ARMv8 assembly pack: add Qualcomm Kryo results.
[openssl.git] / crypto / sha / asm / sha512-armv8.pl
1 #! /usr/bin/env perl
2 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the OpenSSL license (the "License").  You may not use
5 # this file except in compliance with the License.  You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 # ====================================================================
10 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11 # project. The module is, however, dual licensed under OpenSSL and
12 # CRYPTOGAMS licenses depending on where you obtain it. For further
13 # details see http://www.openssl.org/~appro/cryptogams/.
14 #
15 # Permission to use under GPLv2 terms is granted.
16 # ====================================================================
17 #
18 # SHA256/512 for ARMv8.
19 #
20 # Performance in cycles per processed byte and improvement coefficient
21 # over code generated with "default" compiler:
22 #
23 #               SHA256-hw       SHA256(*)       SHA512
24 # Apple A7      1.97            10.5 (+33%)     6.73 (-1%(**))
25 # Cortex-A53    2.38            15.5 (+115%)    10.0 (+150%(***))
26 # Cortex-A57    2.31            11.6 (+86%)     7.51 (+260%(***))
27 # Denver        2.01            10.5 (+26%)     6.70 (+8%)
28 # X-Gene                        20.0 (+100%)    12.8 (+300%(***))
29 # Mongoose      2.36            13.0 (+50%)     8.36 (+33%)
30 # Kryo          1.92            17.4 (+30%)     11.2 (+8%)
31 #
32 # (*)   Software SHA256 results are of lesser relevance, presented
33 #       mostly for informational purposes.
34 # (**)  The result is a trade-off: it's possible to improve it by
35 #       10% (or by 1 cycle per round), but at the cost of 20% loss
36 #       on Cortex-A53 (or by 4 cycles per round).
37 # (***) Super-impressive coefficients over gcc-generated code are
38 #       indication of some compiler "pathology", most notably code
39 #       generated with -mgeneral-regs-only is significantly faster
40 #       and the gap is only 40-90%.
41 #
42 # October 2016.
43 #
44 # Originally it was reckoned that it makes no sense to implement NEON
45 # version of SHA256 for 64-bit processors. This is because performance
46 # improvement on most wide-spread Cortex-A5x processors was observed
47 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
48 # observed that 32-bit NEON SHA256 performs significantly better than
49 # 64-bit scalar version on *some* of the more recent processors. As
50 # result 64-bit NEON version of SHA256 was added to provide best
51 # all-round performance. For example it executes ~30% faster on X-Gene
52 # and Mongoose. [For reference, NEON version of SHA512 is bound to
53 # deliver much less improvement, likely *negative* on Cortex-A5x.
54 # Which is why NEON support is limited to SHA256.]
55
56 $output=pop;
57 $flavour=pop;
58
59 if ($flavour && $flavour ne "void") {
60     $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
61     ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
62     ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
63     die "can't locate arm-xlate.pl";
64
65     open OUT,"| \"$^X\" $xlate $flavour $output";
66     *STDOUT=*OUT;
67 } else {
68     open STDOUT,">$output";
69 }
70
71 if ($output =~ /512/) {
72         $BITS=512;
73         $SZ=8;
74         @Sigma0=(28,34,39);
75         @Sigma1=(14,18,41);
76         @sigma0=(1,  8, 7);
77         @sigma1=(19,61, 6);
78         $rounds=80;
79         $reg_t="x";
80 } else {
81         $BITS=256;
82         $SZ=4;
83         @Sigma0=( 2,13,22);
84         @Sigma1=( 6,11,25);
85         @sigma0=( 7,18, 3);
86         @sigma1=(17,19,10);
87         $rounds=64;
88         $reg_t="w";
89 }
90
91 $func="sha${BITS}_block_data_order";
92
93 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
94
95 @X=map("$reg_t$_",(3..15,0..2));
96 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
97 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
98
99 sub BODY_00_xx {
100 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
101 my $j=($i+1)&15;
102 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
103    $T0=@X[$i+3] if ($i<11);
104
105 $code.=<<___    if ($i<16);
106 #ifndef __AARCH64EB__
107         rev     @X[$i],@X[$i]                   // $i
108 #endif
109 ___
110 $code.=<<___    if ($i<13 && ($i&1));
111         ldp     @X[$i+1],@X[$i+2],[$inp],#2*$SZ
112 ___
113 $code.=<<___    if ($i==13);
114         ldp     @X[14],@X[15],[$inp]
115 ___
116 $code.=<<___    if ($i>=14);
117         ldr     @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
118 ___
119 $code.=<<___    if ($i>0 && $i<16);
120         add     $a,$a,$t1                       // h+=Sigma0(a)
121 ___
122 $code.=<<___    if ($i>=11);
123         str     @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
124 ___
125 # While ARMv8 specifies merged rotate-n-logical operation such as
126 # 'eor x,y,z,ror#n', it was found to negatively affect performance
127 # on Apple A7. The reason seems to be that it requires even 'y' to
128 # be available earlier. This means that such merged instruction is
129 # not necessarily best choice on critical path... On the other hand
130 # Cortex-A5x handles merged instructions much better than disjoint
131 # rotate and logical... See (**) footnote above.
132 $code.=<<___    if ($i<15);
133         ror     $t0,$e,#$Sigma1[0]
134         add     $h,$h,$t2                       // h+=K[i]
135         eor     $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
136         and     $t1,$f,$e
137         bic     $t2,$g,$e
138         add     $h,$h,@X[$i&15]                 // h+=X[i]
139         orr     $t1,$t1,$t2                     // Ch(e,f,g)
140         eor     $t2,$a,$b                       // a^b, b^c in next round
141         eor     $t0,$t0,$T0,ror#$Sigma1[1]      // Sigma1(e)
142         ror     $T0,$a,#$Sigma0[0]
143         add     $h,$h,$t1                       // h+=Ch(e,f,g)
144         eor     $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
145         add     $h,$h,$t0                       // h+=Sigma1(e)
146         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
147         add     $d,$d,$h                        // d+=h
148         eor     $t3,$t3,$b                      // Maj(a,b,c)
149         eor     $t1,$T0,$t1,ror#$Sigma0[1]      // Sigma0(a)
150         add     $h,$h,$t3                       // h+=Maj(a,b,c)
151         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
152         //add   $h,$h,$t1                       // h+=Sigma0(a)
153 ___
154 $code.=<<___    if ($i>=15);
155         ror     $t0,$e,#$Sigma1[0]
156         add     $h,$h,$t2                       // h+=K[i]
157         ror     $T1,@X[($j+1)&15],#$sigma0[0]
158         and     $t1,$f,$e
159         ror     $T2,@X[($j+14)&15],#$sigma1[0]
160         bic     $t2,$g,$e
161         ror     $T0,$a,#$Sigma0[0]
162         add     $h,$h,@X[$i&15]                 // h+=X[i]
163         eor     $t0,$t0,$e,ror#$Sigma1[1]
164         eor     $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
165         orr     $t1,$t1,$t2                     // Ch(e,f,g)
166         eor     $t2,$a,$b                       // a^b, b^c in next round
167         eor     $t0,$t0,$e,ror#$Sigma1[2]       // Sigma1(e)
168         eor     $T0,$T0,$a,ror#$Sigma0[1]
169         add     $h,$h,$t1                       // h+=Ch(e,f,g)
170         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
171         eor     $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
172         eor     $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]    // sigma0(X[i+1])
173         add     $h,$h,$t0                       // h+=Sigma1(e)
174         eor     $t3,$t3,$b                      // Maj(a,b,c)
175         eor     $t1,$T0,$a,ror#$Sigma0[2]       // Sigma0(a)
176         eor     $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]   // sigma1(X[i+14])
177         add     @X[$j],@X[$j],@X[($j+9)&15]
178         add     $d,$d,$h                        // d+=h
179         add     $h,$h,$t3                       // h+=Maj(a,b,c)
180         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
181         add     @X[$j],@X[$j],$T1
182         add     $h,$h,$t1                       // h+=Sigma0(a)
183         add     @X[$j],@X[$j],$T2
184 ___
185         ($t2,$t3)=($t3,$t2);
186 }
187
188 $code.=<<___;
189 #ifndef __KERNEL__
190 # include "arm_arch.h"
191 #endif
192
193 .text
194
195 .extern OPENSSL_armcap_P
196 .globl  $func
197 .type   $func,%function
198 .align  6
199 $func:
200 ___
201 $code.=<<___    if ($SZ==4);
202 #ifndef __KERNEL__
203 # ifdef __ILP32__
204         ldrsw   x16,.LOPENSSL_armcap_P
205 # else
206         ldr     x16,.LOPENSSL_armcap_P
207 # endif
208         adr     x17,.LOPENSSL_armcap_P
209         add     x16,x16,x17
210         ldr     w16,[x16]
211         tst     w16,#ARMV8_SHA256
212         b.ne    .Lv8_entry
213         tst     w16,#ARMV7_NEON
214         b.ne    .Lneon_entry
215 #endif
216 ___
217 $code.=<<___;
218         stp     x29,x30,[sp,#-128]!
219         add     x29,sp,#0
220
221         stp     x19,x20,[sp,#16]
222         stp     x21,x22,[sp,#32]
223         stp     x23,x24,[sp,#48]
224         stp     x25,x26,[sp,#64]
225         stp     x27,x28,[sp,#80]
226         sub     sp,sp,#4*$SZ
227
228         ldp     $A,$B,[$ctx]                            // load context
229         ldp     $C,$D,[$ctx,#2*$SZ]
230         ldp     $E,$F,[$ctx,#4*$SZ]
231         add     $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
232         ldp     $G,$H,[$ctx,#6*$SZ]
233         adr     $Ktbl,.LK$BITS
234         stp     $ctx,$num,[x29,#96]
235
236 .Loop:
237         ldp     @X[0],@X[1],[$inp],#2*$SZ
238         ldr     $t2,[$Ktbl],#$SZ                        // *K++
239         eor     $t3,$B,$C                               // magic seed
240         str     $inp,[x29,#112]
241 ___
242 for ($i=0;$i<16;$i++)   { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
243 $code.=".Loop_16_xx:\n";
244 for (;$i<32;$i++)       { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
245 $code.=<<___;
246         cbnz    $t2,.Loop_16_xx
247
248         ldp     $ctx,$num,[x29,#96]
249         ldr     $inp,[x29,#112]
250         sub     $Ktbl,$Ktbl,#`$SZ*($rounds+1)`          // rewind
251
252         ldp     @X[0],@X[1],[$ctx]
253         ldp     @X[2],@X[3],[$ctx,#2*$SZ]
254         add     $inp,$inp,#14*$SZ                       // advance input pointer
255         ldp     @X[4],@X[5],[$ctx,#4*$SZ]
256         add     $A,$A,@X[0]
257         ldp     @X[6],@X[7],[$ctx,#6*$SZ]
258         add     $B,$B,@X[1]
259         add     $C,$C,@X[2]
260         add     $D,$D,@X[3]
261         stp     $A,$B,[$ctx]
262         add     $E,$E,@X[4]
263         add     $F,$F,@X[5]
264         stp     $C,$D,[$ctx,#2*$SZ]
265         add     $G,$G,@X[6]
266         add     $H,$H,@X[7]
267         cmp     $inp,$num
268         stp     $E,$F,[$ctx,#4*$SZ]
269         stp     $G,$H,[$ctx,#6*$SZ]
270         b.ne    .Loop
271
272         ldp     x19,x20,[x29,#16]
273         add     sp,sp,#4*$SZ
274         ldp     x21,x22,[x29,#32]
275         ldp     x23,x24,[x29,#48]
276         ldp     x25,x26,[x29,#64]
277         ldp     x27,x28,[x29,#80]
278         ldp     x29,x30,[sp],#128
279         ret
280 .size   $func,.-$func
281
282 .align  6
283 .type   .LK$BITS,%object
284 .LK$BITS:
285 ___
286 $code.=<<___ if ($SZ==8);
287         .quad   0x428a2f98d728ae22,0x7137449123ef65cd
288         .quad   0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
289         .quad   0x3956c25bf348b538,0x59f111f1b605d019
290         .quad   0x923f82a4af194f9b,0xab1c5ed5da6d8118
291         .quad   0xd807aa98a3030242,0x12835b0145706fbe
292         .quad   0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
293         .quad   0x72be5d74f27b896f,0x80deb1fe3b1696b1
294         .quad   0x9bdc06a725c71235,0xc19bf174cf692694
295         .quad   0xe49b69c19ef14ad2,0xefbe4786384f25e3
296         .quad   0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
297         .quad   0x2de92c6f592b0275,0x4a7484aa6ea6e483
298         .quad   0x5cb0a9dcbd41fbd4,0x76f988da831153b5
299         .quad   0x983e5152ee66dfab,0xa831c66d2db43210
300         .quad   0xb00327c898fb213f,0xbf597fc7beef0ee4
301         .quad   0xc6e00bf33da88fc2,0xd5a79147930aa725
302         .quad   0x06ca6351e003826f,0x142929670a0e6e70
303         .quad   0x27b70a8546d22ffc,0x2e1b21385c26c926
304         .quad   0x4d2c6dfc5ac42aed,0x53380d139d95b3df
305         .quad   0x650a73548baf63de,0x766a0abb3c77b2a8
306         .quad   0x81c2c92e47edaee6,0x92722c851482353b
307         .quad   0xa2bfe8a14cf10364,0xa81a664bbc423001
308         .quad   0xc24b8b70d0f89791,0xc76c51a30654be30
309         .quad   0xd192e819d6ef5218,0xd69906245565a910
310         .quad   0xf40e35855771202a,0x106aa07032bbd1b8
311         .quad   0x19a4c116b8d2d0c8,0x1e376c085141ab53
312         .quad   0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
313         .quad   0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
314         .quad   0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
315         .quad   0x748f82ee5defb2fc,0x78a5636f43172f60
316         .quad   0x84c87814a1f0ab72,0x8cc702081a6439ec
317         .quad   0x90befffa23631e28,0xa4506cebde82bde9
318         .quad   0xbef9a3f7b2c67915,0xc67178f2e372532b
319         .quad   0xca273eceea26619c,0xd186b8c721c0c207
320         .quad   0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
321         .quad   0x06f067aa72176fba,0x0a637dc5a2c898a6
322         .quad   0x113f9804bef90dae,0x1b710b35131c471b
323         .quad   0x28db77f523047d84,0x32caab7b40c72493
324         .quad   0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
325         .quad   0x4cc5d4becb3e42b6,0x597f299cfc657e2a
326         .quad   0x5fcb6fab3ad6faec,0x6c44198c4a475817
327         .quad   0       // terminator
328 ___
329 $code.=<<___ if ($SZ==4);
330         .long   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
331         .long   0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
332         .long   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
333         .long   0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
334         .long   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
335         .long   0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
336         .long   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
337         .long   0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
338         .long   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
339         .long   0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
340         .long   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
341         .long   0xd192e819,0xd6990624,0xf40e3585,0x106aa070
342         .long   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
343         .long   0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
344         .long   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
345         .long   0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
346         .long   0       //terminator
347 ___
348 $code.=<<___;
349 .size   .LK$BITS,.-.LK$BITS
350 #ifndef __KERNEL__
351 .align  3
352 .LOPENSSL_armcap_P:
353 # ifdef __ILP32__
354         .long   OPENSSL_armcap_P-.
355 # else
356         .quad   OPENSSL_armcap_P-.
357 # endif
358 #endif
359 .asciz  "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
360 .align  2
361 ___
362
363 if ($SZ==4) {
364 my $Ktbl="x3";
365
366 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
367 my @MSG=map("v$_.16b",(4..7));
368 my ($W0,$W1)=("v16.4s","v17.4s");
369 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
370
371 $code.=<<___;
372 #ifndef __KERNEL__
373 .type   sha256_block_armv8,%function
374 .align  6
375 sha256_block_armv8:
376 .Lv8_entry:
377         stp             x29,x30,[sp,#-16]!
378         add             x29,sp,#0
379
380         ld1.32          {$ABCD,$EFGH},[$ctx]
381         adr             $Ktbl,.LK256
382
383 .Loop_hw:
384         ld1             {@MSG[0]-@MSG[3]},[$inp],#64
385         sub             $num,$num,#1
386         ld1.32          {$W0},[$Ktbl],#16
387         rev32           @MSG[0],@MSG[0]
388         rev32           @MSG[1],@MSG[1]
389         rev32           @MSG[2],@MSG[2]
390         rev32           @MSG[3],@MSG[3]
391         orr             $ABCD_SAVE,$ABCD,$ABCD          // offload
392         orr             $EFGH_SAVE,$EFGH,$EFGH
393 ___
394 for($i=0;$i<12;$i++) {
395 $code.=<<___;
396         ld1.32          {$W1},[$Ktbl],#16
397         add.i32         $W0,$W0,@MSG[0]
398         sha256su0       @MSG[0],@MSG[1]
399         orr             $abcd,$ABCD,$ABCD
400         sha256h         $ABCD,$EFGH,$W0
401         sha256h2        $EFGH,$abcd,$W0
402         sha256su1       @MSG[0],@MSG[2],@MSG[3]
403 ___
404         ($W0,$W1)=($W1,$W0);    push(@MSG,shift(@MSG));
405 }
406 $code.=<<___;
407         ld1.32          {$W1},[$Ktbl],#16
408         add.i32         $W0,$W0,@MSG[0]
409         orr             $abcd,$ABCD,$ABCD
410         sha256h         $ABCD,$EFGH,$W0
411         sha256h2        $EFGH,$abcd,$W0
412
413         ld1.32          {$W0},[$Ktbl],#16
414         add.i32         $W1,$W1,@MSG[1]
415         orr             $abcd,$ABCD,$ABCD
416         sha256h         $ABCD,$EFGH,$W1
417         sha256h2        $EFGH,$abcd,$W1
418
419         ld1.32          {$W1},[$Ktbl]
420         add.i32         $W0,$W0,@MSG[2]
421         sub             $Ktbl,$Ktbl,#$rounds*$SZ-16     // rewind
422         orr             $abcd,$ABCD,$ABCD
423         sha256h         $ABCD,$EFGH,$W0
424         sha256h2        $EFGH,$abcd,$W0
425
426         add.i32         $W1,$W1,@MSG[3]
427         orr             $abcd,$ABCD,$ABCD
428         sha256h         $ABCD,$EFGH,$W1
429         sha256h2        $EFGH,$abcd,$W1
430
431         add.i32         $ABCD,$ABCD,$ABCD_SAVE
432         add.i32         $EFGH,$EFGH,$EFGH_SAVE
433
434         cbnz            $num,.Loop_hw
435
436         st1.32          {$ABCD,$EFGH},[$ctx]
437
438         ldr             x29,[sp],#16
439         ret
440 .size   sha256_block_armv8,.-sha256_block_armv8
441 #endif
442 ___
443 }
444
445 if ($SZ==4) {   ######################################### NEON stuff #
446 # You'll surely note a lot of similarities with sha256-armv4 module,
447 # and of course it's not a coincidence. sha256-armv4 was used as
448 # initial template, but was adapted for ARMv8 instruction set and
449 # extensively re-tuned for all-round performance.
450
451 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
452 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
453 my $Ktbl="x16";
454 my $Xfer="x17";
455 my @X = map("q$_",(0..3));
456 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
457 my $j=0;
458
459 sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
460 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
461   my $arg = pop;
462     $arg = "#$arg" if ($arg*1 eq $arg);
463     $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
464 }
465
466 sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
467 sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
468 sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
469
470 sub Xupdate()
471 { use integer;
472   my $body = shift;
473   my @insns = (&$body,&$body,&$body,&$body);
474   my ($a,$b,$c,$d,$e,$f,$g,$h);
475
476         &ext_8          ($T0,@X[0],@X[1],4);    # X[1..4]
477          eval(shift(@insns));
478          eval(shift(@insns));
479          eval(shift(@insns));
480         &ext_8          ($T3,@X[2],@X[3],4);    # X[9..12]
481          eval(shift(@insns));
482          eval(shift(@insns));
483         &mov            (&Dscalar($T7),&Dhi(@X[3]));    # X[14..15]
484          eval(shift(@insns));
485          eval(shift(@insns));
486         &ushr_32        ($T2,$T0,$sigma0[0]);
487          eval(shift(@insns));
488         &ushr_32        ($T1,$T0,$sigma0[2]);
489          eval(shift(@insns));
490         &add_32         (@X[0],@X[0],$T3);      # X[0..3] += X[9..12]
491          eval(shift(@insns));
492         &sli_32         ($T2,$T0,32-$sigma0[0]);
493          eval(shift(@insns));
494          eval(shift(@insns));
495         &ushr_32        ($T3,$T0,$sigma0[1]);
496          eval(shift(@insns));
497          eval(shift(@insns));
498         &eor_8          ($T1,$T1,$T2);
499          eval(shift(@insns));
500          eval(shift(@insns));
501         &sli_32         ($T3,$T0,32-$sigma0[1]);
502          eval(shift(@insns));
503          eval(shift(@insns));
504           &ushr_32      ($T4,$T7,$sigma1[0]);
505          eval(shift(@insns));
506          eval(shift(@insns));
507         &eor_8          ($T1,$T1,$T3);          # sigma0(X[1..4])
508          eval(shift(@insns));
509          eval(shift(@insns));
510           &sli_32       ($T4,$T7,32-$sigma1[0]);
511          eval(shift(@insns));
512          eval(shift(@insns));
513           &ushr_32      ($T5,$T7,$sigma1[2]);
514          eval(shift(@insns));
515          eval(shift(@insns));
516           &ushr_32      ($T3,$T7,$sigma1[1]);
517          eval(shift(@insns));
518          eval(shift(@insns));
519         &add_32         (@X[0],@X[0],$T1);      # X[0..3] += sigma0(X[1..4])
520          eval(shift(@insns));
521          eval(shift(@insns));
522           &sli_u32      ($T3,$T7,32-$sigma1[1]);
523          eval(shift(@insns));
524          eval(shift(@insns));
525           &eor_8        ($T5,$T5,$T4);
526          eval(shift(@insns));
527          eval(shift(@insns));
528          eval(shift(@insns));
529           &eor_8        ($T5,$T5,$T3);          # sigma1(X[14..15])
530          eval(shift(@insns));
531          eval(shift(@insns));
532          eval(shift(@insns));
533         &add_32         (@X[0],@X[0],$T5);      # X[0..1] += sigma1(X[14..15])
534          eval(shift(@insns));
535          eval(shift(@insns));
536          eval(shift(@insns));
537           &ushr_32      ($T6,@X[0],$sigma1[0]);
538          eval(shift(@insns));
539           &ushr_32      ($T7,@X[0],$sigma1[2]);
540          eval(shift(@insns));
541          eval(shift(@insns));
542           &sli_32       ($T6,@X[0],32-$sigma1[0]);
543          eval(shift(@insns));
544           &ushr_32      ($T5,@X[0],$sigma1[1]);
545          eval(shift(@insns));
546          eval(shift(@insns));
547           &eor_8        ($T7,$T7,$T6);
548          eval(shift(@insns));
549          eval(shift(@insns));
550           &sli_32       ($T5,@X[0],32-$sigma1[1]);
551          eval(shift(@insns));
552          eval(shift(@insns));
553         &ld1_32         ("{$T0}","[$Ktbl], #16");
554          eval(shift(@insns));
555           &eor_8        ($T7,$T7,$T5);          # sigma1(X[16..17])
556          eval(shift(@insns));
557          eval(shift(@insns));
558         &eor_8          ($T5,$T5,$T5);
559          eval(shift(@insns));
560          eval(shift(@insns));
561         &mov            (&Dhi($T5), &Dlo($T7));
562          eval(shift(@insns));
563          eval(shift(@insns));
564          eval(shift(@insns));
565         &add_32         (@X[0],@X[0],$T5);      # X[2..3] += sigma1(X[16..17])
566          eval(shift(@insns));
567          eval(shift(@insns));
568          eval(shift(@insns));
569         &add_32         ($T0,$T0,@X[0]);
570          while($#insns>=1) { eval(shift(@insns)); }
571         &st1_32         ("{$T0}","[$Xfer], #16");
572          eval(shift(@insns));
573
574         push(@X,shift(@X));             # "rotate" X[]
575 }
576
577 sub Xpreload()
578 { use integer;
579   my $body = shift;
580   my @insns = (&$body,&$body,&$body,&$body);
581   my ($a,$b,$c,$d,$e,$f,$g,$h);
582
583          eval(shift(@insns));
584          eval(shift(@insns));
585         &ld1_8          ("{@X[0]}","[$inp],#16");
586          eval(shift(@insns));
587          eval(shift(@insns));
588         &ld1_32         ("{$T0}","[$Ktbl],#16");
589          eval(shift(@insns));
590          eval(shift(@insns));
591          eval(shift(@insns));
592          eval(shift(@insns));
593         &rev32          (@X[0],@X[0]);
594          eval(shift(@insns));
595          eval(shift(@insns));
596          eval(shift(@insns));
597          eval(shift(@insns));
598         &add_32         ($T0,$T0,@X[0]);
599          foreach (@insns) { eval; }     # remaining instructions
600         &st1_32         ("{$T0}","[$Xfer], #16");
601
602         push(@X,shift(@X));             # "rotate" X[]
603 }
604
605 sub body_00_15 () {
606         (
607         '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
608         '&add   ($h,$h,$t1)',                   # h+=X[i]+K[i]
609         '&add   ($a,$a,$t4);'.                  # h+=Sigma0(a) from the past
610         '&and   ($t1,$f,$e)',
611         '&bic   ($t4,$g,$e)',
612         '&eor   ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
613         '&add   ($a,$a,$t2)',                   # h+=Maj(a,b,c) from the past
614         '&orr   ($t1,$t1,$t4)',                 # Ch(e,f,g)
615         '&eor   ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',   # Sigma1(e)
616         '&eor   ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
617         '&add   ($h,$h,$t1)',                   # h+=Ch(e,f,g)
618         '&ror   ($t0,$t0,"#$Sigma1[0]")',
619         '&eor   ($t2,$a,$b)',                   # a^b, b^c in next round
620         '&eor   ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',   # Sigma0(a)
621         '&add   ($h,$h,$t0)',                   # h+=Sigma1(e)
622         '&ldr   ($t1,sprintf "[sp,#%d]",4*(($j+1)&15))  if (($j&15)!=15);'.
623         '&ldr   ($t1,"[$Ktbl]")                         if ($j==15);'.
624         '&and   ($t3,$t3,$t2)',                 # (b^c)&=(a^b)
625         '&ror   ($t4,$t4,"#$Sigma0[0]")',
626         '&add   ($d,$d,$h)',                    # d+=h
627         '&eor   ($t3,$t3,$b)',                  # Maj(a,b,c)
628         '$j++;  unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
629         )
630 }
631
632 $code.=<<___;
633 #ifdef  __KERNEL__
634 .globl  sha256_block_neon
635 #endif
636 .type   sha256_block_neon,%function
637 .align  4
638 sha256_block_neon:
639 .Lneon_entry:
640         stp     x29, x30, [sp, #-16]!
641         mov     x29, sp
642         sub     sp,sp,#16*4
643
644         adr     $Ktbl,.LK256
645         add     $num,$inp,$num,lsl#6    // len to point at the end of inp
646
647         ld1.8   {@X[0]},[$inp], #16
648         ld1.8   {@X[1]},[$inp], #16
649         ld1.8   {@X[2]},[$inp], #16
650         ld1.8   {@X[3]},[$inp], #16
651         ld1.32  {$T0},[$Ktbl], #16
652         ld1.32  {$T1},[$Ktbl], #16
653         ld1.32  {$T2},[$Ktbl], #16
654         ld1.32  {$T3},[$Ktbl], #16
655         rev32   @X[0],@X[0]             // yes, even on
656         rev32   @X[1],@X[1]             // big-endian
657         rev32   @X[2],@X[2]
658         rev32   @X[3],@X[3]
659         mov     $Xfer,sp
660         add.32  $T0,$T0,@X[0]
661         add.32  $T1,$T1,@X[1]
662         add.32  $T2,$T2,@X[2]
663         st1.32  {$T0-$T1},[$Xfer], #32
664         add.32  $T3,$T3,@X[3]
665         st1.32  {$T2-$T3},[$Xfer]
666         sub     $Xfer,$Xfer,#32
667
668         ldp     $A,$B,[$ctx]
669         ldp     $C,$D,[$ctx,#8]
670         ldp     $E,$F,[$ctx,#16]
671         ldp     $G,$H,[$ctx,#24]
672         ldr     $t1,[sp,#0]
673         mov     $t2,wzr
674         eor     $t3,$B,$C
675         mov     $t4,wzr
676         b       .L_00_48
677
678 .align  4
679 .L_00_48:
680 ___
681         &Xupdate(\&body_00_15);
682         &Xupdate(\&body_00_15);
683         &Xupdate(\&body_00_15);
684         &Xupdate(\&body_00_15);
685 $code.=<<___;
686         cmp     $t1,#0                          // check for K256 terminator
687         ldr     $t1,[sp,#0]
688         sub     $Xfer,$Xfer,#64
689         bne     .L_00_48
690
691         sub     $Ktbl,$Ktbl,#256                // rewind $Ktbl
692         cmp     $inp,$num
693         mov     $Xfer, #64
694         csel    $Xfer, $Xfer, xzr, eq
695         sub     $inp,$inp,$Xfer                 // avoid SEGV
696         mov     $Xfer,sp
697 ___
698         &Xpreload(\&body_00_15);
699         &Xpreload(\&body_00_15);
700         &Xpreload(\&body_00_15);
701         &Xpreload(\&body_00_15);
702 $code.=<<___;
703         add     $A,$A,$t4                       // h+=Sigma0(a) from the past
704         ldp     $t0,$t1,[$ctx,#0]
705         add     $A,$A,$t2                       // h+=Maj(a,b,c) from the past
706         ldp     $t2,$t3,[$ctx,#8]
707         add     $A,$A,$t0                       // accumulate
708         add     $B,$B,$t1
709         ldp     $t0,$t1,[$ctx,#16]
710         add     $C,$C,$t2
711         add     $D,$D,$t3
712         ldp     $t2,$t3,[$ctx,#24]
713         add     $E,$E,$t0
714         add     $F,$F,$t1
715          ldr    $t1,[sp,#0]
716         stp     $A,$B,[$ctx,#0]
717         add     $G,$G,$t2
718          mov    $t2,wzr
719         stp     $C,$D,[$ctx,#8]
720         add     $H,$H,$t3
721         stp     $E,$F,[$ctx,#16]
722          eor    $t3,$B,$C
723         stp     $G,$H,[$ctx,#24]
724          mov    $t4,wzr
725          mov    $Xfer,sp
726         b.ne    .L_00_48
727
728         ldr     x29,[x29]
729         add     sp,sp,#16*4+16
730         ret
731 .size   sha256_block_neon,.-sha256_block_neon
732 ___
733 }
734
735 $code.=<<___;
736 #ifndef __KERNEL__
737 .comm   OPENSSL_armcap_P,4,4
738 #endif
739 ___
740
741 {   my  %opcode = (
742         "sha256h"       => 0x5e004000,  "sha256h2"      => 0x5e005000,
743         "sha256su0"     => 0x5e282800,  "sha256su1"     => 0x5e006000   );
744
745     sub unsha256 {
746         my ($mnemonic,$arg)=@_;
747
748         $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
749         &&
750         sprintf ".inst\t0x%08x\t//%s %s",
751                         $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
752                         $mnemonic,$arg;
753     }
754 }
755
756 open SELF,$0;
757 while(<SELF>) {
758         next if (/^#!/);
759         last if (!s/^#/\/\// and !/^$/);
760         print;
761 }
762 close SELF;
763
764 foreach(split("\n",$code)) {
765
766         s/\`([^\`]*)\`/eval($1)/ge;
767
768         s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
769
770         s/\bq([0-9]+)\b/v$1.16b/g;              # old->new registers
771
772         s/\.[ui]?8(\s)/$1/;
773         s/\.\w?32\b//           and s/\.16b/\.4s/g;
774         m/(ld|st)1[^\[]+\[0\]/  and s/\.4s/\.s/g;
775
776         print $_,"\n";
777 }
778
779 close STDOUT;