr_validate_path_internal(NULL, chain, ext);
1316 }
1317
1318 #endif                          /* OPENSSL_NO_RFC3779 */