Obtain lock CRYPTO_LOCK_RSA before creating BN_MONT_CTX
[openssl.git] / crypto / rijndael / rd_fst.c
1 /*
2  * rijndael-alg-fst.c   v2.4   April '2000
3  *
4  * Optimised ANSI C code
5  *
6  * authors: v1.0: Antoon Bosselaers
7  *          v2.0: Vincent Rijmen
8  *          v2.3: Paulo Barreto
9  *          v2.4: Vincent Rijmen
10  *
11  * This code is placed in the public domain.
12  */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16
17 #include "rd_fst.h"
18
19 #include "boxes-fst-corrected.dat"
20
21 int rijndaelKeySched(const word8 k[RIJNDAEL_MAXKC][4],
22                      word8 W[RIJNDAEL_MAXROUNDS+1][4][4],int ROUNDS)
23     {
24     /* Calculate the necessary round keys
25      * The number of calculations depends on keyBits and blockBits
26      */ 
27     int j, r, t, rconpointer = 0;
28     word8 tk[RIJNDAEL_MAXKC][4];
29     int KC = ROUNDS - 6;
30
31     for (j = KC-1; j >= 0; j--)
32         *((word32*)tk[j]) = *((word32*)k[j]);
33     r = 0;
34     t = 0;
35     /* copy values into round key array */
36     for (j = 0; (j < KC) && (r < ROUNDS + 1); )
37         {
38         for (; (j < KC) && (t < 4); j++, t++)
39             *((word32*)W[r][t]) = *((word32*)tk[j]);
40         if (t == 4)
41             {
42             r++;
43             t = 0;
44             }
45         }
46                 
47     while (r < ROUNDS + 1)
48         { /* while not enough round key material calculated */
49         /* calculate new values */
50         tk[0][0] ^= S[tk[KC-1][1]];
51         tk[0][1] ^= S[tk[KC-1][2]];
52         tk[0][2] ^= S[tk[KC-1][3]];
53         tk[0][3] ^= S[tk[KC-1][0]];
54         tk[0][0] ^= rcon[rconpointer++];
55
56         if (KC != 8)
57             {
58             for (j = 1; j < KC; j++)
59                 {
60                 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
61                 }
62             }
63         else
64             {
65             for (j = 1; j < KC/2; j++)
66                 {
67                 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
68                 }
69             tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
70             tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
71             tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
72             tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
73             for (j = KC/2 + 1; j < KC; j++)
74                 {
75                 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
76                 }
77             }
78         /* copy values into round key array */
79         for (j = 0; (j < KC) && (r < ROUNDS + 1); )
80             {
81             for (; (j < KC) && (t < 4); j++, t++)
82                 {
83                 *((word32*)W[r][t]) = *((word32*)tk[j]);
84                 }
85             if (t == 4)
86                 {
87                 r++;
88                 t = 0;
89                 }
90             }
91         }       
92     return 0;
93     }
94
95 int rijndaelKeyEncToDec(word8 W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
96     {
97     int r;
98     word8 *w;
99
100     for (r = 1; r < ROUNDS; r++)
101         {
102         w = W[r][0];
103         *((word32*)w) =
104           *((word32*)U1[w[0]])
105           ^ *((word32*)U2[w[1]])
106           ^ *((word32*)U3[w[2]])
107           ^ *((word32*)U4[w[3]]);
108
109         w = W[r][1];
110         *((word32*)w) =
111           *((word32*)U1[w[0]])
112           ^ *((word32*)U2[w[1]])
113           ^ *((word32*)U3[w[2]])
114           ^ *((word32*)U4[w[3]]);
115
116         w = W[r][2];
117         *((word32*)w) =
118           *((word32*)U1[w[0]])
119           ^ *((word32*)U2[w[1]])
120           ^ *((word32*)U3[w[2]])
121           ^ *((word32*)U4[w[3]]);
122
123         w = W[r][3];
124         *((word32*)w) =
125           *((word32*)U1[w[0]])
126           ^ *((word32*)U2[w[1]])
127           ^ *((word32*)U3[w[2]])
128           ^ *((word32*)U4[w[3]]);
129         }
130     return 0;
131     }
132
133 /**
134  * Encrypt a single block. 
135  */
136 int rijndaelEncrypt(const word8 a[16],word8 b[16],
137                     word8 rk[RIJNDAEL_MAXROUNDS+1][4][4],
138                     int ROUNDS)
139     {
140     int r;
141     word8 temp[4][4];
142
143     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[0][0]);
144     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]);
145     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]);
146     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
147     *((word32*)(b    )) = *((word32*)T1[temp[0][0]])
148       ^ *((word32*)T2[temp[1][1]])
149       ^ *((word32*)T3[temp[2][2]]) 
150       ^ *((word32*)T4[temp[3][3]]);
151     *((word32*)(b + 4)) = *((word32*)T1[temp[1][0]])
152       ^ *((word32*)T2[temp[2][1]])
153       ^ *((word32*)T3[temp[3][2]]) 
154       ^ *((word32*)T4[temp[0][3]]);
155     *((word32*)(b + 8)) = *((word32*)T1[temp[2][0]])
156       ^ *((word32*)T2[temp[3][1]])
157       ^ *((word32*)T3[temp[0][2]]) 
158       ^ *((word32*)T4[temp[1][3]]);
159     *((word32*)(b +12)) = *((word32*)T1[temp[3][0]])
160       ^ *((word32*)T2[temp[0][1]])
161       ^ *((word32*)T3[temp[1][2]]) 
162       ^ *((word32*)T4[temp[2][3]]);
163     for (r = 1; r < ROUNDS-1; r++)
164         {
165         *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
166         *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
167         *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
168         *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
169
170         *((word32*)(b    )) = *((word32*)T1[temp[0][0]])
171           ^ *((word32*)T2[temp[1][1]])
172           ^ *((word32*)T3[temp[2][2]]) 
173           ^ *((word32*)T4[temp[3][3]]);
174         *((word32*)(b + 4)) = *((word32*)T1[temp[1][0]])
175           ^ *((word32*)T2[temp[2][1]])
176           ^ *((word32*)T3[temp[3][2]]) 
177           ^ *((word32*)T4[temp[0][3]]);
178         *((word32*)(b + 8)) = *((word32*)T1[temp[2][0]])
179           ^ *((word32*)T2[temp[3][1]])
180           ^ *((word32*)T3[temp[0][2]]) 
181           ^ *((word32*)T4[temp[1][3]]);
182         *((word32*)(b +12)) = *((word32*)T1[temp[3][0]])
183           ^ *((word32*)T2[temp[0][1]])
184           ^ *((word32*)T3[temp[1][2]]) 
185           ^ *((word32*)T4[temp[2][3]]);
186         }
187     /* last round is special */   
188     *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[ROUNDS-1][0]);
189     *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]);
190     *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]);
191     *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
192     b[ 0] = T1[temp[0][0]][1];
193     b[ 1] = T1[temp[1][1]][1];
194     b[ 2] = T1[temp[2][2]][1];
195     b[ 3] = T1[temp[3][3]][1];
196     b[ 4] = T1[temp[1][0]][1];
197     b[ 5] = T1[temp[2][1]][1];
198     b[ 6] = T1[temp[3][2]][1];
199     b[ 7] = T1[temp[0][3]][1];
200     b[ 8] = T1[temp[2][0]][1];
201     b[ 9] = T1[temp[3][1]][1];
202     b[10] = T1[temp[0][2]][1];
203     b[11] = T1[temp[1][3]][1];
204     b[12] = T1[temp[3][0]][1];
205     b[13] = T1[temp[0][1]][1];
206     b[14] = T1[temp[1][2]][1];
207     b[15] = T1[temp[2][3]][1];
208     *((word32*)(b   )) ^= *((word32*)rk[ROUNDS][0]);
209     *((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]);
210     *((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]);
211     *((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
212
213     return 0;
214     }
215
216 #ifdef INTERMEDIATE_VALUE_KAT
217 /**
218  * Encrypt only a certain number of rounds.
219  * Only used in the Intermediate Value Known Answer Test.
220  */
221 int rijndaelEncryptRound(word8 a[4][4],word8 rk[RIJNDAEL_MAXROUNDS+1][4][4],
222                          int ROUNDS, int rounds)
223     {
224     int r;
225     word8 temp[4][4];
226
227     /* make number of rounds sane */
228     if (rounds > ROUNDS)
229         {
230         rounds = ROUNDS;
231         }
232
233     *((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
234     *((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
235     *((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
236     *((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
237
238     for (r = 1; (r <= rounds) && (r < ROUNDS); r++) {
239     *((word32*)temp[0]) = *((word32*)T1[a[0][0]])
240       ^ *((word32*)T2[a[1][1]])
241       ^ *((word32*)T3[a[2][2]]) 
242       ^ *((word32*)T4[a[3][3]]);
243     *((word32*)temp[1]) = *((word32*)T1[a[1][0]])
244       ^ *((word32*)T2[a[2][1]])
245       ^ *((word32*)T3[a[3][2]]) 
246       ^ *((word32*)T4[a[0][3]]);
247     *((word32*)temp[2]) = *((word32*)T1[a[2][0]])
248       ^ *((word32*)T2[a[3][1]])
249       ^ *((word32*)T3[a[0][2]]) 
250       ^ *((word32*)T4[a[1][3]]);
251     *((word32*)temp[3]) = *((word32*)T1[a[3][0]])
252       ^ *((word32*)T2[a[0][1]])
253       ^ *((word32*)T3[a[1][2]]) 
254       ^ *((word32*)T4[a[2][3]]);
255     *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
256     *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
257     *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
258     *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
259     }
260     if (rounds == ROUNDS)
261         {
262         /* last round is special */   
263         temp[0][0] = T1[a[0][0]][1];
264         temp[0][1] = T1[a[1][1]][1];
265         temp[0][2] = T1[a[2][2]][1]; 
266         temp[0][3] = T1[a[3][3]][1];
267         temp[1][0] = T1[a[1][0]][1];
268         temp[1][1] = T1[a[2][1]][1];
269         temp[1][2] = T1[a[3][2]][1]; 
270         temp[1][3] = T1[a[0][3]][1];
271         temp[2][0] = T1[a[2][0]][1];
272         temp[2][1] = T1[a[3][1]][1];
273         temp[2][2] = T1[a[0][2]][1]; 
274         temp[2][3] = T1[a[1][3]][1];
275         temp[3][0] = T1[a[3][0]][1];
276         temp[3][1] = T1[a[0][1]][1];
277         temp[3][2] = T1[a[1][2]][1]; 
278         temp[3][3] = T1[a[2][3]][1];
279         *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
280         *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
281         *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
282         *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
283         }
284
285     return 0;
286     }
287 #endif /* INTERMEDIATE_VALUE_KAT */
288
289 /**
290  * Decrypt a single block.
291  */
292 int rijndaelDecrypt(const word8 a[16],word8 b[16],
293                     word8 rk[RIJNDAEL_MAXROUNDS+1][4][4],int ROUNDS)
294     {
295     int r;
296     word8 temp[4][4];
297         
298     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[ROUNDS][0]);
299     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]);
300     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]);
301     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
302
303     *((word32*)(b   )) = *((word32*)T5[temp[0][0]])
304       ^ *((word32*)T6[temp[3][1]])
305       ^ *((word32*)T7[temp[2][2]]) 
306       ^ *((word32*)T8[temp[1][3]]);
307     *((word32*)(b+ 4)) = *((word32*)T5[temp[1][0]])
308       ^ *((word32*)T6[temp[0][1]])
309       ^ *((word32*)T7[temp[3][2]]) 
310       ^ *((word32*)T8[temp[2][3]]);
311     *((word32*)(b+ 8)) = *((word32*)T5[temp[2][0]])
312       ^ *((word32*)T6[temp[1][1]])
313       ^ *((word32*)T7[temp[0][2]]) 
314       ^ *((word32*)T8[temp[3][3]]);
315     *((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
316       ^ *((word32*)T6[temp[2][1]])
317       ^ *((word32*)T7[temp[1][2]]) 
318       ^ *((word32*)T8[temp[0][3]]);
319     for (r = ROUNDS-1; r > 1; r--)
320         {
321         *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
322         *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
323         *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
324         *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
325         *((word32*)(b   )) = *((word32*)T5[temp[0][0]])
326           ^ *((word32*)T6[temp[3][1]])
327           ^ *((word32*)T7[temp[2][2]]) 
328           ^ *((word32*)T8[temp[1][3]]);
329         *((word32*)(b+ 4)) = *((word32*)T5[temp[1][0]])
330           ^ *((word32*)T6[temp[0][1]])
331           ^ *((word32*)T7[temp[3][2]]) 
332           ^ *((word32*)T8[temp[2][3]]);
333         *((word32*)(b+ 8)) = *((word32*)T5[temp[2][0]])
334           ^ *((word32*)T6[temp[1][1]])
335           ^ *((word32*)T7[temp[0][2]]) 
336           ^ *((word32*)T8[temp[3][3]]);
337         *((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
338           ^ *((word32*)T6[temp[2][1]])
339           ^ *((word32*)T7[temp[1][2]]) 
340           ^ *((word32*)T8[temp[0][3]]);
341         }
342     /* last round is special */   
343     *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[1][0]);
344     *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]);
345     *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]);
346     *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
347     b[ 0] = S5[temp[0][0]];
348     b[ 1] = S5[temp[3][1]];
349     b[ 2] = S5[temp[2][2]];
350     b[ 3] = S5[temp[1][3]];
351     b[ 4] = S5[temp[1][0]];
352     b[ 5] = S5[temp[0][1]];
353     b[ 6] = S5[temp[3][2]];
354     b[ 7] = S5[temp[2][3]];
355     b[ 8] = S5[temp[2][0]];
356     b[ 9] = S5[temp[1][1]];
357     b[10] = S5[temp[0][2]];
358     b[11] = S5[temp[3][3]];
359     b[12] = S5[temp[3][0]];
360     b[13] = S5[temp[2][1]];
361     b[14] = S5[temp[1][2]];
362     b[15] = S5[temp[0][3]];
363     *((word32*)(b   )) ^= *((word32*)rk[0][0]);
364     *((word32*)(b+ 4)) ^= *((word32*)rk[0][1]);
365     *((word32*)(b+ 8)) ^= *((word32*)rk[0][2]);
366     *((word32*)(b+12)) ^= *((word32*)rk[0][3]);
367
368     return 0;
369     }
370
371 #ifdef INTERMEDIATE_VALUE_KAT
372 /**
373  * Decrypt only a certain number of rounds.
374  * Only used in the Intermediate Value Known Answer Test.
375  * Operations rearranged such that the intermediate values
376  * of decryption correspond with the intermediate values
377  * of encryption.
378  */
379 int rijndaelDecryptRound(word8 a[4][4], word8 rk[RIJNDAEL_MAXROUNDS+1][4][4],
380                          int ROUNDS, int rounds)
381     {
382     int r, i;
383     word8 temp[4], shift;
384
385     /* make number of rounds sane */
386     if (rounds > ROUNDS)
387         {
388         rounds = ROUNDS;
389         }
390     /* first round is special: */
391     *(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0];
392     *(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1];
393     *(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2];
394     *(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3];
395     for (i = 0; i < 4; i++)
396         {
397         a[i][0] = Si[a[i][0]];
398         a[i][1] = Si[a[i][1]];
399         a[i][2] = Si[a[i][2]];
400         a[i][3] = Si[a[i][3]];
401         }
402     for (i = 1; i < 4; i++)
403         {
404         shift = (4 - i) & 3;
405         temp[0] = a[(0 + shift) & 3][i];
406         temp[1] = a[(1 + shift) & 3][i];
407         temp[2] = a[(2 + shift) & 3][i];
408         temp[3] = a[(3 + shift) & 3][i];
409         a[0][i] = temp[0];
410         a[1][i] = temp[1];
411         a[2][i] = temp[2];
412         a[3][i] = temp[3];
413         }
414     /* ROUNDS-1 ordinary rounds */
415     for (r = ROUNDS-1; r > rounds; r--)
416         {
417         *(word32 *)a[0] ^= *(word32 *)rk[r][0];
418         *(word32 *)a[1] ^= *(word32 *)rk[r][1];
419         *(word32 *)a[2] ^= *(word32 *)rk[r][2];
420         *(word32 *)a[3] ^= *(word32 *)rk[r][3];
421
422         *((word32*)a[0]) =
423           *((word32*)U1[a[0][0]])
424           ^ *((word32*)U2[a[0][1]])
425           ^ *((word32*)U3[a[0][2]])
426           ^ *((word32*)U4[a[0][3]]);
427         
428         *((word32*)a[1]) =
429           *((word32*)U1[a[1][0]])
430           ^ *((word32*)U2[a[1][1]])
431           ^ *((word32*)U3[a[1][2]])
432           ^ *((word32*)U4[a[1][3]]);
433
434         *((word32*)a[2]) =
435           *((word32*)U1[a[2][0]])
436           ^ *((word32*)U2[a[2][1]])
437           ^ *((word32*)U3[a[2][2]])
438           ^ *((word32*)U4[a[2][3]]);
439
440         *((word32*)a[3]) =
441           *((word32*)U1[a[3][0]])
442           ^ *((word32*)U2[a[3][1]])
443           ^ *((word32*)U3[a[3][2]])
444           ^ *((word32*)U4[a[3][3]]);
445         for (i = 0; i < 4; i++)
446             {
447             a[i][0] = Si[a[i][0]];
448             a[i][1] = Si[a[i][1]];
449             a[i][2] = Si[a[i][2]];
450             a[i][3] = Si[a[i][3]];
451             }
452         for (i = 1; i < 4; i++)
453             {
454             shift = (4 - i) & 3;
455             temp[0] = a[(0 + shift) & 3][i];
456             temp[1] = a[(1 + shift) & 3][i];
457             temp[2] = a[(2 + shift) & 3][i];
458             temp[3] = a[(3 + shift) & 3][i];
459             a[0][i] = temp[0];
460             a[1][i] = temp[1];
461             a[2][i] = temp[2];
462             a[3][i] = temp[3];
463             }
464         }
465     if (rounds == 0)
466         {
467         /* End with the extra key addition */   
468         *(word32 *)a[0] ^= *(word32 *)rk[0][0];
469         *(word32 *)a[1] ^= *(word32 *)rk[0][1];
470         *(word32 *)a[2] ^= *(word32 *)rk[0][2];
471         *(word32 *)a[3] ^= *(word32 *)rk[0][3];
472         } 
473     return 0;
474     }
475
476 #endif /* INTERMEDIATE_VALUE_KAT */