12d63ceea2b20e5e78f815092d08faeb30821127
[openssl.git] / crypto / modes / asm / ghash-x86.pl
1 #! /usr/bin/env perl
2 # Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License").  You may not use
5 # this file except in compliance with the License.  You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 #
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16 #
17 # March, May, June 2010
18 #
19 # The module implements "4-bit" GCM GHASH function and underlying
20 # single multiplication operation in GF(2^128). "4-bit" means that it
21 # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
22 # code paths: vanilla x86 and vanilla SSE. Former will be executed on
23 # 486 and Pentium, latter on all others. SSE GHASH features so called
24 # "528B" variant of "4-bit" method utilizing additional 256+16 bytes
25 # of per-key storage [+512 bytes shared table]. Performance results
26 # are for streamed GHASH subroutine and are expressed in cycles per
27 # processed byte, less is better:
28 #
29 #               gcc 2.95.3(*)   SSE assembler   x86 assembler
30 #
31 # Pentium       105/111(**)     -               50
32 # PIII          68 /75          12.2            24
33 # P4            125/125         17.8            84(***)
34 # Opteron       66 /70          10.1            30
35 # Core2         54 /67          8.4             18
36 # Atom          105/105         16.8            53
37 # VIA Nano      69 /71          13.0            27
38 #
39 # (*)   gcc 3.4.x was observed to generate few percent slower code,
40 #       which is one of reasons why 2.95.3 results were chosen,
41 #       another reason is lack of 3.4.x results for older CPUs;
42 #       comparison with SSE results is not completely fair, because C
43 #       results are for vanilla "256B" implementation, while
44 #       assembler results are for "528B";-)
45 # (**)  second number is result for code compiled with -fPIC flag,
46 #       which is actually more relevant, because assembler code is
47 #       position-independent;
48 # (***) see comment in non-MMX routine for further details;
49 #
50 # To summarize, it's >2-5 times faster than gcc-generated code. To
51 # anchor it to something else SHA1 assembler processes one byte in
52 # ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
53 # in particular, see comment at the end of the file...
54
55 # May 2010
56 #
57 # Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
58 # The question is how close is it to theoretical limit? The pclmulqdq
59 # instruction latency appears to be 14 cycles and there can't be more
60 # than 2 of them executing at any given time. This means that single
61 # Karatsuba multiplication would take 28 cycles *plus* few cycles for
62 # pre- and post-processing. Then multiplication has to be followed by
63 # modulo-reduction. Given that aggregated reduction method [see
64 # "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
65 # white paper by Intel] allows you to perform reduction only once in
66 # a while we can assume that asymptotic performance can be estimated
67 # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
68 # and Naggr is the aggregation factor.
69 #
70 # Before we proceed to this implementation let's have closer look at
71 # the best-performing code suggested by Intel in their white paper.
72 # By tracing inter-register dependencies Tmod is estimated as ~19
73 # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
74 # processed byte. As implied, this is quite optimistic estimate,
75 # because it does not account for Karatsuba pre- and post-processing,
76 # which for a single multiplication is ~5 cycles. Unfortunately Intel
77 # does not provide performance data for GHASH alone. But benchmarking
78 # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
79 # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
80 # the result accounts even for pre-computing of degrees of the hash
81 # key H, but its portion is negligible at 16KB buffer size.
82 #
83 # Moving on to the implementation in question. Tmod is estimated as
84 # ~13 cycles and Naggr is 2, giving asymptotic performance of ...
85 # 2.16. How is it possible that measured performance is better than
86 # optimistic theoretical estimate? There is one thing Intel failed
87 # to recognize. By serializing GHASH with CTR in same subroutine
88 # former's performance is really limited to above (Tmul + Tmod/Naggr)
89 # equation. But if GHASH procedure is detached, the modulo-reduction
90 # can be interleaved with Naggr-1 multiplications at instruction level
91 # and under ideal conditions even disappear from the equation. So that
92 # optimistic theoretical estimate for this implementation is ...
93 # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
94 # at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
95 # where Tproc is time required for Karatsuba pre- and post-processing,
96 # is more realistic estimate. In this case it gives ... 1.91 cycles.
97 # Or in other words, depending on how well we can interleave reduction
98 # and one of the two multiplications the performance should be between
99 # 1.91 and 2.16. As already mentioned, this implementation processes
100 # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
101 # - in 2.02. x86_64 performance is better, because larger register
102 # bank allows to interleave reduction and multiplication better.
103 #
104 # Does it make sense to increase Naggr? To start with it's virtually
105 # impossible in 32-bit mode, because of limited register bank
106 # capacity. Otherwise improvement has to be weighed against slower
107 # setup, as well as code size and complexity increase. As even
108 # optimistic estimate doesn't promise 30% performance improvement,
109 # there are currently no plans to increase Naggr.
110 #
111 # Special thanks to David Woodhouse for providing access to a
112 # Westmere-based system on behalf of Intel Open Source Technology Centre.
113
114 # January 2010
115 #
116 # Tweaked to optimize transitions between integer and FP operations
117 # on same XMM register, PCLMULQDQ subroutine was measured to process
118 # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
119 # The minor regression on Westmere is outweighed by ~15% improvement
120 # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
121 # similar manner resulted in almost 20% degradation on Sandy Bridge,
122 # where original 64-bit code processes one byte in 1.95 cycles.
123
124 #####################################################################
125 # For reference, AMD Bulldozer processes one byte in 1.98 cycles in
126 # 32-bit mode and 1.89 in 64-bit.
127
128 # February 2013
129 #
130 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
131 # reduction_alg9. Resulting performance is 1.96 cycles per byte on
132 # Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
133
134 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
135 push(@INC,"${dir}","${dir}../../perlasm");
136 require "x86asm.pl";
137
138 $output=pop;
139 open STDOUT,">$output";
140
141 &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
142
143 $sse2=0;
144 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
145
146 ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
147 $inp  = "edi";
148 $Htbl = "esi";
149 \f
150 $unroll = 0;    # Affects x86 loop. Folded loop performs ~7% worse
151                 # than unrolled, which has to be weighted against
152                 # 2.5x x86-specific code size reduction.
153
154 sub x86_loop {
155     my $off = shift;
156     my $rem = "eax";
157
158         &mov    ($Zhh,&DWP(4,$Htbl,$Zll));
159         &mov    ($Zhl,&DWP(0,$Htbl,$Zll));
160         &mov    ($Zlh,&DWP(12,$Htbl,$Zll));
161         &mov    ($Zll,&DWP(8,$Htbl,$Zll));
162         &xor    ($rem,$rem);    # avoid partial register stalls on PIII
163
164         # shrd practically kills P4, 2.5x deterioration, but P4 has
165         # MMX code-path to execute. shrd runs tad faster [than twice
166         # the shifts, move's and or's] on pre-MMX Pentium (as well as
167         # PIII and Core2), *but* minimizes code size, spares register
168         # and thus allows to fold the loop...
169         if (!$unroll) {
170         my $cnt = $inp;
171         &mov    ($cnt,15);
172         &jmp    (&label("x86_loop"));
173         &set_label("x86_loop",16);
174             for($i=1;$i<=2;$i++) {
175                 &mov    (&LB($rem),&LB($Zll));
176                 &shrd   ($Zll,$Zlh,4);
177                 &and    (&LB($rem),0xf);
178                 &shrd   ($Zlh,$Zhl,4);
179                 &shrd   ($Zhl,$Zhh,4);
180                 &shr    ($Zhh,4);
181                 &xor    ($Zhh,&DWP($off+16,"esp",$rem,4));
182
183                 &mov    (&LB($rem),&BP($off,"esp",$cnt));
184                 if ($i&1) {
185                         &and    (&LB($rem),0xf0);
186                 } else {
187                         &shl    (&LB($rem),4);
188                 }
189
190                 &xor    ($Zll,&DWP(8,$Htbl,$rem));
191                 &xor    ($Zlh,&DWP(12,$Htbl,$rem));
192                 &xor    ($Zhl,&DWP(0,$Htbl,$rem));
193                 &xor    ($Zhh,&DWP(4,$Htbl,$rem));
194
195                 if ($i&1) {
196                         &dec    ($cnt);
197                         &js     (&label("x86_break"));
198                 } else {
199                         &jmp    (&label("x86_loop"));
200                 }
201             }
202         &set_label("x86_break",16);
203         } else {
204             for($i=1;$i<32;$i++) {
205                 &comment($i);
206                 &mov    (&LB($rem),&LB($Zll));
207                 &shrd   ($Zll,$Zlh,4);
208                 &and    (&LB($rem),0xf);
209                 &shrd   ($Zlh,$Zhl,4);
210                 &shrd   ($Zhl,$Zhh,4);
211                 &shr    ($Zhh,4);
212                 &xor    ($Zhh,&DWP($off+16,"esp",$rem,4));
213
214                 if ($i&1) {
215                         &mov    (&LB($rem),&BP($off+15-($i>>1),"esp"));
216                         &and    (&LB($rem),0xf0);
217                 } else {
218                         &mov    (&LB($rem),&BP($off+15-($i>>1),"esp"));
219                         &shl    (&LB($rem),4);
220                 }
221
222                 &xor    ($Zll,&DWP(8,$Htbl,$rem));
223                 &xor    ($Zlh,&DWP(12,$Htbl,$rem));
224                 &xor    ($Zhl,&DWP(0,$Htbl,$rem));
225                 &xor    ($Zhh,&DWP(4,$Htbl,$rem));
226             }
227         }
228         &bswap  ($Zll);
229         &bswap  ($Zlh);
230         &bswap  ($Zhl);
231         if (!$x86only) {
232                 &bswap  ($Zhh);
233         } else {
234                 &mov    ("eax",$Zhh);
235                 &bswap  ("eax");
236                 &mov    ($Zhh,"eax");
237         }
238 }
239
240 if ($unroll) {
241     &function_begin_B("_x86_gmult_4bit_inner");
242         &x86_loop(4);
243         &ret    ();
244     &function_end_B("_x86_gmult_4bit_inner");
245 }
246
247 sub deposit_rem_4bit {
248     my $bias = shift;
249
250         &mov    (&DWP($bias+0, "esp"),0x0000<<16);
251         &mov    (&DWP($bias+4, "esp"),0x1C20<<16);
252         &mov    (&DWP($bias+8, "esp"),0x3840<<16);
253         &mov    (&DWP($bias+12,"esp"),0x2460<<16);
254         &mov    (&DWP($bias+16,"esp"),0x7080<<16);
255         &mov    (&DWP($bias+20,"esp"),0x6CA0<<16);
256         &mov    (&DWP($bias+24,"esp"),0x48C0<<16);
257         &mov    (&DWP($bias+28,"esp"),0x54E0<<16);
258         &mov    (&DWP($bias+32,"esp"),0xE100<<16);
259         &mov    (&DWP($bias+36,"esp"),0xFD20<<16);
260         &mov    (&DWP($bias+40,"esp"),0xD940<<16);
261         &mov    (&DWP($bias+44,"esp"),0xC560<<16);
262         &mov    (&DWP($bias+48,"esp"),0x9180<<16);
263         &mov    (&DWP($bias+52,"esp"),0x8DA0<<16);
264         &mov    (&DWP($bias+56,"esp"),0xA9C0<<16);
265         &mov    (&DWP($bias+60,"esp"),0xB5E0<<16);
266 }
267 \f
268 $suffix = $x86only ? "" : "_x86";
269
270 &function_begin("gcm_gmult_4bit".$suffix);
271         &stack_push(16+4+1);                    # +1 for stack alignment
272         &mov    ($inp,&wparam(0));              # load Xi
273         &mov    ($Htbl,&wparam(1));             # load Htable
274
275         &mov    ($Zhh,&DWP(0,$inp));            # load Xi[16]
276         &mov    ($Zhl,&DWP(4,$inp));
277         &mov    ($Zlh,&DWP(8,$inp));
278         &mov    ($Zll,&DWP(12,$inp));
279
280         &deposit_rem_4bit(16);
281
282         &mov    (&DWP(0,"esp"),$Zhh);           # copy Xi[16] on stack
283         &mov    (&DWP(4,"esp"),$Zhl);
284         &mov    (&DWP(8,"esp"),$Zlh);
285         &mov    (&DWP(12,"esp"),$Zll);
286         &shr    ($Zll,20);
287         &and    ($Zll,0xf0);
288
289         if ($unroll) {
290                 &call   ("_x86_gmult_4bit_inner");
291         } else {
292                 &x86_loop(0);
293                 &mov    ($inp,&wparam(0));
294         }
295
296         &mov    (&DWP(12,$inp),$Zll);
297         &mov    (&DWP(8,$inp),$Zlh);
298         &mov    (&DWP(4,$inp),$Zhl);
299         &mov    (&DWP(0,$inp),$Zhh);
300         &stack_pop(16+4+1);
301 &function_end("gcm_gmult_4bit".$suffix);
302
303 &function_begin("gcm_ghash_4bit".$suffix);
304         &stack_push(16+4+1);                    # +1 for 64-bit alignment
305         &mov    ($Zll,&wparam(0));              # load Xi
306         &mov    ($Htbl,&wparam(1));             # load Htable
307         &mov    ($inp,&wparam(2));              # load in
308         &mov    ("ecx",&wparam(3));             # load len
309         &add    ("ecx",$inp);
310         &mov    (&wparam(3),"ecx");
311
312         &mov    ($Zhh,&DWP(0,$Zll));            # load Xi[16]
313         &mov    ($Zhl,&DWP(4,$Zll));
314         &mov    ($Zlh,&DWP(8,$Zll));
315         &mov    ($Zll,&DWP(12,$Zll));
316
317         &deposit_rem_4bit(16);
318
319     &set_label("x86_outer_loop",16);
320         &xor    ($Zll,&DWP(12,$inp));           # xor with input
321         &xor    ($Zlh,&DWP(8,$inp));
322         &xor    ($Zhl,&DWP(4,$inp));
323         &xor    ($Zhh,&DWP(0,$inp));
324         &mov    (&DWP(12,"esp"),$Zll);          # dump it on stack
325         &mov    (&DWP(8,"esp"),$Zlh);
326         &mov    (&DWP(4,"esp"),$Zhl);
327         &mov    (&DWP(0,"esp"),$Zhh);
328
329         &shr    ($Zll,20);
330         &and    ($Zll,0xf0);
331
332         if ($unroll) {
333                 &call   ("_x86_gmult_4bit_inner");
334         } else {
335                 &x86_loop(0);
336                 &mov    ($inp,&wparam(2));
337         }
338         &lea    ($inp,&DWP(16,$inp));
339         &cmp    ($inp,&wparam(3));
340         &mov    (&wparam(2),$inp)       if (!$unroll);
341         &jb     (&label("x86_outer_loop"));
342
343         &mov    ($inp,&wparam(0));      # load Xi
344         &mov    (&DWP(12,$inp),$Zll);
345         &mov    (&DWP(8,$inp),$Zlh);
346         &mov    (&DWP(4,$inp),$Zhl);
347         &mov    (&DWP(0,$inp),$Zhh);
348         &stack_pop(16+4+1);
349 &function_end("gcm_ghash_4bit".$suffix);
350 \f
351 if (!$x86only) {{{
352
353 &static_label("rem_4bit");
354
355 if (!$sse2) {{  # pure-MMX "May" version...
356
357 $S=12;          # shift factor for rem_4bit
358
359 &function_begin_B("_mmx_gmult_4bit_inner");
360 # MMX version performs 3.5 times better on P4 (see comment in non-MMX
361 # routine for further details), 100% better on Opteron, ~70% better
362 # on Core2 and PIII... In other words effort is considered to be well
363 # spent... Since initial release the loop was unrolled in order to
364 # "liberate" register previously used as loop counter. Instead it's
365 # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
366 # The path involves move of Z.lo from MMX to integer register,
367 # effective address calculation and finally merge of value to Z.hi.
368 # Reference to rem_4bit is scheduled so late that I had to >>4
369 # rem_4bit elements. This resulted in 20-45% procent improvement
370 # on contemporary Âµ-archs.
371 {
372     my $cnt;
373     my $rem_4bit = "eax";
374     my @rem = ($Zhh,$Zll);
375     my $nhi = $Zhl;
376     my $nlo = $Zlh;
377
378     my ($Zlo,$Zhi) = ("mm0","mm1");
379     my $tmp = "mm2";
380
381         &xor    ($nlo,$nlo);    # avoid partial register stalls on PIII
382         &mov    ($nhi,$Zll);
383         &mov    (&LB($nlo),&LB($nhi));
384         &shl    (&LB($nlo),4);
385         &and    ($nhi,0xf0);
386         &movq   ($Zlo,&QWP(8,$Htbl,$nlo));
387         &movq   ($Zhi,&QWP(0,$Htbl,$nlo));
388         &movd   ($rem[0],$Zlo);
389
390         for ($cnt=28;$cnt>=-2;$cnt--) {
391             my $odd = $cnt&1;
392             my $nix = $odd ? $nlo : $nhi;
393
394                 &shl    (&LB($nlo),4)                   if ($odd);
395                 &psrlq  ($Zlo,4);
396                 &movq   ($tmp,$Zhi);
397                 &psrlq  ($Zhi,4);
398                 &pxor   ($Zlo,&QWP(8,$Htbl,$nix));
399                 &mov    (&LB($nlo),&BP($cnt/2,$inp))    if (!$odd && $cnt>=0);
400                 &psllq  ($tmp,60);
401                 &and    ($nhi,0xf0)                     if ($odd);
402                 &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
403                 &and    ($rem[0],0xf);
404                 &pxor   ($Zhi,&QWP(0,$Htbl,$nix));
405                 &mov    ($nhi,$nlo)                     if (!$odd && $cnt>=0);
406                 &movd   ($rem[1],$Zlo);
407                 &pxor   ($Zlo,$tmp);
408
409                 push    (@rem,shift(@rem));             # "rotate" registers
410         }
411
412         &mov    ($inp,&DWP(4,$rem_4bit,$rem[1],8));     # last rem_4bit[rem]
413
414         &psrlq  ($Zlo,32);      # lower part of Zlo is already there
415         &movd   ($Zhl,$Zhi);
416         &psrlq  ($Zhi,32);
417         &movd   ($Zlh,$Zlo);
418         &movd   ($Zhh,$Zhi);
419         &shl    ($inp,4);       # compensate for rem_4bit[i] being >>4
420
421         &bswap  ($Zll);
422         &bswap  ($Zhl);
423         &bswap  ($Zlh);
424         &xor    ($Zhh,$inp);
425         &bswap  ($Zhh);
426
427         &ret    ();
428 }
429 &function_end_B("_mmx_gmult_4bit_inner");
430
431 &function_begin("gcm_gmult_4bit_mmx");
432         &mov    ($inp,&wparam(0));      # load Xi
433         &mov    ($Htbl,&wparam(1));     # load Htable
434
435         &call   (&label("pic_point"));
436         &set_label("pic_point");
437         &blindpop("eax");
438         &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
439
440         &movz   ($Zll,&BP(15,$inp));
441
442         &call   ("_mmx_gmult_4bit_inner");
443
444         &mov    ($inp,&wparam(0));      # load Xi
445         &emms   ();
446         &mov    (&DWP(12,$inp),$Zll);
447         &mov    (&DWP(4,$inp),$Zhl);
448         &mov    (&DWP(8,$inp),$Zlh);
449         &mov    (&DWP(0,$inp),$Zhh);
450 &function_end("gcm_gmult_4bit_mmx");
451 \f
452 # Streamed version performs 20% better on P4, 7% on Opteron,
453 # 10% on Core2 and PIII...
454 &function_begin("gcm_ghash_4bit_mmx");
455         &mov    ($Zhh,&wparam(0));      # load Xi
456         &mov    ($Htbl,&wparam(1));     # load Htable
457         &mov    ($inp,&wparam(2));      # load in
458         &mov    ($Zlh,&wparam(3));      # load len
459
460         &call   (&label("pic_point"));
461         &set_label("pic_point");
462         &blindpop("eax");
463         &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
464
465         &add    ($Zlh,$inp);
466         &mov    (&wparam(3),$Zlh);      # len to point at the end of input
467         &stack_push(4+1);               # +1 for stack alignment
468
469         &mov    ($Zll,&DWP(12,$Zhh));   # load Xi[16]
470         &mov    ($Zhl,&DWP(4,$Zhh));
471         &mov    ($Zlh,&DWP(8,$Zhh));
472         &mov    ($Zhh,&DWP(0,$Zhh));
473         &jmp    (&label("mmx_outer_loop"));
474
475     &set_label("mmx_outer_loop",16);
476         &xor    ($Zll,&DWP(12,$inp));
477         &xor    ($Zhl,&DWP(4,$inp));
478         &xor    ($Zlh,&DWP(8,$inp));
479         &xor    ($Zhh,&DWP(0,$inp));
480         &mov    (&wparam(2),$inp);
481         &mov    (&DWP(12,"esp"),$Zll);
482         &mov    (&DWP(4,"esp"),$Zhl);
483         &mov    (&DWP(8,"esp"),$Zlh);
484         &mov    (&DWP(0,"esp"),$Zhh);
485
486         &mov    ($inp,"esp");
487         &shr    ($Zll,24);
488
489         &call   ("_mmx_gmult_4bit_inner");
490
491         &mov    ($inp,&wparam(2));
492         &lea    ($inp,&DWP(16,$inp));
493         &cmp    ($inp,&wparam(3));
494         &jb     (&label("mmx_outer_loop"));
495
496         &mov    ($inp,&wparam(0));      # load Xi
497         &emms   ();
498         &mov    (&DWP(12,$inp),$Zll);
499         &mov    (&DWP(4,$inp),$Zhl);
500         &mov    (&DWP(8,$inp),$Zlh);
501         &mov    (&DWP(0,$inp),$Zhh);
502
503         &stack_pop(4+1);
504 &function_end("gcm_ghash_4bit_mmx");
505 \f
506 }} else {{      # "June" MMX version...
507                 # ... has slower "April" gcm_gmult_4bit_mmx with folded
508                 # loop. This is done to conserve code size...
509 $S=16;          # shift factor for rem_4bit
510
511 sub mmx_loop() {
512 # MMX version performs 2.8 times better on P4 (see comment in non-MMX
513 # routine for further details), 40% better on Opteron and Core2, 50%
514 # better on PIII... In other words effort is considered to be well
515 # spent...
516     my $inp = shift;
517     my $rem_4bit = shift;
518     my $cnt = $Zhh;
519     my $nhi = $Zhl;
520     my $nlo = $Zlh;
521     my $rem = $Zll;
522
523     my ($Zlo,$Zhi) = ("mm0","mm1");
524     my $tmp = "mm2";
525
526         &xor    ($nlo,$nlo);    # avoid partial register stalls on PIII
527         &mov    ($nhi,$Zll);
528         &mov    (&LB($nlo),&LB($nhi));
529         &mov    ($cnt,14);
530         &shl    (&LB($nlo),4);
531         &and    ($nhi,0xf0);
532         &movq   ($Zlo,&QWP(8,$Htbl,$nlo));
533         &movq   ($Zhi,&QWP(0,$Htbl,$nlo));
534         &movd   ($rem,$Zlo);
535         &jmp    (&label("mmx_loop"));
536
537     &set_label("mmx_loop",16);
538         &psrlq  ($Zlo,4);
539         &and    ($rem,0xf);
540         &movq   ($tmp,$Zhi);
541         &psrlq  ($Zhi,4);
542         &pxor   ($Zlo,&QWP(8,$Htbl,$nhi));
543         &mov    (&LB($nlo),&BP(0,$inp,$cnt));
544         &psllq  ($tmp,60);
545         &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
546         &dec    ($cnt);
547         &movd   ($rem,$Zlo);
548         &pxor   ($Zhi,&QWP(0,$Htbl,$nhi));
549         &mov    ($nhi,$nlo);
550         &pxor   ($Zlo,$tmp);
551         &js     (&label("mmx_break"));
552
553         &shl    (&LB($nlo),4);
554         &and    ($rem,0xf);
555         &psrlq  ($Zlo,4);
556         &and    ($nhi,0xf0);
557         &movq   ($tmp,$Zhi);
558         &psrlq  ($Zhi,4);
559         &pxor   ($Zlo,&QWP(8,$Htbl,$nlo));
560         &psllq  ($tmp,60);
561         &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
562         &movd   ($rem,$Zlo);
563         &pxor   ($Zhi,&QWP(0,$Htbl,$nlo));
564         &pxor   ($Zlo,$tmp);
565         &jmp    (&label("mmx_loop"));
566
567     &set_label("mmx_break",16);
568         &shl    (&LB($nlo),4);
569         &and    ($rem,0xf);
570         &psrlq  ($Zlo,4);
571         &and    ($nhi,0xf0);
572         &movq   ($tmp,$Zhi);
573         &psrlq  ($Zhi,4);
574         &pxor   ($Zlo,&QWP(8,$Htbl,$nlo));
575         &psllq  ($tmp,60);
576         &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
577         &movd   ($rem,$Zlo);
578         &pxor   ($Zhi,&QWP(0,$Htbl,$nlo));
579         &pxor   ($Zlo,$tmp);
580
581         &psrlq  ($Zlo,4);
582         &and    ($rem,0xf);
583         &movq   ($tmp,$Zhi);
584         &psrlq  ($Zhi,4);
585         &pxor   ($Zlo,&QWP(8,$Htbl,$nhi));
586         &psllq  ($tmp,60);
587         &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
588         &movd   ($rem,$Zlo);
589         &pxor   ($Zhi,&QWP(0,$Htbl,$nhi));
590         &pxor   ($Zlo,$tmp);
591
592         &psrlq  ($Zlo,32);      # lower part of Zlo is already there
593         &movd   ($Zhl,$Zhi);
594         &psrlq  ($Zhi,32);
595         &movd   ($Zlh,$Zlo);
596         &movd   ($Zhh,$Zhi);
597
598         &bswap  ($Zll);
599         &bswap  ($Zhl);
600         &bswap  ($Zlh);
601         &bswap  ($Zhh);
602 }
603
604 &function_begin("gcm_gmult_4bit_mmx");
605         &mov    ($inp,&wparam(0));      # load Xi
606         &mov    ($Htbl,&wparam(1));     # load Htable
607
608         &call   (&label("pic_point"));
609         &set_label("pic_point");
610         &blindpop("eax");
611         &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
612
613         &movz   ($Zll,&BP(15,$inp));
614
615         &mmx_loop($inp,"eax");
616
617         &emms   ();
618         &mov    (&DWP(12,$inp),$Zll);
619         &mov    (&DWP(4,$inp),$Zhl);
620         &mov    (&DWP(8,$inp),$Zlh);
621         &mov    (&DWP(0,$inp),$Zhh);
622 &function_end("gcm_gmult_4bit_mmx");
623 \f
624 ######################################################################
625 # Below subroutine is "528B" variant of "4-bit" GCM GHASH function
626 # (see gcm128.c for details). It provides further 20-40% performance
627 # improvement over above mentioned "May" version.
628
629 &static_label("rem_8bit");
630
631 &function_begin("gcm_ghash_4bit_mmx");
632 { my ($Zlo,$Zhi) = ("mm7","mm6");
633   my $rem_8bit = "esi";
634   my $Htbl = "ebx";
635
636     # parameter block
637     &mov        ("eax",&wparam(0));             # Xi
638     &mov        ("ebx",&wparam(1));             # Htable
639     &mov        ("ecx",&wparam(2));             # inp
640     &mov        ("edx",&wparam(3));             # len
641     &mov        ("ebp","esp");                  # original %esp
642     &call       (&label("pic_point"));
643     &set_label  ("pic_point");
644     &blindpop   ($rem_8bit);
645     &lea        ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
646
647     &sub        ("esp",512+16+16);              # allocate stack frame...
648     &and        ("esp",-64);                    # ...and align it
649     &sub        ("esp",16);                     # place for (u8)(H[]<<4)
650
651     &add        ("edx","ecx");                  # pointer to the end of input
652     &mov        (&DWP(528+16+0,"esp"),"eax");   # save Xi
653     &mov        (&DWP(528+16+8,"esp"),"edx");   # save inp+len
654     &mov        (&DWP(528+16+12,"esp"),"ebp");  # save original %esp
655
656     { my @lo  = ("mm0","mm1","mm2");
657       my @hi  = ("mm3","mm4","mm5");
658       my @tmp = ("mm6","mm7");
659       my ($off1,$off2,$i) = (0,0,);
660
661       &add      ($Htbl,128);                    # optimize for size
662       &lea      ("edi",&DWP(16+128,"esp"));
663       &lea      ("ebp",&DWP(16+256+128,"esp"));
664
665       # decompose Htable (low and high parts are kept separately),
666       # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
667       for ($i=0;$i<18;$i++) {
668
669         &mov    ("edx",&DWP(16*$i+8-128,$Htbl))         if ($i<16);
670         &movq   ($lo[0],&QWP(16*$i+8-128,$Htbl))        if ($i<16);
671         &psllq  ($tmp[1],60)                            if ($i>1);
672         &movq   ($hi[0],&QWP(16*$i+0-128,$Htbl))        if ($i<16);
673         &por    ($lo[2],$tmp[1])                        if ($i>1);
674         &movq   (&QWP($off1-128,"edi"),$lo[1])          if ($i>0 && $i<17);
675         &psrlq  ($lo[1],4)                              if ($i>0 && $i<17);
676         &movq   (&QWP($off1,"edi"),$hi[1])              if ($i>0 && $i<17);
677         &movq   ($tmp[0],$hi[1])                        if ($i>0 && $i<17);
678         &movq   (&QWP($off2-128,"ebp"),$lo[2])          if ($i>1);
679         &psrlq  ($hi[1],4)                              if ($i>0 && $i<17);
680         &movq   (&QWP($off2,"ebp"),$hi[2])              if ($i>1);
681         &shl    ("edx",4)                               if ($i<16);
682         &mov    (&BP($i,"esp"),&LB("edx"))              if ($i<16);
683
684         unshift (@lo,pop(@lo));                 # "rotate" registers
685         unshift (@hi,pop(@hi));
686         unshift (@tmp,pop(@tmp));
687         $off1 += 8      if ($i>0);
688         $off2 += 8      if ($i>1);
689       }
690     }
691
692     &movq       ($Zhi,&QWP(0,"eax"));
693     &mov        ("ebx",&DWP(8,"eax"));
694     &mov        ("edx",&DWP(12,"eax"));         # load Xi
695
696 &set_label("outer",16);
697   { my $nlo = "eax";
698     my $dat = "edx";
699     my @nhi = ("edi","ebp");
700     my @rem = ("ebx","ecx");
701     my @red = ("mm0","mm1","mm2");
702     my $tmp = "mm3";
703
704     &xor        ($dat,&DWP(12,"ecx"));          # merge input data
705     &xor        ("ebx",&DWP(8,"ecx"));
706     &pxor       ($Zhi,&QWP(0,"ecx"));
707     &lea        ("ecx",&DWP(16,"ecx"));         # inp+=16
708     #&mov       (&DWP(528+12,"esp"),$dat);      # save inp^Xi
709     &mov        (&DWP(528+8,"esp"),"ebx");
710     &movq       (&QWP(528+0,"esp"),$Zhi);
711     &mov        (&DWP(528+16+4,"esp"),"ecx");   # save inp
712
713     &xor        ($nlo,$nlo);
714     &rol        ($dat,8);
715     &mov        (&LB($nlo),&LB($dat));
716     &mov        ($nhi[1],$nlo);
717     &and        (&LB($nlo),0x0f);
718     &shr        ($nhi[1],4);
719     &pxor       ($red[0],$red[0]);
720     &rol        ($dat,8);                       # next byte
721     &pxor       ($red[1],$red[1]);
722     &pxor       ($red[2],$red[2]);
723
724     # Just like in "May" version modulo-schedule for critical path in
725     # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
726     # is scheduled so late that rem_8bit[] has to be shifted *right*
727     # by 16, which is why last argument to pinsrw is 2, which
728     # corresponds to <<32=<<48>>16...
729     for ($j=11,$i=0;$i<15;$i++) {
730
731       if ($i>0) {
732         &pxor   ($Zlo,&QWP(16,"esp",$nlo,8));           # Z^=H[nlo]
733         &rol    ($dat,8);                               # next byte
734         &pxor   ($Zhi,&QWP(16+128,"esp",$nlo,8));
735
736         &pxor   ($Zlo,$tmp);
737         &pxor   ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
738         &xor    (&LB($rem[1]),&BP(0,"esp",$nhi[0]));    # rem^(H[nhi]<<4)
739       } else {
740         &movq   ($Zlo,&QWP(16,"esp",$nlo,8));
741         &movq   ($Zhi,&QWP(16+128,"esp",$nlo,8));
742       }
743
744         &mov    (&LB($nlo),&LB($dat));
745         &mov    ($dat,&DWP(528+$j,"esp"))               if (--$j%4==0);
746
747         &movd   ($rem[0],$Zlo);
748         &movz   ($rem[1],&LB($rem[1]))                  if ($i>0);
749         &psrlq  ($Zlo,8);                               # Z>>=8
750
751         &movq   ($tmp,$Zhi);
752         &mov    ($nhi[0],$nlo);
753         &psrlq  ($Zhi,8);
754
755         &pxor   ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));  # Z^=H[nhi]>>4
756         &and    (&LB($nlo),0x0f);
757         &psllq  ($tmp,56);
758
759         &pxor   ($Zhi,$red[1])                          if ($i>1);
760         &shr    ($nhi[0],4);
761         &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2)  if ($i>0);
762
763         unshift (@red,pop(@red));                       # "rotate" registers
764         unshift (@rem,pop(@rem));
765         unshift (@nhi,pop(@nhi));
766     }
767
768     &pxor       ($Zlo,&QWP(16,"esp",$nlo,8));           # Z^=H[nlo]
769     &pxor       ($Zhi,&QWP(16+128,"esp",$nlo,8));
770     &xor        (&LB($rem[1]),&BP(0,"esp",$nhi[0]));    # rem^(H[nhi]<<4)
771
772     &pxor       ($Zlo,$tmp);
773     &pxor       ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
774     &movz       ($rem[1],&LB($rem[1]));
775
776     &pxor       ($red[2],$red[2]);                      # clear 2nd word
777     &psllq      ($red[1],4);
778
779     &movd       ($rem[0],$Zlo);
780     &psrlq      ($Zlo,4);                               # Z>>=4
781
782     &movq       ($tmp,$Zhi);
783     &psrlq      ($Zhi,4);
784     &shl        ($rem[0],4);                            # rem<<4
785
786     &pxor       ($Zlo,&QWP(16,"esp",$nhi[1],8));        # Z^=H[nhi]
787     &psllq      ($tmp,60);
788     &movz       ($rem[0],&LB($rem[0]));
789
790     &pxor       ($Zlo,$tmp);
791     &pxor       ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
792
793     &pinsrw     ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
794     &pxor       ($Zhi,$red[1]);
795
796     &movd       ($dat,$Zlo);
797     &pinsrw     ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48
798
799     &psllq      ($red[0],12);                           # correct by <<16>>4
800     &pxor       ($Zhi,$red[0]);
801     &psrlq      ($Zlo,32);
802     &pxor       ($Zhi,$red[2]);
803
804     &mov        ("ecx",&DWP(528+16+4,"esp"));   # restore inp
805     &movd       ("ebx",$Zlo);
806     &movq       ($tmp,$Zhi);                    # 01234567
807     &psllw      ($Zhi,8);                       # 1.3.5.7.
808     &psrlw      ($tmp,8);                       # .0.2.4.6
809     &por        ($Zhi,$tmp);                    # 10325476
810     &bswap      ($dat);
811     &pshufw     ($Zhi,$Zhi,0b00011011);         # 76543210
812     &bswap      ("ebx");
813
814     &cmp        ("ecx",&DWP(528+16+8,"esp"));   # are we done?
815     &jne        (&label("outer"));
816   }
817
818     &mov        ("eax",&DWP(528+16+0,"esp"));   # restore Xi
819     &mov        (&DWP(12,"eax"),"edx");
820     &mov        (&DWP(8,"eax"),"ebx");
821     &movq       (&QWP(0,"eax"),$Zhi);
822
823     &mov        ("esp",&DWP(528+16+12,"esp"));  # restore original %esp
824     &emms       ();
825 }
826 &function_end("gcm_ghash_4bit_mmx");
827 }}
828 \f
829 if ($sse2) {{
830 ######################################################################
831 # PCLMULQDQ version.
832
833 $Xip="eax";
834 $Htbl="edx";
835 $const="ecx";
836 $inp="esi";
837 $len="ebx";
838
839 ($Xi,$Xhi)=("xmm0","xmm1");     $Hkey="xmm2";
840 ($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
841 ($Xn,$Xhn)=("xmm6","xmm7");
842
843 &static_label("bswap");
844
845 sub clmul64x64_T2 {     # minimal "register" pressure
846 my ($Xhi,$Xi,$Hkey,$HK)=@_;
847
848         &movdqa         ($Xhi,$Xi);             #
849         &pshufd         ($T1,$Xi,0b01001110);
850         &pshufd         ($T2,$Hkey,0b01001110)  if (!defined($HK));
851         &pxor           ($T1,$Xi);              #
852         &pxor           ($T2,$Hkey)             if (!defined($HK));
853                         $HK=$T2                 if (!defined($HK));
854
855         &pclmulqdq      ($Xi,$Hkey,0x00);       #######
856         &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
857         &pclmulqdq      ($T1,$HK,0x00);         #######
858         &xorps          ($T1,$Xi);              #
859         &xorps          ($T1,$Xhi);             #
860
861         &movdqa         ($T2,$T1);              #
862         &psrldq         ($T1,8);
863         &pslldq         ($T2,8);                #
864         &pxor           ($Xhi,$T1);
865         &pxor           ($Xi,$T2);              #
866 }
867
868 sub clmul64x64_T3 {
869 # Even though this subroutine offers visually better ILP, it
870 # was empirically found to be a tad slower than above version.
871 # At least in gcm_ghash_clmul context. But it's just as well,
872 # because loop modulo-scheduling is possible only thanks to
873 # minimized "register" pressure...
874 my ($Xhi,$Xi,$Hkey)=@_;
875
876         &movdqa         ($T1,$Xi);              #
877         &movdqa         ($Xhi,$Xi);
878         &pclmulqdq      ($Xi,$Hkey,0x00);       #######
879         &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
880         &pshufd         ($T2,$T1,0b01001110);   #
881         &pshufd         ($T3,$Hkey,0b01001110);
882         &pxor           ($T2,$T1);              #
883         &pxor           ($T3,$Hkey);
884         &pclmulqdq      ($T2,$T3,0x00);         #######
885         &pxor           ($T2,$Xi);              #
886         &pxor           ($T2,$Xhi);             #
887
888         &movdqa         ($T3,$T2);              #
889         &psrldq         ($T2,8);
890         &pslldq         ($T3,8);                #
891         &pxor           ($Xhi,$T2);
892         &pxor           ($Xi,$T3);              #
893 }
894 \f
895 if (1) {                # Algorithm 9 with <<1 twist.
896                         # Reduction is shorter and uses only two
897                         # temporary registers, which makes it better
898                         # candidate for interleaving with 64x64
899                         # multiplication. Pre-modulo-scheduled loop
900                         # was found to be ~20% faster than Algorithm 5
901                         # below. Algorithm 9 was therefore chosen for
902                         # further optimization...
903
904 sub reduction_alg9 {    # 17/11 times faster than Intel version
905 my ($Xhi,$Xi) = @_;
906
907         # 1st phase
908         &movdqa         ($T2,$Xi);              #
909         &movdqa         ($T1,$Xi);
910         &psllq          ($Xi,5);
911         &pxor           ($T1,$Xi);              #
912         &psllq          ($Xi,1);
913         &pxor           ($Xi,$T1);              #
914         &psllq          ($Xi,57);               #
915         &movdqa         ($T1,$Xi);              #
916         &pslldq         ($Xi,8);
917         &psrldq         ($T1,8);                #
918         &pxor           ($Xi,$T2);
919         &pxor           ($Xhi,$T1);             #
920
921         # 2nd phase
922         &movdqa         ($T2,$Xi);
923         &psrlq          ($Xi,1);
924         &pxor           ($Xhi,$T2);             #
925         &pxor           ($T2,$Xi);
926         &psrlq          ($Xi,5);
927         &pxor           ($Xi,$T2);              #
928         &psrlq          ($Xi,1);                #
929         &pxor           ($Xi,$Xhi)              #
930 }
931
932 &function_begin_B("gcm_init_clmul");
933         &mov            ($Htbl,&wparam(0));
934         &mov            ($Xip,&wparam(1));
935
936         &call           (&label("pic"));
937 &set_label("pic");
938         &blindpop       ($const);
939         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
940
941         &movdqu         ($Hkey,&QWP(0,$Xip));
942         &pshufd         ($Hkey,$Hkey,0b01001110);# dword swap
943
944         # <<1 twist
945         &pshufd         ($T2,$Hkey,0b11111111); # broadcast uppermost dword
946         &movdqa         ($T1,$Hkey);
947         &psllq          ($Hkey,1);
948         &pxor           ($T3,$T3);              #
949         &psrlq          ($T1,63);
950         &pcmpgtd        ($T3,$T2);              # broadcast carry bit
951         &pslldq         ($T1,8);
952         &por            ($Hkey,$T1);            # H<<=1
953
954         # magic reduction
955         &pand           ($T3,&QWP(16,$const));  # 0x1c2_polynomial
956         &pxor           ($Hkey,$T3);            # if(carry) H^=0x1c2_polynomial
957
958         # calculate H^2
959         &movdqa         ($Xi,$Hkey);
960         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
961         &reduction_alg9 ($Xhi,$Xi);
962
963         &pshufd         ($T1,$Hkey,0b01001110);
964         &pshufd         ($T2,$Xi,0b01001110);
965         &pxor           ($T1,$Hkey);            # Karatsuba pre-processing
966         &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
967         &pxor           ($T2,$Xi);              # Karatsuba pre-processing
968         &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
969         &palignr        ($T2,$T1,8);            # low part is H.lo^H.hi
970         &movdqu         (&QWP(32,$Htbl),$T2);   # save Karatsuba "salt"
971
972         &ret            ();
973 &function_end_B("gcm_init_clmul");
974
975 &function_begin_B("gcm_gmult_clmul");
976         &mov            ($Xip,&wparam(0));
977         &mov            ($Htbl,&wparam(1));
978
979         &call           (&label("pic"));
980 &set_label("pic");
981         &blindpop       ($const);
982         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
983
984         &movdqu         ($Xi,&QWP(0,$Xip));
985         &movdqa         ($T3,&QWP(0,$const));
986         &movups         ($Hkey,&QWP(0,$Htbl));
987         &pshufb         ($Xi,$T3);
988         &movups         ($T2,&QWP(32,$Htbl));
989
990         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$T2);
991         &reduction_alg9 ($Xhi,$Xi);
992
993         &pshufb         ($Xi,$T3);
994         &movdqu         (&QWP(0,$Xip),$Xi);
995
996         &ret    ();
997 &function_end_B("gcm_gmult_clmul");
998
999 &function_begin("gcm_ghash_clmul");
1000         &mov            ($Xip,&wparam(0));
1001         &mov            ($Htbl,&wparam(1));
1002         &mov            ($inp,&wparam(2));
1003         &mov            ($len,&wparam(3));
1004
1005         &call           (&label("pic"));
1006 &set_label("pic");
1007         &blindpop       ($const);
1008         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1009
1010         &movdqu         ($Xi,&QWP(0,$Xip));
1011         &movdqa         ($T3,&QWP(0,$const));
1012         &movdqu         ($Hkey,&QWP(0,$Htbl));
1013         &pshufb         ($Xi,$T3);
1014
1015         &sub            ($len,0x10);
1016         &jz             (&label("odd_tail"));
1017
1018         #######
1019         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1020         #       [(H*Ii+1) + (H*Xi+1)] mod P =
1021         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1022         #
1023         &movdqu         ($T1,&QWP(0,$inp));     # Ii
1024         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
1025         &pshufb         ($T1,$T3);
1026         &pshufb         ($Xn,$T3);
1027         &movdqu         ($T3,&QWP(32,$Htbl));
1028         &pxor           ($Xi,$T1);              # Ii+Xi
1029
1030         &pshufd         ($T1,$Xn,0b01001110);   # H*Ii+1
1031         &movdqa         ($Xhn,$Xn);
1032         &pxor           ($T1,$Xn);              #
1033         &lea            ($inp,&DWP(32,$inp));   # i+=2
1034
1035         &pclmulqdq      ($Xn,$Hkey,0x00);       #######
1036         &pclmulqdq      ($Xhn,$Hkey,0x11);      #######
1037         &pclmulqdq      ($T1,$T3,0x00);         #######
1038         &movups         ($Hkey,&QWP(16,$Htbl)); # load H^2
1039         &nop            ();
1040
1041         &sub            ($len,0x20);
1042         &jbe            (&label("even_tail"));
1043         &jmp            (&label("mod_loop"));
1044
1045 &set_label("mod_loop",32);
1046         &pshufd         ($T2,$Xi,0b01001110);   # H^2*(Ii+Xi)
1047         &movdqa         ($Xhi,$Xi);
1048         &pxor           ($T2,$Xi);              #
1049         &nop            ();
1050
1051         &pclmulqdq      ($Xi,$Hkey,0x00);       #######
1052         &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
1053         &pclmulqdq      ($T2,$T3,0x10);         #######
1054         &movups         ($Hkey,&QWP(0,$Htbl));  # load H
1055
1056         &xorps          ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
1057         &movdqa         ($T3,&QWP(0,$const));
1058         &xorps          ($Xhi,$Xhn);
1059          &movdqu        ($Xhn,&QWP(0,$inp));    # Ii
1060         &pxor           ($T1,$Xi);              # aggregated Karatsuba post-processing
1061          &movdqu        ($Xn,&QWP(16,$inp));    # Ii+1
1062         &pxor           ($T1,$Xhi);             #
1063
1064          &pshufb        ($Xhn,$T3);
1065         &pxor           ($T2,$T1);              #
1066
1067         &movdqa         ($T1,$T2);              #
1068         &psrldq         ($T2,8);
1069         &pslldq         ($T1,8);                #
1070         &pxor           ($Xhi,$T2);
1071         &pxor           ($Xi,$T1);              #
1072          &pshufb        ($Xn,$T3);
1073          &pxor          ($Xhi,$Xhn);            # "Ii+Xi", consume early
1074
1075         &movdqa         ($Xhn,$Xn);             #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
1076           &movdqa       ($T2,$Xi);              #&reduction_alg9($Xhi,$Xi); 1st phase
1077           &movdqa       ($T1,$Xi);
1078           &psllq        ($Xi,5);
1079           &pxor         ($T1,$Xi);              #
1080           &psllq        ($Xi,1);
1081           &pxor         ($Xi,$T1);              #
1082         &pclmulqdq      ($Xn,$Hkey,0x00);       #######
1083         &movups         ($T3,&QWP(32,$Htbl));
1084           &psllq        ($Xi,57);               #
1085           &movdqa       ($T1,$Xi);              #
1086           &pslldq       ($Xi,8);
1087           &psrldq       ($T1,8);                #
1088           &pxor         ($Xi,$T2);
1089           &pxor         ($Xhi,$T1);             #
1090         &pshufd         ($T1,$Xhn,0b01001110);
1091           &movdqa       ($T2,$Xi);              # 2nd phase
1092           &psrlq        ($Xi,1);
1093         &pxor           ($T1,$Xhn);
1094           &pxor         ($Xhi,$T2);             #
1095         &pclmulqdq      ($Xhn,$Hkey,0x11);      #######
1096         &movups         ($Hkey,&QWP(16,$Htbl)); # load H^2
1097           &pxor         ($T2,$Xi);
1098           &psrlq        ($Xi,5);
1099           &pxor         ($Xi,$T2);              #
1100           &psrlq        ($Xi,1);                #
1101           &pxor         ($Xi,$Xhi)              #
1102         &pclmulqdq      ($T1,$T3,0x00);         #######
1103
1104         &lea            ($inp,&DWP(32,$inp));
1105         &sub            ($len,0x20);
1106         &ja             (&label("mod_loop"));
1107
1108 &set_label("even_tail");
1109         &pshufd         ($T2,$Xi,0b01001110);   # H^2*(Ii+Xi)
1110         &movdqa         ($Xhi,$Xi);
1111         &pxor           ($T2,$Xi);              #
1112
1113         &pclmulqdq      ($Xi,$Hkey,0x00);       #######
1114         &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
1115         &pclmulqdq      ($T2,$T3,0x10);         #######
1116         &movdqa         ($T3,&QWP(0,$const));
1117
1118         &xorps          ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
1119         &xorps          ($Xhi,$Xhn);
1120         &pxor           ($T1,$Xi);              # aggregated Karatsuba post-processing
1121         &pxor           ($T1,$Xhi);             #
1122
1123         &pxor           ($T2,$T1);              #
1124
1125         &movdqa         ($T1,$T2);              #
1126         &psrldq         ($T2,8);
1127         &pslldq         ($T1,8);                #
1128         &pxor           ($Xhi,$T2);
1129         &pxor           ($Xi,$T1);              #
1130
1131         &reduction_alg9 ($Xhi,$Xi);
1132
1133         &test           ($len,$len);
1134         &jnz            (&label("done"));
1135
1136         &movups         ($Hkey,&QWP(0,$Htbl));  # load H
1137 &set_label("odd_tail");
1138         &movdqu         ($T1,&QWP(0,$inp));     # Ii
1139         &pshufb         ($T1,$T3);
1140         &pxor           ($Xi,$T1);              # Ii+Xi
1141
1142         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
1143         &reduction_alg9 ($Xhi,$Xi);
1144
1145 &set_label("done");
1146         &pshufb         ($Xi,$T3);
1147         &movdqu         (&QWP(0,$Xip),$Xi);
1148 &function_end("gcm_ghash_clmul");
1149 \f
1150 } else {                # Algorithm 5. Kept for reference purposes.
1151
1152 sub reduction_alg5 {    # 19/16 times faster than Intel version
1153 my ($Xhi,$Xi)=@_;
1154
1155         # <<1
1156         &movdqa         ($T1,$Xi);              #
1157         &movdqa         ($T2,$Xhi);
1158         &pslld          ($Xi,1);
1159         &pslld          ($Xhi,1);               #
1160         &psrld          ($T1,31);
1161         &psrld          ($T2,31);               #
1162         &movdqa         ($T3,$T1);
1163         &pslldq         ($T1,4);
1164         &psrldq         ($T3,12);               #
1165         &pslldq         ($T2,4);
1166         &por            ($Xhi,$T3);             #
1167         &por            ($Xi,$T1);
1168         &por            ($Xhi,$T2);             #
1169
1170         # 1st phase
1171         &movdqa         ($T1,$Xi);
1172         &movdqa         ($T2,$Xi);
1173         &movdqa         ($T3,$Xi);              #
1174         &pslld          ($T1,31);
1175         &pslld          ($T2,30);
1176         &pslld          ($Xi,25);               #
1177         &pxor           ($T1,$T2);
1178         &pxor           ($T1,$Xi);              #
1179         &movdqa         ($T2,$T1);              #
1180         &pslldq         ($T1,12);
1181         &psrldq         ($T2,4);                #
1182         &pxor           ($T3,$T1);
1183
1184         # 2nd phase
1185         &pxor           ($Xhi,$T3);             #
1186         &movdqa         ($Xi,$T3);
1187         &movdqa         ($T1,$T3);
1188         &psrld          ($Xi,1);                #
1189         &psrld          ($T1,2);
1190         &psrld          ($T3,7);                #
1191         &pxor           ($Xi,$T1);
1192         &pxor           ($Xhi,$T2);
1193         &pxor           ($Xi,$T3);              #
1194         &pxor           ($Xi,$Xhi);             #
1195 }
1196
1197 &function_begin_B("gcm_init_clmul");
1198         &mov            ($Htbl,&wparam(0));
1199         &mov            ($Xip,&wparam(1));
1200
1201         &call           (&label("pic"));
1202 &set_label("pic");
1203         &blindpop       ($const);
1204         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1205
1206         &movdqu         ($Hkey,&QWP(0,$Xip));
1207         &pshufd         ($Hkey,$Hkey,0b01001110);# dword swap
1208
1209         # calculate H^2
1210         &movdqa         ($Xi,$Hkey);
1211         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);
1212         &reduction_alg5 ($Xhi,$Xi);
1213
1214         &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
1215         &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
1216
1217         &ret            ();
1218 &function_end_B("gcm_init_clmul");
1219
1220 &function_begin_B("gcm_gmult_clmul");
1221         &mov            ($Xip,&wparam(0));
1222         &mov            ($Htbl,&wparam(1));
1223
1224         &call           (&label("pic"));
1225 &set_label("pic");
1226         &blindpop       ($const);
1227         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1228
1229         &movdqu         ($Xi,&QWP(0,$Xip));
1230         &movdqa         ($Xn,&QWP(0,$const));
1231         &movdqu         ($Hkey,&QWP(0,$Htbl));
1232         &pshufb         ($Xi,$Xn);
1233
1234         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);
1235         &reduction_alg5 ($Xhi,$Xi);
1236
1237         &pshufb         ($Xi,$Xn);
1238         &movdqu         (&QWP(0,$Xip),$Xi);
1239
1240         &ret    ();
1241 &function_end_B("gcm_gmult_clmul");
1242
1243 &function_begin("gcm_ghash_clmul");
1244         &mov            ($Xip,&wparam(0));
1245         &mov            ($Htbl,&wparam(1));
1246         &mov            ($inp,&wparam(2));
1247         &mov            ($len,&wparam(3));
1248
1249         &call           (&label("pic"));
1250 &set_label("pic");
1251         &blindpop       ($const);
1252         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1253
1254         &movdqu         ($Xi,&QWP(0,$Xip));
1255         &movdqa         ($T3,&QWP(0,$const));
1256         &movdqu         ($Hkey,&QWP(0,$Htbl));
1257         &pshufb         ($Xi,$T3);
1258
1259         &sub            ($len,0x10);
1260         &jz             (&label("odd_tail"));
1261
1262         #######
1263         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1264         #       [(H*Ii+1) + (H*Xi+1)] mod P =
1265         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1266         #
1267         &movdqu         ($T1,&QWP(0,$inp));     # Ii
1268         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
1269         &pshufb         ($T1,$T3);
1270         &pshufb         ($Xn,$T3);
1271         &pxor           ($Xi,$T1);              # Ii+Xi
1272
1273         &clmul64x64_T3  ($Xhn,$Xn,$Hkey);       # H*Ii+1
1274         &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
1275
1276         &sub            ($len,0x20);
1277         &lea            ($inp,&DWP(32,$inp));   # i+=2
1278         &jbe            (&label("even_tail"));
1279
1280 &set_label("mod_loop");
1281         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
1282         &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
1283
1284         &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
1285         &pxor           ($Xhi,$Xhn);
1286
1287         &reduction_alg5 ($Xhi,$Xi);
1288
1289         #######
1290         &movdqa         ($T3,&QWP(0,$const));
1291         &movdqu         ($T1,&QWP(0,$inp));     # Ii
1292         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
1293         &pshufb         ($T1,$T3);
1294         &pshufb         ($Xn,$T3);
1295         &pxor           ($Xi,$T1);              # Ii+Xi
1296
1297         &clmul64x64_T3  ($Xhn,$Xn,$Hkey);       # H*Ii+1
1298         &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
1299
1300         &sub            ($len,0x20);
1301         &lea            ($inp,&DWP(32,$inp));
1302         &ja             (&label("mod_loop"));
1303
1304 &set_label("even_tail");
1305         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
1306
1307         &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
1308         &pxor           ($Xhi,$Xhn);
1309
1310         &reduction_alg5 ($Xhi,$Xi);
1311
1312         &movdqa         ($T3,&QWP(0,$const));
1313         &test           ($len,$len);
1314         &jnz            (&label("done"));
1315
1316         &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
1317 &set_label("odd_tail");
1318         &movdqu         ($T1,&QWP(0,$inp));     # Ii
1319         &pshufb         ($T1,$T3);
1320         &pxor           ($Xi,$T1);              # Ii+Xi
1321
1322         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
1323         &reduction_alg5 ($Xhi,$Xi);
1324
1325         &movdqa         ($T3,&QWP(0,$const));
1326 &set_label("done");
1327         &pshufb         ($Xi,$T3);
1328         &movdqu         (&QWP(0,$Xip),$Xi);
1329 &function_end("gcm_ghash_clmul");
1330
1331 }
1332 \f
1333 &set_label("bswap",64);
1334         &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1335         &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
1336 &set_label("rem_8bit",64);
1337         &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1338         &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1339         &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1340         &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1341         &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1342         &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1343         &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1344         &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1345         &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1346         &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1347         &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1348         &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1349         &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1350         &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1351         &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1352         &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1353         &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1354         &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1355         &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1356         &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1357         &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1358         &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1359         &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1360         &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1361         &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1362         &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1363         &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1364         &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1365         &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1366         &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1367         &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1368         &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1369 }}      # $sse2
1370
1371 &set_label("rem_4bit",64);
1372         &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1373         &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1374         &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1375         &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1376 }}}     # !$x86only
1377
1378 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1379 &asm_finish();
1380
1381 close STDOUT;
1382
1383 # A question was risen about choice of vanilla MMX. Or rather why wasn't
1384 # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1385 # CPUs such as PIII, "4-bit" MMX version was observed to provide better
1386 # performance than *corresponding* SSE2 one even on contemporary CPUs.
1387 # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1388 # implementation featuring full range of lookup-table sizes, but with
1389 # per-invocation lookup table setup. Latter means that table size is
1390 # chosen depending on how much data is to be hashed in every given call,
1391 # more data - larger table. Best reported result for Core2 is ~4 cycles
1392 # per processed byte out of 64KB block. This number accounts even for
1393 # 64KB table setup overhead. As discussed in gcm128.c we choose to be
1394 # more conservative in respect to lookup table sizes, but how do the
1395 # results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1396 # on same platform. As also discussed in gcm128.c, next in line "8-bit
1397 # Shoup's" or "4KB" method should deliver twice the performance of
1398 # "256B" one, in other words not worse than ~6 cycles per byte. It
1399 # should be also be noted that in SSE2 case improvement can be "super-
1400 # linear," i.e. more than twice, mostly because >>8 maps to single
1401 # instruction on SSE2 register. This is unlike "4-bit" case when >>4
1402 # maps to same amount of instructions in both MMX and SSE2 cases.
1403 # Bottom line is that switch to SSE2 is considered to be justifiable
1404 # only in case we choose to implement "8-bit" method...