086d9f47e065f7b9dd67ebd0a7db51c6415d6940
[openssl.git] / crypto / jpake / jpake.c
1 #include "jpake.h"
2
3 #include <openssl/crypto.h>
4 #include <openssl/sha.h>
5 #include <openssl/err.h>
6 #include <memory.h>
7
8 /*
9  * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
10  * Bob's (x3, x4, x1, x2). If you see what I mean.
11  */
12
13 typedef struct
14     {
15     char *name;  /* Must be unique */
16     char *peer_name;
17     BIGNUM *p;
18     BIGNUM *g;
19     BIGNUM *q;
20     BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
21     BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
22     } JPAKE_CTX_PUBLIC;
23
24 struct JPAKE_CTX
25     {
26     JPAKE_CTX_PUBLIC p;
27     BIGNUM *secret;   /* The shared secret */
28     BN_CTX *ctx;
29     BIGNUM *xa;       /* Alice's x1 or Bob's x3 */
30     BIGNUM *xb;       /* Alice's x2 or Bob's x4 */
31     BIGNUM *key;      /* The calculated (shared) key */
32     };
33
34 static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
35     {
36     zkp->gr = BN_new();
37     zkp->b = BN_new();
38     }
39
40 static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
41     {
42     BN_free(zkp->b);
43     BN_free(zkp->gr);
44     }
45
46 /* Two birds with one stone - make the global name as expected */
47 #define JPAKE_STEP_PART_init    JPAKE_STEP2_init
48 #define JPAKE_STEP_PART_release JPAKE_STEP2_release
49
50 void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
51     {
52     p->gx = BN_new();
53     JPAKE_ZKP_init(&p->zkpx);
54     }
55
56 void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
57     {
58     JPAKE_ZKP_release(&p->zkpx);
59     BN_free(p->gx);
60     }
61
62 void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
63     {
64     JPAKE_STEP_PART_init(&s1->p1);
65     JPAKE_STEP_PART_init(&s1->p2);
66     }
67
68 void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
69     {
70     JPAKE_STEP_PART_release(&s1->p2);
71     JPAKE_STEP_PART_release(&s1->p1);
72     }
73
74 static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
75                            const char *peer_name, const BIGNUM *p,
76                            const BIGNUM *g, const BIGNUM *q,
77                            const BIGNUM *secret)
78     {
79     ctx->p.name = OPENSSL_strdup(name);
80     ctx->p.peer_name = OPENSSL_strdup(peer_name);
81     ctx->p.p = BN_dup(p);
82     ctx->p.g = BN_dup(g);
83     ctx->p.q = BN_dup(q);
84     ctx->secret = BN_dup(secret);
85
86     ctx->p.gxc = BN_new();
87     ctx->p.gxd = BN_new();
88
89     ctx->xa = BN_new();
90     ctx->xb = BN_new();
91     ctx->key = BN_new();
92     ctx->ctx = BN_CTX_new();
93     }
94     
95 static void JPAKE_CTX_release(JPAKE_CTX *ctx)
96     {
97     BN_CTX_free(ctx->ctx);
98     BN_clear_free(ctx->key);
99     BN_clear_free(ctx->xb);
100     BN_clear_free(ctx->xa);
101
102     BN_free(ctx->p.gxd);
103     BN_free(ctx->p.gxc);
104
105     BN_clear_free(ctx->secret);
106     BN_free(ctx->p.q);
107     BN_free(ctx->p.g);
108     BN_free(ctx->p.p);
109     OPENSSL_free(ctx->p.peer_name);
110     OPENSSL_free(ctx->p.name);
111
112     memset(ctx, '\0', sizeof *ctx);
113     }
114     
115 JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
116                          const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
117                          const BIGNUM *secret)
118     {
119     JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
120
121     JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
122
123     return ctx;
124     }
125
126 void JPAKE_CTX_free(JPAKE_CTX *ctx)
127     {
128     JPAKE_CTX_release(ctx);
129     OPENSSL_free(ctx);
130     }
131
132 static void hashlength(SHA_CTX *sha, size_t l)
133     {
134     unsigned char b[2];
135
136     OPENSSL_assert(l <= 0xffff);
137     b[0] = l >> 8;
138     b[1] = l&0xff;
139     SHA1_Update(sha, b, 2);
140     }
141
142 static void hashstring(SHA_CTX *sha, const char *string)
143     {
144     size_t l = strlen(string);
145
146     hashlength(sha, l);
147     SHA1_Update(sha, string, l);
148     }
149
150 static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
151     {
152     size_t l = BN_num_bytes(bn);
153     unsigned char *bin = OPENSSL_malloc(l);
154
155     hashlength(sha, l);
156     BN_bn2bin(bn, bin);
157     SHA1_Update(sha, bin, l);
158     OPENSSL_free(bin);
159     }
160
161 /* h=hash(g, g^r, g^x, name) */
162 static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
163                      const char *proof_name)
164     {
165     unsigned char md[SHA_DIGEST_LENGTH];
166     SHA_CTX sha;
167
168    /*
169     * XXX: hash should not allow moving of the boundaries - Java code
170     * is flawed in this respect. Length encoding seems simplest.
171     */
172     SHA1_Init(&sha);
173     hashbn(&sha, zkpg);
174     OPENSSL_assert(!BN_is_zero(p->zkpx.gr));
175     hashbn(&sha, p->zkpx.gr);
176     hashbn(&sha, p->gx);
177     hashstring(&sha, proof_name);
178     SHA1_Final(md, &sha);
179     BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
180     }
181
182 /*
183  * Prove knowledge of x
184  * Note that p->gx has already been calculated
185  */
186 static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
187                          const BIGNUM *zkpg, JPAKE_CTX *ctx)
188     {
189     BIGNUM *r = BN_new();
190     BIGNUM *h = BN_new();
191     BIGNUM *t = BN_new();
192
193    /*
194     * r in [0,q)
195     * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
196     */
197     BN_rand_range(r, ctx->p.q);
198    /* g^r */
199     BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
200
201    /* h=hash... */
202     zkp_hash(h, zkpg, p, ctx->p.name);
203
204    /* b = r - x*h */
205     BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
206     BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
207
208    /* cleanup */
209     BN_free(t);
210     BN_free(h);
211     BN_free(r);
212     }
213
214 static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
215                       JPAKE_CTX *ctx)
216     {
217     BIGNUM *h = BN_new();
218     BIGNUM *t1 = BN_new();
219     BIGNUM *t2 = BN_new();
220     BIGNUM *t3 = BN_new();
221     int ret = 0;
222
223     zkp_hash(h, zkpg, p, ctx->p.peer_name);
224
225    /* t1 = g^b */
226     BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
227    /* t2 = (g^x)^h = g^{hx} */
228     BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
229    /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
230     BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
231
232    /* verify t3 == g^r */
233     if(BN_cmp(t3, p->zkpx.gr) == 0)
234         ret = 1;
235     else
236         JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
237
238    /* cleanup */
239     BN_free(t3);
240     BN_free(t2);
241     BN_free(t1);
242     BN_free(h);
243
244     return ret;
245     }    
246
247 static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
248                                const BIGNUM *g, JPAKE_CTX *ctx)
249     {
250     BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
251     generate_zkp(p, x, g, ctx);
252     }
253
254 /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
255 static void genrand(JPAKE_CTX *ctx)
256     {
257     BIGNUM *qm1;
258
259    /* xa in [0, q) */
260     BN_rand_range(ctx->xa, ctx->p.q);
261
262    /* q-1 */
263     qm1 = BN_new();
264     BN_copy(qm1, ctx->p.q);
265     BN_sub_word(qm1, 1);
266
267    /* ... and xb in [0, q-1) */
268     BN_rand_range(ctx->xb, qm1);
269    /* [1, q) */
270     BN_add_word(ctx->xb, 1);
271
272    /* cleanup */
273     BN_free(qm1);
274     }
275
276 int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
277     {
278     genrand(ctx);
279     generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
280     generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
281
282     return 1;
283     }
284
285 int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
286     {
287    /* verify their ZKP(xc) */
288     if(!verify_zkp(&received->p1, ctx->p.g, ctx))
289         {
290         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
291         return 0;
292         }
293
294    /* verify their ZKP(xd) */
295     if(!verify_zkp(&received->p2, ctx->p.g, ctx))
296         {
297         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
298         return 0;
299         }
300
301    /* g^xd != 1 */
302     if(BN_is_one(received->p2.gx))
303         {
304         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
305         return 0;
306         }
307
308    /* Save the bits we need for later */
309     BN_copy(ctx->p.gxc, received->p1.gx);
310     BN_copy(ctx->p.gxd, received->p2.gx);
311
312     return 1;
313     }
314
315
316 int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
317     {
318     BIGNUM *t1 = BN_new();
319     BIGNUM *t2 = BN_new();
320
321    /*
322     * X = g^{(xa + xc + xd) * xb * s}
323     * t1 = g^xa
324     */
325     BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
326    /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
327     BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
328    /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
329     BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
330    /* t2 = xb * s */
331     BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
332
333    /*
334     * ZKP(xb * s)
335     * XXX: this is kinda funky, because we're using
336     *
337     * g' = g^{xa + xc + xd}
338     *
339     * as the generator, which means X is g'^{xb * s}
340     * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
341     */
342     generate_step_part(send, t2, t1, ctx);
343
344    /* cleanup */
345     BN_free(t1);
346     BN_free(t2);
347
348     return 1;
349     }
350
351 /* gx = g^{xc + xa + xb} * xd * s */
352 static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
353     {
354     BIGNUM *t1 = BN_new();
355     BIGNUM *t2 = BN_new();
356     BIGNUM *t3 = BN_new();
357
358    /*
359     * K = (gx/g^{xb * xd * s})^{xb}
360     *   = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
361     *   = (g^{(xa + xc) * xd * s})^{xb}
362     *   = g^{(xa + xc) * xb * xd * s}
363     * [which is the same regardless of who calculates it]
364     */
365
366    /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
367     BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
368    /* t2 = -s = q-s */
369     BN_sub(t2, ctx->p.q, ctx->secret);
370    /* t3 = t1^t2 = g^{-xb * xd * s} */
371     BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
372    /* t1 = gx * t3 = X/g^{xb * xd * s} */
373     BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
374    /* K = t1^{xb} */
375     BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
376
377    /* cleanup */
378     BN_free(t3);
379     BN_free(t2);
380     BN_free(t1);
381
382     return 1;
383     }
384
385 int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
386     {
387     BIGNUM *t1 = BN_new();
388     BIGNUM *t2 = BN_new();
389     int ret = 0;
390
391    /*
392     * g' = g^{xc + xa + xb} [from our POV]
393     * t1 = xa + xb
394     */
395     BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
396    /* t2 = g^{t1} = g^{xa+xb} */
397     BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
398    /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
399     BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
400
401     if(verify_zkp(received, t1, ctx))
402         ret = 1;
403     else
404         JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
405
406     compute_key(ctx, received->gx);
407
408    /* cleanup */
409     BN_free(t2);
410     BN_free(t1);
411
412     return ret;
413     }
414
415 static void quickhashbn(unsigned char *md, const BIGNUM *bn)
416     {
417     SHA_CTX sha;
418
419     SHA1_Init(&sha);
420     hashbn(&sha, bn);
421     SHA1_Final(md, &sha);
422     }
423
424 void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
425     {}
426
427 int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
428     {
429     quickhashbn(send->hhk, ctx->key);
430     SHA1(send->hhk, sizeof send->hhk, send->hhk);
431
432     return 1;
433     }
434
435 int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
436     {
437     unsigned char hhk[SHA_DIGEST_LENGTH];
438
439     quickhashbn(hhk, ctx->key);
440     SHA1(hhk, sizeof hhk, hhk);
441     if(memcmp(hhk, received->hhk, sizeof hhk))
442         {
443         JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS, JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
444         return 0;
445         }
446     return 1;
447     }
448
449 void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
450     {}
451
452 void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
453     {}
454
455 int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
456     {
457     quickhashbn(send->hk, ctx->key);
458
459     return 1;
460     }
461
462 int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
463     {
464     unsigned char hk[SHA_DIGEST_LENGTH];
465
466     quickhashbn(hk, ctx->key);
467     if(memcmp(hk, received->hk, sizeof hk))
468         {
469         JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
470         return 0;
471         }
472     return 1;
473     }
474
475 void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
476     {}
477
478 const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
479     {
480     return ctx->key;
481     }
482