Add OPENSSL_NO_ECDH guards
[openssl.git] / crypto / ec / ecp_nistp224.c
1 /* crypto/ec/ecp_nistp224.c */
2 /*
3  * Written by Emilia Kasper (Google) for the OpenSSL project.
4  */
5 /* Copyright 2011 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  *
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *     http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS,
16  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  */
20
21 /*
22  * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
23  *
24  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
25  * and Adam Langley's public domain 64-bit C implementation of curve25519
26  */
27
28 #include <openssl/opensslconf.h>
29 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
30
31 #ifndef OPENSSL_SYS_VMS
32 #include <stdint.h>
33 #else
34 #include <inttypes.h>
35 #endif
36
37 #include <string.h>
38 #include <openssl/err.h>
39 #include "ec_lcl.h"
40
41 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
42   /* even with gcc, the typedef won't work for 32-bit platforms */
43   typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
44 #else
45   #error "Need GCC 3.1 or later to define type uint128_t"
46 #endif
47
48 typedef uint8_t u8;
49 typedef uint64_t u64;
50 typedef int64_t s64;
51
52
53 /******************************************************************************/
54 /*                  INTERNAL REPRESENTATION OF FIELD ELEMENTS
55  *
56  * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
57  * using 64-bit coefficients called 'limbs',
58  * and sometimes (for multiplication results) as
59  * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
60  * using 128-bit coefficients called 'widelimbs'.
61  * A 4-limb representation is an 'felem';
62  * a 7-widelimb representation is a 'widefelem'.
63  * Even within felems, bits of adjacent limbs overlap, and we don't always
64  * reduce the representations: we ensure that inputs to each felem
65  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
66  * and fit into a 128-bit word without overflow. The coefficients are then
67  * again partially reduced to obtain an felem satisfying a_i < 2^57.
68  * We only reduce to the unique minimal representation at the end of the
69  * computation.
70  */
71
72 typedef uint64_t limb;
73 typedef uint128_t widelimb;
74
75 typedef limb felem[4];
76 typedef widelimb widefelem[7];
77
78 /* Field element represented as a byte arrary.
79  * 28*8 = 224 bits is also the group order size for the elliptic curve,
80  * and we also use this type for scalars for point multiplication.
81   */
82 typedef u8 felem_bytearray[28];
83
84 static const felem_bytearray nistp224_curve_params[5] = {
85         {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */
86          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
87          0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
88         {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */
89          0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
90          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
91         {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41,    /* b */
92          0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
93          0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
94         {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13,    /* x */
95          0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
96          0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
97         {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22,    /* y */
98          0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
99          0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
100 };
101
102 /* Precomputed multiples of the standard generator
103  * Points are given in coordinates (X, Y, Z) where Z normally is 1
104  * (0 for the point at infinity).
105  * For each field element, slice a_0 is word 0, etc.
106  *
107  * The table has 2 * 16 elements, starting with the following:
108  * index | bits    | point
109  * ------+---------+------------------------------
110  *     0 | 0 0 0 0 | 0G
111  *     1 | 0 0 0 1 | 1G
112  *     2 | 0 0 1 0 | 2^56G
113  *     3 | 0 0 1 1 | (2^56 + 1)G
114  *     4 | 0 1 0 0 | 2^112G
115  *     5 | 0 1 0 1 | (2^112 + 1)G
116  *     6 | 0 1 1 0 | (2^112 + 2^56)G
117  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
118  *     8 | 1 0 0 0 | 2^168G
119  *     9 | 1 0 0 1 | (2^168 + 1)G
120  *    10 | 1 0 1 0 | (2^168 + 2^56)G
121  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
122  *    12 | 1 1 0 0 | (2^168 + 2^112)G
123  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
124  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
125  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
126  * followed by a copy of this with each element multiplied by 2^28.
127  *
128  * The reason for this is so that we can clock bits into four different
129  * locations when doing simple scalar multiplies against the base point,
130  * and then another four locations using the second 16 elements.
131  */
132 static const felem gmul[2][16][3] =
133 {{{{0, 0, 0, 0},
134    {0, 0, 0, 0},
135    {0, 0, 0, 0}},
136   {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
137    {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
138    {1, 0, 0, 0}},
139   {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
140    {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
141    {1, 0, 0, 0}},
142   {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
143    {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
144    {1, 0, 0, 0}},
145   {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
146    {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
147    {1, 0, 0, 0}},
148   {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
149    {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
150    {1, 0, 0, 0}},
151   {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
152    {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
153    {1, 0, 0, 0}},
154   {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
155    {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
156    {1, 0, 0, 0}},
157   {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
158    {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
159    {1, 0, 0, 0}},
160   {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
161    {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
162    {1, 0, 0, 0}},
163   {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
164    {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
165    {1, 0, 0, 0}},
166   {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
167    {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
168    {1, 0, 0, 0}},
169   {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
170    {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
171    {1, 0, 0, 0}},
172   {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
173    {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
174    {1, 0, 0, 0}},
175   {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
176    {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
177    {1, 0, 0, 0}},
178   {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
179    {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
180    {1, 0, 0, 0}}},
181  {{{0, 0, 0, 0},
182    {0, 0, 0, 0},
183    {0, 0, 0, 0}},
184   {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
185    {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
186    {1, 0, 0, 0}},
187   {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
188    {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
189    {1, 0, 0, 0}},
190   {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
191    {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
192    {1, 0, 0, 0}},
193   {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
194    {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
195    {1, 0, 0, 0}},
196   {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
197    {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
198    {1, 0, 0, 0}},
199   {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
200    {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
201    {1, 0, 0, 0}},
202   {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
203    {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
204    {1, 0, 0, 0}},
205   {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
206    {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
207    {1, 0, 0, 0}},
208   {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
209    {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
210    {1, 0, 0, 0}},
211   {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
212    {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
213    {1, 0, 0, 0}},
214   {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
215    {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
216    {1, 0, 0, 0}},
217   {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
218    {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
219    {1, 0, 0, 0}},
220   {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
221    {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
222    {1, 0, 0, 0}},
223   {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
224    {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
225    {1, 0, 0, 0}},
226   {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
227    {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
228    {1, 0, 0, 0}}}};
229
230 /* Precomputation for the group generator. */
231 typedef struct {
232         felem g_pre_comp[2][16][3];
233         int references;
234 } NISTP224_PRE_COMP;
235
236 const EC_METHOD *EC_GFp_nistp224_method(void)
237         {
238         static const EC_METHOD ret = {
239                 EC_FLAGS_DEFAULT_OCT,
240                 NID_X9_62_prime_field,
241                 ec_GFp_nistp224_group_init,
242                 ec_GFp_simple_group_finish,
243                 ec_GFp_simple_group_clear_finish,
244                 ec_GFp_nist_group_copy,
245                 ec_GFp_nistp224_group_set_curve,
246                 ec_GFp_simple_group_get_curve,
247                 ec_GFp_simple_group_get_degree,
248                 ec_GFp_simple_group_check_discriminant,
249                 ec_GFp_simple_point_init,
250                 ec_GFp_simple_point_finish,
251                 ec_GFp_simple_point_clear_finish,
252                 ec_GFp_simple_point_copy,
253                 ec_GFp_simple_point_set_to_infinity,
254                 ec_GFp_simple_set_Jprojective_coordinates_GFp,
255                 ec_GFp_simple_get_Jprojective_coordinates_GFp,
256                 ec_GFp_simple_point_set_affine_coordinates,
257                 ec_GFp_nistp224_point_get_affine_coordinates,
258                 0 /* point_set_compressed_coordinates */,
259                 0 /* point2oct */,
260                 0 /* oct2point */,
261                 ec_GFp_simple_add,
262                 ec_GFp_simple_dbl,
263                 ec_GFp_simple_invert,
264                 ec_GFp_simple_is_at_infinity,
265                 ec_GFp_simple_is_on_curve,
266                 ec_GFp_simple_cmp,
267                 ec_GFp_simple_make_affine,
268                 ec_GFp_simple_points_make_affine,
269                 ec_GFp_nistp224_points_mul,
270                 ec_GFp_nistp224_precompute_mult,
271                 ec_GFp_nistp224_have_precompute_mult,
272                 ec_GFp_nist_field_mul,
273                 ec_GFp_nist_field_sqr,
274                 0 /* field_div */,
275                 0 /* field_encode */,
276                 0 /* field_decode */,
277                 0 /* field_set_to_one */ };
278
279         return &ret;
280         }
281
282 /* Helper functions to convert field elements to/from internal representation */
283 static void bin28_to_felem(felem out, const u8 in[28])
284         {
285         out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
286         out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
287         out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
288         out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
289         }
290
291 static void felem_to_bin28(u8 out[28], const felem in)
292         {
293         unsigned i;
294         for (i = 0; i < 7; ++i)
295                 {
296                 out[i]    = in[0]>>(8*i);
297                 out[i+7]  = in[1]>>(8*i);
298                 out[i+14] = in[2]>>(8*i);
299                 out[i+21] = in[3]>>(8*i);
300                 }
301         }
302
303 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
304 static void flip_endian(u8 *out, const u8 *in, unsigned len)
305         {
306         unsigned i;
307         for (i = 0; i < len; ++i)
308                 out[i] = in[len-1-i];
309         }
310
311 /* From OpenSSL BIGNUM to internal representation */
312 static int BN_to_felem(felem out, const BIGNUM *bn)
313         {
314         felem_bytearray b_in;
315         felem_bytearray b_out;
316         unsigned num_bytes;
317
318         /* BN_bn2bin eats leading zeroes */
319         memset(b_out, 0, sizeof b_out);
320         num_bytes = BN_num_bytes(bn);
321         if (num_bytes > sizeof b_out)
322                 {
323                 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
324                 return 0;
325                 }
326         if (BN_is_negative(bn))
327                 {
328                 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
329                 return 0;
330                 }
331         num_bytes = BN_bn2bin(bn, b_in);
332         flip_endian(b_out, b_in, num_bytes);
333         bin28_to_felem(out, b_out);
334         return 1;
335         }
336
337 /* From internal representation to OpenSSL BIGNUM */
338 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
339         {
340         felem_bytearray b_in, b_out;
341         felem_to_bin28(b_in, in);
342         flip_endian(b_out, b_in, sizeof b_out);
343         return BN_bin2bn(b_out, sizeof b_out, out);
344         }
345
346 /******************************************************************************/
347 /*                              FIELD OPERATIONS
348  *
349  * Field operations, using the internal representation of field elements.
350  * NB! These operations are specific to our point multiplication and cannot be
351  * expected to be correct in general - e.g., multiplication with a large scalar
352  * will cause an overflow.
353  *
354  */
355
356 static void felem_one(felem out)
357         {
358         out[0] = 1;
359         out[1] = 0;
360         out[2] = 0;
361         out[3] = 0;
362         }
363
364 static void felem_assign(felem out, const felem in)
365         {
366         out[0] = in[0];
367         out[1] = in[1];
368         out[2] = in[2];
369         out[3] = in[3];
370         }
371
372 /* Sum two field elements: out += in */
373 static void felem_sum(felem out, const felem in)
374         {
375         out[0] += in[0];
376         out[1] += in[1];
377         out[2] += in[2];
378         out[3] += in[3];
379         }
380
381 /* Get negative value: out = -in */
382 /* Assumes in[i] < 2^57 */
383 static void felem_neg(felem out, const felem in)
384         {
385         static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
386         static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
387         static const limb two58m42m2 = (((limb) 1) << 58) -
388             (((limb) 1) << 42) - (((limb) 1) << 2);
389
390         /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
391         out[0] = two58p2 - in[0];
392         out[1] = two58m42m2 - in[1];
393         out[2] = two58m2 - in[2];
394         out[3] = two58m2 - in[3];
395         }
396
397 /* Subtract field elements: out -= in */
398 /* Assumes in[i] < 2^57 */
399 static void felem_diff(felem out, const felem in)
400         {
401         static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
402         static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
403         static const limb two58m42m2 = (((limb) 1) << 58) -
404             (((limb) 1) << 42) - (((limb) 1) << 2);
405
406         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
407         out[0] += two58p2;
408         out[1] += two58m42m2;
409         out[2] += two58m2;
410         out[3] += two58m2;
411
412         out[0] -= in[0];
413         out[1] -= in[1];
414         out[2] -= in[2];
415         out[3] -= in[3];
416         }
417
418 /* Subtract in unreduced 128-bit mode: out -= in */
419 /* Assumes in[i] < 2^119 */
420 static void widefelem_diff(widefelem out, const widefelem in)
421         {
422         static const widelimb two120 = ((widelimb) 1) << 120;
423         static const widelimb two120m64 = (((widelimb) 1) << 120) -
424                 (((widelimb) 1) << 64);
425         static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
426                 (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
427
428         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
429         out[0] += two120;
430         out[1] += two120m64;
431         out[2] += two120m64;
432         out[3] += two120;
433         out[4] += two120m104m64;
434         out[5] += two120m64;
435         out[6] += two120m64;
436
437         out[0] -= in[0];
438         out[1] -= in[1];
439         out[2] -= in[2];
440         out[3] -= in[3];
441         out[4] -= in[4];
442         out[5] -= in[5];
443         out[6] -= in[6];
444         }
445
446 /* Subtract in mixed mode: out128 -= in64 */
447 /* in[i] < 2^63 */
448 static void felem_diff_128_64(widefelem out, const felem in)
449         {
450         static const widelimb two64p8 = (((widelimb) 1) << 64) +
451                 (((widelimb) 1) << 8);
452         static const widelimb two64m8 = (((widelimb) 1) << 64) -
453                 (((widelimb) 1) << 8);
454         static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
455                 (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
456
457         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
458         out[0] += two64p8;
459         out[1] += two64m48m8;
460         out[2] += two64m8;
461         out[3] += two64m8;
462
463         out[0] -= in[0];
464         out[1] -= in[1];
465         out[2] -= in[2];
466         out[3] -= in[3];
467         }
468
469 /* Multiply a field element by a scalar: out = out * scalar
470  * The scalars we actually use are small, so results fit without overflow */
471 static void felem_scalar(felem out, const limb scalar)
472         {
473         out[0] *= scalar;
474         out[1] *= scalar;
475         out[2] *= scalar;
476         out[3] *= scalar;
477         }
478
479 /* Multiply an unreduced field element by a scalar: out = out * scalar
480  * The scalars we actually use are small, so results fit without overflow */
481 static void widefelem_scalar(widefelem out, const widelimb scalar)
482         {
483         out[0] *= scalar;
484         out[1] *= scalar;
485         out[2] *= scalar;
486         out[3] *= scalar;
487         out[4] *= scalar;
488         out[5] *= scalar;
489         out[6] *= scalar;
490         }
491
492 /* Square a field element: out = in^2 */
493 static void felem_square(widefelem out, const felem in)
494         {
495         limb tmp0, tmp1, tmp2;
496         tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
497         out[0] = ((widelimb) in[0]) * in[0];
498         out[1] = ((widelimb) in[0]) * tmp1;
499         out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
500         out[3] = ((widelimb) in[3]) * tmp0 +
501                 ((widelimb) in[1]) * tmp2;
502         out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
503         out[5] = ((widelimb) in[3]) * tmp2;
504         out[6] = ((widelimb) in[3]) * in[3];
505         }
506
507 /* Multiply two field elements: out = in1 * in2 */
508 static void felem_mul(widefelem out, const felem in1, const felem in2)
509         {
510         out[0] = ((widelimb) in1[0]) * in2[0];
511         out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
512         out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
513                 ((widelimb) in1[2]) * in2[0];
514         out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
515                 ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
516         out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
517                 ((widelimb) in1[3]) * in2[1];
518         out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
519         out[6] = ((widelimb) in1[3]) * in2[3];
520         }
521
522 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
523  * Requires in[i] < 2^126,
524  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
525 static void felem_reduce(felem out, const widefelem in)
526         {
527         static const widelimb two127p15 = (((widelimb) 1) << 127) +
528                 (((widelimb) 1) << 15);
529         static const widelimb two127m71 = (((widelimb) 1) << 127) -
530                 (((widelimb) 1) << 71);
531         static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
532                 (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
533         widelimb output[5];
534
535         /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
536         output[0] = in[0] + two127p15;
537         output[1] = in[1] + two127m71m55;
538         output[2] = in[2] + two127m71;
539         output[3] = in[3];
540         output[4] = in[4];
541
542         /* Eliminate in[4], in[5], in[6] */
543         output[4] += in[6] >> 16;
544         output[3] += (in[6] & 0xffff) << 40;
545         output[2] -= in[6];
546
547         output[3] += in[5] >> 16;
548         output[2] += (in[5] & 0xffff) << 40;
549         output[1] -= in[5];
550
551         output[2] += output[4] >> 16;
552         output[1] += (output[4] & 0xffff) << 40;
553         output[0] -= output[4];
554
555         /* Carry 2 -> 3 -> 4 */
556         output[3] += output[2] >> 56;
557         output[2] &= 0x00ffffffffffffff;
558
559         output[4] = output[3] >> 56;
560         output[3] &= 0x00ffffffffffffff;
561
562         /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
563
564         /* Eliminate output[4] */
565         output[2] += output[4] >> 16;
566         /* output[2] < 2^56 + 2^56 = 2^57 */
567         output[1] += (output[4] & 0xffff) << 40;
568         output[0] -= output[4];
569
570         /* Carry 0 -> 1 -> 2 -> 3 */
571         output[1] += output[0] >> 56;
572         out[0] = output[0] & 0x00ffffffffffffff;
573
574         output[2] += output[1] >> 56;
575         /* output[2] < 2^57 + 2^72 */
576         out[1] = output[1] & 0x00ffffffffffffff;
577         output[3] += output[2] >> 56;
578         /* output[3] <= 2^56 + 2^16 */
579         out[2] = output[2] & 0x00ffffffffffffff;
580
581         /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
582          * out[3] <= 2^56 + 2^16 (due to final carry),
583          * so out < 2*p */
584         out[3] = output[3];
585         }
586
587 static void felem_square_reduce(felem out, const felem in)
588         {
589         widefelem tmp;
590         felem_square(tmp, in);
591         felem_reduce(out, tmp);
592         }
593
594 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
595         {
596         widefelem tmp;
597         felem_mul(tmp, in1, in2);
598         felem_reduce(out, tmp);
599         }
600
601 /* Reduce to unique minimal representation.
602  * Requires 0 <= in < 2*p (always call felem_reduce first) */
603 static void felem_contract(felem out, const felem in)
604         {
605         static const int64_t two56 = ((limb) 1) << 56;
606         /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
607         /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
608         int64_t tmp[4], a;
609         tmp[0] = in[0];
610         tmp[1] = in[1];
611         tmp[2] = in[2];
612         tmp[3] = in[3];
613         /* Case 1: a = 1 iff in >= 2^224 */
614         a = (in[3] >> 56);
615         tmp[0] -= a;
616         tmp[1] += a << 40;
617         tmp[3] &= 0x00ffffffffffffff;
618         /* Case 2: a = 0 iff p <= in < 2^224, i.e.,
619          * the high 128 bits are all 1 and the lower part is non-zero */
620         a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
621                 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
622         a &= 0x00ffffffffffffff;
623         /* turn a into an all-one mask (if a = 0) or an all-zero mask */
624         a = (a - 1) >> 63;
625         /* subtract 2^224 - 2^96 + 1 if a is all-one*/
626         tmp[3] &= a ^ 0xffffffffffffffff;
627         tmp[2] &= a ^ 0xffffffffffffffff;
628         tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
629         tmp[0] -= 1 & a;
630
631         /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
632          * be non-zero, so we only need one step */
633         a = tmp[0] >> 63;
634         tmp[0] += two56 & a;
635         tmp[1] -= 1 & a;
636
637         /* carry 1 -> 2 -> 3 */
638         tmp[2] += tmp[1] >> 56;
639         tmp[1] &= 0x00ffffffffffffff;
640
641         tmp[3] += tmp[2] >> 56;
642         tmp[2] &= 0x00ffffffffffffff;
643
644         /* Now 0 <= out < p */
645         out[0] = tmp[0];
646         out[1] = tmp[1];
647         out[2] = tmp[2];
648         out[3] = tmp[3];
649         }
650
651 /* Zero-check: returns 1 if input is 0, and 0 otherwise.
652  * We know that field elements are reduced to in < 2^225,
653  * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
654  * and 2^225 - 2^97 + 2 */
655 static limb felem_is_zero(const felem in)
656         {
657         limb zero, two224m96p1, two225m97p2;
658
659         zero = in[0] | in[1] | in[2] | in[3];
660         zero = (((int64_t)(zero) - 1) >> 63) & 1;
661         two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
662                 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
663         two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
664         two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
665                 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
666         two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
667         return (zero | two224m96p1 | two225m97p2);
668         }
669
670 static limb felem_is_zero_int(const felem in)
671         {
672         return (int) (felem_is_zero(in) & ((limb)1));
673         }
674
675 /* Invert a field element */
676 /* Computation chain copied from djb's code */
677 static void felem_inv(felem out, const felem in)
678         {
679         felem ftmp, ftmp2, ftmp3, ftmp4;
680         widefelem tmp;
681         unsigned i;
682
683         felem_square(tmp, in); felem_reduce(ftmp, tmp);         /* 2 */
684         felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);      /* 2^2 - 1 */
685         felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);       /* 2^3 - 2 */
686         felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);      /* 2^3 - 1 */
687         felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);      /* 2^4 - 2 */
688         felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);     /* 2^5 - 4 */
689         felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);     /* 2^6 - 8 */
690         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);   /* 2^6 - 1 */
691         felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);      /* 2^7 - 2 */
692         for (i = 0; i < 5; ++i)                                 /* 2^12 - 2^6 */
693                 {
694                 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
695                 }
696         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);  /* 2^12 - 1 */
697         felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);     /* 2^13 - 2 */
698         for (i = 0; i < 11; ++i)                                /* 2^24 - 2^12 */
699                 {
700                 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
701                 }
702         felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
703         felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);     /* 2^25 - 2 */
704         for (i = 0; i < 23; ++i)                                /* 2^48 - 2^24 */
705                 {
706                 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
707                 }
708         felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
709         felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);     /* 2^49 - 2 */
710         for (i = 0; i < 47; ++i)                                /* 2^96 - 2^48 */
711                 {
712                 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
713                 }
714         felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
715         felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);     /* 2^97 - 2 */
716         for (i = 0; i < 23; ++i)                                /* 2^120 - 2^24 */
717                 {
718                 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
719                 }
720         felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
721         for (i = 0; i < 6; ++i)                                 /* 2^126 - 2^6 */
722                 {
723                 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
724                 }
725         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);   /* 2^126 - 1 */
726         felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);       /* 2^127 - 2 */
727         felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);      /* 2^127 - 1 */
728         for (i = 0; i < 97; ++i)                                /* 2^224 - 2^97 */
729                 {
730                 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
731                 }
732         felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp);    /* 2^224 - 2^96 - 1 */
733         }
734
735 /* Copy in constant time:
736  * if icopy == 1, copy in to out,
737  * if icopy == 0, copy out to itself. */
738 static void
739 copy_conditional(felem out, const felem in, limb icopy)
740         {
741         unsigned i;
742         /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
743         const limb copy = -icopy;
744         for (i = 0; i < 4; ++i)
745                 {
746                 const limb tmp = copy & (in[i] ^ out[i]);
747                 out[i] ^= tmp;
748                 }
749         }
750
751 /******************************************************************************/
752 /*                       ELLIPTIC CURVE POINT OPERATIONS
753  *
754  * Points are represented in Jacobian projective coordinates:
755  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
756  * or to the point at infinity if Z == 0.
757  *
758  */
759
760 /* Double an elliptic curve point:
761  * (X', Y', Z') = 2 * (X, Y, Z), where
762  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
763  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
764  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
765  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
766  * while x_out == y_in is not (maybe this works, but it's not tested). */
767 static void
768 point_double(felem x_out, felem y_out, felem z_out,
769              const felem x_in, const felem y_in, const felem z_in)
770         {
771         widefelem tmp, tmp2;
772         felem delta, gamma, beta, alpha, ftmp, ftmp2;
773
774         felem_assign(ftmp, x_in);
775         felem_assign(ftmp2, x_in);
776
777         /* delta = z^2 */
778         felem_square(tmp, z_in);
779         felem_reduce(delta, tmp);
780
781         /* gamma = y^2 */
782         felem_square(tmp, y_in);
783         felem_reduce(gamma, tmp);
784
785         /* beta = x*gamma */
786         felem_mul(tmp, x_in, gamma);
787         felem_reduce(beta, tmp);
788
789         /* alpha = 3*(x-delta)*(x+delta) */
790         felem_diff(ftmp, delta);
791         /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
792         felem_sum(ftmp2, delta);
793         /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
794         felem_scalar(ftmp2, 3);
795         /* ftmp2[i] < 3 * 2^58 < 2^60 */
796         felem_mul(tmp, ftmp, ftmp2);
797         /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
798         felem_reduce(alpha, tmp);
799
800         /* x' = alpha^2 - 8*beta */
801         felem_square(tmp, alpha);
802         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
803         felem_assign(ftmp, beta);
804         felem_scalar(ftmp, 8);
805         /* ftmp[i] < 8 * 2^57 = 2^60 */
806         felem_diff_128_64(tmp, ftmp);
807         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
808         felem_reduce(x_out, tmp);
809
810         /* z' = (y + z)^2 - gamma - delta */
811         felem_sum(delta, gamma);
812         /* delta[i] < 2^57 + 2^57 = 2^58 */
813         felem_assign(ftmp, y_in);
814         felem_sum(ftmp, z_in);
815         /* ftmp[i] < 2^57 + 2^57 = 2^58 */
816         felem_square(tmp, ftmp);
817         /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
818         felem_diff_128_64(tmp, delta);
819         /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
820         felem_reduce(z_out, tmp);
821
822         /* y' = alpha*(4*beta - x') - 8*gamma^2 */
823         felem_scalar(beta, 4);
824         /* beta[i] < 4 * 2^57 = 2^59 */
825         felem_diff(beta, x_out);
826         /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
827         felem_mul(tmp, alpha, beta);
828         /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
829         felem_square(tmp2, gamma);
830         /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
831         widefelem_scalar(tmp2, 8);
832         /* tmp2[i] < 8 * 2^116 = 2^119 */
833         widefelem_diff(tmp, tmp2);
834         /* tmp[i] < 2^119 + 2^120 < 2^121 */
835         felem_reduce(y_out, tmp);
836         }
837
838 /* Add two elliptic curve points:
839  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
840  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
841  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
842  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
843  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
844  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
845  *
846  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
847  */
848
849 /* This function is not entirely constant-time:
850  * it includes a branch for checking whether the two input points are equal,
851  * (while not equal to the point at infinity).
852  * This case never happens during single point multiplication,
853  * so there is no timing leak for ECDH or ECDSA signing. */
854 static void point_add(felem x3, felem y3, felem z3,
855         const felem x1, const felem y1, const felem z1,
856         const int mixed, const felem x2, const felem y2, const felem z2)
857         {
858         felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
859         widefelem tmp, tmp2;
860         limb z1_is_zero, z2_is_zero, x_equal, y_equal;
861
862         if (!mixed)
863                 {
864                 /* ftmp2 = z2^2 */
865                 felem_square(tmp, z2);
866                 felem_reduce(ftmp2, tmp);
867
868                 /* ftmp4 = z2^3 */
869                 felem_mul(tmp, ftmp2, z2);
870                 felem_reduce(ftmp4, tmp);
871
872                 /* ftmp4 = z2^3*y1 */
873                 felem_mul(tmp2, ftmp4, y1);
874                 felem_reduce(ftmp4, tmp2);
875
876                 /* ftmp2 = z2^2*x1 */
877                 felem_mul(tmp2, ftmp2, x1);
878                 felem_reduce(ftmp2, tmp2);
879                 }
880         else
881                 {
882                 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
883
884                 /* ftmp4 = z2^3*y1 */
885                 felem_assign(ftmp4, y1);
886
887                 /* ftmp2 = z2^2*x1 */
888                 felem_assign(ftmp2, x1);
889                 }
890
891         /* ftmp = z1^2 */
892         felem_square(tmp, z1);
893         felem_reduce(ftmp, tmp);
894
895         /* ftmp3 = z1^3 */
896         felem_mul(tmp, ftmp, z1);
897         felem_reduce(ftmp3, tmp);
898
899         /* tmp = z1^3*y2 */
900         felem_mul(tmp, ftmp3, y2);
901         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
902
903         /* ftmp3 = z1^3*y2 - z2^3*y1 */
904         felem_diff_128_64(tmp, ftmp4);
905         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
906         felem_reduce(ftmp3, tmp);
907
908         /* tmp = z1^2*x2 */
909         felem_mul(tmp, ftmp, x2);
910         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
911
912         /* ftmp = z1^2*x2 - z2^2*x1 */
913         felem_diff_128_64(tmp, ftmp2);
914         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
915         felem_reduce(ftmp, tmp);
916
917         /* the formulae are incorrect if the points are equal
918          * so we check for this and do doubling if this happens */
919         x_equal = felem_is_zero(ftmp);
920         y_equal = felem_is_zero(ftmp3);
921         z1_is_zero = felem_is_zero(z1);
922         z2_is_zero = felem_is_zero(z2);
923         /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
924         if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
925                 {
926                 point_double(x3, y3, z3, x1, y1, z1);
927                 return;
928                 }
929
930         /* ftmp5 = z1*z2 */
931         if (!mixed)
932                 {
933                 felem_mul(tmp, z1, z2);
934                 felem_reduce(ftmp5, tmp);
935                 }
936         else
937                 {
938                 /* special case z2 = 0 is handled later */
939                 felem_assign(ftmp5, z1);
940                 }
941
942         /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
943         felem_mul(tmp, ftmp, ftmp5);
944         felem_reduce(z_out, tmp);
945
946         /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
947         felem_assign(ftmp5, ftmp);
948         felem_square(tmp, ftmp);
949         felem_reduce(ftmp, tmp);
950
951         /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
952         felem_mul(tmp, ftmp, ftmp5);
953         felem_reduce(ftmp5, tmp);
954
955         /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
956         felem_mul(tmp, ftmp2, ftmp);
957         felem_reduce(ftmp2, tmp);
958
959         /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
960         felem_mul(tmp, ftmp4, ftmp5);
961         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
962
963         /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
964         felem_square(tmp2, ftmp3);
965         /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
966
967         /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
968         felem_diff_128_64(tmp2, ftmp5);
969         /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
970
971         /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
972         felem_assign(ftmp5, ftmp2);
973         felem_scalar(ftmp5, 2);
974         /* ftmp5[i] < 2 * 2^57 = 2^58 */
975
976         /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
977            2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
978         felem_diff_128_64(tmp2, ftmp5);
979         /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
980         felem_reduce(x_out, tmp2);
981
982         /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
983         felem_diff(ftmp2, x_out);
984         /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
985
986         /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
987         felem_mul(tmp2, ftmp3, ftmp2);
988         /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
989
990         /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
991            z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
992         widefelem_diff(tmp2, tmp);
993         /* tmp2[i] < 2^118 + 2^120 < 2^121 */
994         felem_reduce(y_out, tmp2);
995
996         /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
997          * the point at infinity, so we need to check for this separately */
998
999         /* if point 1 is at infinity, copy point 2 to output, and vice versa */
1000         copy_conditional(x_out, x2, z1_is_zero);
1001         copy_conditional(x_out, x1, z2_is_zero);
1002         copy_conditional(y_out, y2, z1_is_zero);
1003         copy_conditional(y_out, y1, z2_is_zero);
1004         copy_conditional(z_out, z2, z1_is_zero);
1005         copy_conditional(z_out, z1, z2_is_zero);
1006         felem_assign(x3, x_out);
1007         felem_assign(y3, y_out);
1008         felem_assign(z3, z_out);
1009         }
1010
1011 /* select_point selects the |idx|th point from a precomputation table and
1012  * copies it to out. */
1013 static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3])
1014         {
1015         unsigned i, j;
1016         limb *outlimbs = &out[0][0];
1017         memset(outlimbs, 0, 3 * sizeof(felem));
1018
1019         for (i = 0; i < size; i++)
1020                 {
1021                 const limb *inlimbs = &pre_comp[i][0][0];
1022                 u64 mask = i ^ idx;
1023                 mask |= mask >> 4;
1024                 mask |= mask >> 2;
1025                 mask |= mask >> 1;
1026                 mask &= 1;
1027                 mask--;
1028                 for (j = 0; j < 4 * 3; j++)
1029                         outlimbs[j] |= inlimbs[j] & mask;
1030                 }
1031         }
1032
1033 /* get_bit returns the |i|th bit in |in| */
1034 static char get_bit(const felem_bytearray in, unsigned i)
1035         {
1036         if (i >= 224)
1037                 return 0;
1038         return (in[i >> 3] >> (i & 7)) & 1;
1039         }
1040
1041 /* Interleaved point multiplication using precomputed point multiples:
1042  * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
1043  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1044  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1045  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1046 static void batch_mul(felem x_out, felem y_out, felem z_out,
1047         const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1048         const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
1049         {
1050         int i, skip;
1051         unsigned num;
1052         unsigned gen_mul = (g_scalar != NULL);
1053         felem nq[3], tmp[4];
1054         u64 bits;
1055         u8 sign, digit;
1056
1057         /* set nq to the point at infinity */
1058         memset(nq, 0, 3 * sizeof(felem));
1059
1060         /* Loop over all scalars msb-to-lsb, interleaving additions
1061          * of multiples of the generator (two in each of the last 28 rounds)
1062          * and additions of other points multiples (every 5th round).
1063          */
1064         skip = 1; /* save two point operations in the first round */
1065         for (i = (num_points ? 220 : 27); i >= 0; --i)
1066                 {
1067                 /* double */
1068                 if (!skip)
1069                         point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1070
1071                 /* add multiples of the generator */
1072                 if (gen_mul && (i <= 27))
1073                         {
1074                         /* first, look 28 bits upwards */
1075                         bits = get_bit(g_scalar, i + 196) << 3;
1076                         bits |= get_bit(g_scalar, i + 140) << 2;
1077                         bits |= get_bit(g_scalar, i + 84) << 1;
1078                         bits |= get_bit(g_scalar, i + 28);
1079                         /* select the point to add, in constant time */
1080                         select_point(bits, 16, g_pre_comp[1], tmp);
1081
1082                         if (!skip)
1083                                 {
1084                                 point_add(nq[0], nq[1], nq[2],
1085                                         nq[0], nq[1], nq[2],
1086                                         1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1087                                 }
1088                         else
1089                                 {
1090                                 memcpy(nq, tmp, 3 * sizeof(felem));
1091                                 skip = 0;
1092                                 }
1093
1094                         /* second, look at the current position */
1095                         bits = get_bit(g_scalar, i + 168) << 3;
1096                         bits |= get_bit(g_scalar, i + 112) << 2;
1097                         bits |= get_bit(g_scalar, i + 56) << 1;
1098                         bits |= get_bit(g_scalar, i);
1099                         /* select the point to add, in constant time */
1100                         select_point(bits, 16, g_pre_comp[0], tmp);
1101                         point_add(nq[0], nq[1], nq[2],
1102                                 nq[0], nq[1], nq[2],
1103                                 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1104                         }
1105
1106                 /* do other additions every 5 doublings */
1107                 if (num_points && (i % 5 == 0))
1108                         {
1109                         /* loop over all scalars */
1110                         for (num = 0; num < num_points; ++num)
1111                                 {
1112                                 bits = get_bit(scalars[num], i + 4) << 5;
1113                                 bits |= get_bit(scalars[num], i + 3) << 4;
1114                                 bits |= get_bit(scalars[num], i + 2) << 3;
1115                                 bits |= get_bit(scalars[num], i + 1) << 2;
1116                                 bits |= get_bit(scalars[num], i) << 1;
1117                                 bits |= get_bit(scalars[num], i - 1);
1118                                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1119
1120                                 /* select the point to add or subtract */
1121                                 select_point(digit, 17, pre_comp[num], tmp);
1122                                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
1123                                 copy_conditional(tmp[1], tmp[3], sign);
1124
1125                                 if (!skip)
1126                                         {
1127                                         point_add(nq[0], nq[1], nq[2],
1128                                                 nq[0], nq[1], nq[2],
1129                                                 mixed, tmp[0], tmp[1], tmp[2]);
1130                                         }
1131                                 else
1132                                         {
1133                                         memcpy(nq, tmp, 3 * sizeof(felem));
1134                                         skip = 0;
1135                                         }
1136                                 }
1137                         }
1138                 }
1139         felem_assign(x_out, nq[0]);
1140         felem_assign(y_out, nq[1]);
1141         felem_assign(z_out, nq[2]);
1142         }
1143
1144 /******************************************************************************/
1145 /*                     FUNCTIONS TO MANAGE PRECOMPUTATION
1146  */
1147
1148 static NISTP224_PRE_COMP *nistp224_pre_comp_new()
1149         {
1150         NISTP224_PRE_COMP *ret = NULL;
1151         ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1152         if (!ret)
1153                 {
1154                 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1155                 return ret;
1156                 }
1157         memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1158         ret->references = 1;
1159         return ret;
1160         }
1161
1162 static void *nistp224_pre_comp_dup(void *src_)
1163         {
1164         NISTP224_PRE_COMP *src = src_;
1165
1166         /* no need to actually copy, these objects never change! */
1167         CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1168
1169         return src_;
1170         }
1171
1172 static void nistp224_pre_comp_free(void *pre_)
1173         {
1174         int i;
1175         NISTP224_PRE_COMP *pre = pre_;
1176
1177         if (!pre)
1178                 return;
1179
1180         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1181         if (i > 0)
1182                 return;
1183
1184         OPENSSL_free(pre);
1185         }
1186
1187 static void nistp224_pre_comp_clear_free(void *pre_)
1188         {
1189         int i;
1190         NISTP224_PRE_COMP *pre = pre_;
1191
1192         if (!pre)
1193                 return;
1194
1195         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1196         if (i > 0)
1197                 return;
1198
1199         OPENSSL_cleanse(pre, sizeof *pre);
1200         OPENSSL_free(pre);
1201         }
1202
1203 /******************************************************************************/
1204 /*                         OPENSSL EC_METHOD FUNCTIONS
1205  */
1206
1207 int ec_GFp_nistp224_group_init(EC_GROUP *group)
1208         {
1209         int ret;
1210         ret = ec_GFp_simple_group_init(group);
1211         group->a_is_minus3 = 1;
1212         return ret;
1213         }
1214
1215 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1216         const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1217         {
1218         int ret = 0;
1219         BN_CTX *new_ctx = NULL;
1220         BIGNUM *curve_p, *curve_a, *curve_b;
1221
1222         if (ctx == NULL)
1223                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1224         BN_CTX_start(ctx);
1225         if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1226                 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1227                 ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1228         BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1229         BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1230         BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1231         if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1232                 (BN_cmp(curve_b, b)))
1233                 {
1234                 ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1235                         EC_R_WRONG_CURVE_PARAMETERS);
1236                 goto err;
1237                 }
1238         group->field_mod_func = BN_nist_mod_224;
1239         ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1240 err:
1241         BN_CTX_end(ctx);
1242         if (new_ctx != NULL)
1243                 BN_CTX_free(new_ctx);
1244         return ret;
1245         }
1246
1247 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1248  * (X', Y') = (X/Z^2, Y/Z^3) */
1249 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1250         const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1251         {
1252         felem z1, z2, x_in, y_in, x_out, y_out;
1253         widefelem tmp;
1254
1255         if (EC_POINT_is_at_infinity(group, point))
1256                 {
1257                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1258                         EC_R_POINT_AT_INFINITY);
1259                 return 0;
1260                 }
1261         if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1262                 (!BN_to_felem(z1, &point->Z))) return 0;
1263         felem_inv(z2, z1);
1264         felem_square(tmp, z2); felem_reduce(z1, tmp);
1265         felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1266         felem_contract(x_out, x_in);
1267         if (x != NULL)
1268                 {
1269                 if (!felem_to_BN(x, x_out)) {
1270                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1271                         ERR_R_BN_LIB);
1272                 return 0;
1273                 }
1274                 }
1275         felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1276         felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1277         felem_contract(y_out, y_in);
1278         if (y != NULL)
1279                 {
1280                 if (!felem_to_BN(y, y_out)) {
1281                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1282                         ERR_R_BN_LIB);
1283                 return 0;
1284                 }
1285                 }
1286         return 1;
1287         }
1288
1289 static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
1290         {
1291         /* Runs in constant time, unless an input is the point at infinity
1292          * (which normally shouldn't happen). */
1293         ec_GFp_nistp_points_make_affine_internal(
1294                 num,
1295                 points,
1296                 sizeof(felem),
1297                 tmp_felems,
1298                 (void (*)(void *)) felem_one,
1299                 (int (*)(const void *)) felem_is_zero_int,
1300                 (void (*)(void *, const void *)) felem_assign,
1301                 (void (*)(void *, const void *)) felem_square_reduce,
1302                 (void (*)(void *, const void *, const void *)) felem_mul_reduce,
1303                 (void (*)(void *, const void *)) felem_inv,
1304                 (void (*)(void *, const void *)) felem_contract);
1305         }
1306
1307 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1308  * Result is stored in r (r can equal one of the inputs). */
1309 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1310         const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1311         const BIGNUM *scalars[], BN_CTX *ctx)
1312         {
1313         int ret = 0;
1314         int j;
1315         unsigned i;
1316         int mixed = 0;
1317         BN_CTX *new_ctx = NULL;
1318         BIGNUM *x, *y, *z, *tmp_scalar;
1319         felem_bytearray g_secret;
1320         felem_bytearray *secrets = NULL;
1321         felem (*pre_comp)[17][3] = NULL;
1322         felem *tmp_felems = NULL;
1323         felem_bytearray tmp;
1324         unsigned num_bytes;
1325         int have_pre_comp = 0;
1326         size_t num_points = num;
1327         felem x_in, y_in, z_in, x_out, y_out, z_out;
1328         NISTP224_PRE_COMP *pre = NULL;
1329         const felem (*g_pre_comp)[16][3] = NULL;
1330         EC_POINT *generator = NULL;
1331         const EC_POINT *p = NULL;
1332         const BIGNUM *p_scalar = NULL;
1333
1334         if (ctx == NULL)
1335                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1336         BN_CTX_start(ctx);
1337         if (((x = BN_CTX_get(ctx)) == NULL) ||
1338                 ((y = BN_CTX_get(ctx)) == NULL) ||
1339                 ((z = BN_CTX_get(ctx)) == NULL) ||
1340                 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1341                 goto err;
1342
1343         if (scalar != NULL)
1344                 {
1345                 pre = EC_EX_DATA_get_data(group->extra_data,
1346                         nistp224_pre_comp_dup, nistp224_pre_comp_free,
1347                         nistp224_pre_comp_clear_free);
1348                 if (pre)
1349                         /* we have precomputation, try to use it */
1350                         g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
1351                 else
1352                         /* try to use the standard precomputation */
1353                         g_pre_comp = &gmul[0];
1354                 generator = EC_POINT_new(group);
1355                 if (generator == NULL)
1356                         goto err;
1357                 /* get the generator from precomputation */
1358                 if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1359                         !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1360                         !felem_to_BN(z, g_pre_comp[0][1][2]))
1361                         {
1362                         ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1363                         goto err;
1364                         }
1365                 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1366                                 generator, x, y, z, ctx))
1367                         goto err;
1368                 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1369                         /* precomputation matches generator */
1370                         have_pre_comp = 1;
1371                 else
1372                         /* we don't have valid precomputation:
1373                          * treat the generator as a random point */
1374                         num_points = num_points + 1;
1375                 }
1376
1377         if (num_points > 0)
1378                 {
1379                 if (num_points >= 3)
1380                         {
1381                         /* unless we precompute multiples for just one or two points,
1382                          * converting those into affine form is time well spent  */
1383                         mixed = 1;
1384                         }
1385                 secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1386                 pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
1387                 if (mixed)
1388                         tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1389                 if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
1390                         {
1391                         ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1392                         goto err;
1393                         }
1394
1395                 /* we treat NULL scalars as 0, and NULL points as points at infinity,
1396                  * i.e., they contribute nothing to the linear combination */
1397                 memset(secrets, 0, num_points * sizeof(felem_bytearray));
1398                 memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1399                 for (i = 0; i < num_points; ++i)
1400                         {
1401                         if (i == num)
1402                                 /* the generator */
1403                                 {
1404                                 p = EC_GROUP_get0_generator(group);
1405                                 p_scalar = scalar;
1406                                 }
1407                         else
1408                                 /* the i^th point */
1409                                 {
1410                                 p = points[i];
1411                                 p_scalar = scalars[i];
1412                                 }
1413                         if ((p_scalar != NULL) && (p != NULL))
1414                                 {
1415                                 /* reduce scalar to 0 <= scalar < 2^224 */
1416                                 if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
1417                                         {
1418                                         /* this is an unusual input, and we don't guarantee
1419                                          * constant-timeness */
1420                                         if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1421                                                 {
1422                                                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1423                                                 goto err;
1424                                                 }
1425                                         num_bytes = BN_bn2bin(tmp_scalar, tmp);
1426                                         }
1427                                 else
1428                                         num_bytes = BN_bn2bin(p_scalar, tmp);
1429                                 flip_endian(secrets[i], tmp, num_bytes);
1430                                 /* precompute multiples */
1431                                 if ((!BN_to_felem(x_out, &p->X)) ||
1432                                         (!BN_to_felem(y_out, &p->Y)) ||
1433                                         (!BN_to_felem(z_out, &p->Z))) goto err;
1434                                 felem_assign(pre_comp[i][1][0], x_out);
1435                                 felem_assign(pre_comp[i][1][1], y_out);
1436                                 felem_assign(pre_comp[i][1][2], z_out);
1437                                 for (j = 2; j <= 16; ++j)
1438                                         {
1439                                         if (j & 1)
1440                                                 {
1441                                                 point_add(
1442                                                         pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1443                                                         pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1444                                                         0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1445                                                 }
1446                                         else
1447                                                 {
1448                                                 point_double(
1449                                                         pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1450                                                         pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1451                                                 }
1452                                         }
1453                                 }
1454                         }
1455                 if (mixed)
1456                         make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1457                 }
1458
1459         /* the scalar for the generator */
1460         if ((scalar != NULL) && (have_pre_comp))
1461                 {
1462                 memset(g_secret, 0, sizeof g_secret);
1463                 /* reduce scalar to 0 <= scalar < 2^224 */
1464                 if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
1465                         {
1466                         /* this is an unusual input, and we don't guarantee
1467                          * constant-timeness */
1468                         if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1469                                 {
1470                                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1471                                 goto err;
1472                                 }
1473                         num_bytes = BN_bn2bin(tmp_scalar, tmp);
1474                         }
1475                 else
1476                         num_bytes = BN_bn2bin(scalar, tmp);
1477                 flip_endian(g_secret, tmp, num_bytes);
1478                 /* do the multiplication with generator precomputation*/
1479                 batch_mul(x_out, y_out, z_out,
1480                         (const felem_bytearray (*)) secrets, num_points,
1481                         g_secret,
1482                         mixed, (const felem (*)[17][3]) pre_comp,
1483                         g_pre_comp);
1484                 }
1485         else
1486                 /* do the multiplication without generator precomputation */
1487                 batch_mul(x_out, y_out, z_out,
1488                         (const felem_bytearray (*)) secrets, num_points,
1489                         NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
1490         /* reduce the output to its unique minimal representation */
1491         felem_contract(x_in, x_out);
1492         felem_contract(y_in, y_out);
1493         felem_contract(z_in, z_out);
1494         if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1495                 (!felem_to_BN(z, z_in)))
1496                 {
1497                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1498                 goto err;
1499                 }
1500         ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1501
1502 err:
1503         BN_CTX_end(ctx);
1504         if (generator != NULL)
1505                 EC_POINT_free(generator);
1506         if (new_ctx != NULL)
1507                 BN_CTX_free(new_ctx);
1508         if (secrets != NULL)
1509                 OPENSSL_free(secrets);
1510         if (pre_comp != NULL)
1511                 OPENSSL_free(pre_comp);
1512         if (tmp_felems != NULL)
1513                 OPENSSL_free(tmp_felems);
1514         return ret;
1515         }
1516
1517 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1518         {
1519         int ret = 0;
1520         NISTP224_PRE_COMP *pre = NULL;
1521         int i, j;
1522         BN_CTX *new_ctx = NULL;
1523         BIGNUM *x, *y;
1524         EC_POINT *generator = NULL;
1525         felem tmp_felems[32];
1526
1527         /* throw away old precomputation */
1528         EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
1529                 nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
1530         if (ctx == NULL)
1531                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1532         BN_CTX_start(ctx);
1533         if (((x = BN_CTX_get(ctx)) == NULL) ||
1534                 ((y = BN_CTX_get(ctx)) == NULL))
1535                 goto err;
1536         /* get the generator */
1537         if (group->generator == NULL) goto err;
1538         generator = EC_POINT_new(group);
1539         if (generator == NULL)
1540                 goto err;
1541         BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
1542         BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
1543         if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
1544                 goto err;
1545         if ((pre = nistp224_pre_comp_new()) == NULL)
1546                 goto err;
1547         /* if the generator is the standard one, use built-in precomputation */
1548         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1549                 {
1550                 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1551                 ret = 1;
1552                 goto err;
1553                 }
1554         if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
1555                 (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
1556                 (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
1557                 goto err;
1558         /* compute 2^56*G, 2^112*G, 2^168*G for the first table,
1559          * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
1560          */
1561         for (i = 1; i <= 8; i <<= 1)
1562                 {
1563                 point_double(
1564                         pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1565                         pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1566                 for (j = 0; j < 27; ++j)
1567                         {
1568                         point_double(
1569                                 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1570                                 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1571                         }
1572                 if (i == 8)
1573                         break;
1574                 point_double(
1575                         pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1576                         pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1577                 for (j = 0; j < 27; ++j)
1578                         {
1579                         point_double(
1580                                 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1581                                 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
1582                         }
1583                 }
1584         for (i = 0; i < 2; i++)
1585                 {
1586                 /* g_pre_comp[i][0] is the point at infinity */
1587                 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1588                 /* the remaining multiples */
1589                 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1590                 point_add(
1591                         pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1592                         pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1593                         pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1594                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1595                         pre->g_pre_comp[i][2][2]);
1596                 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1597                 point_add(
1598                         pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1599                         pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1600                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1601                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1602                         pre->g_pre_comp[i][2][2]);
1603                 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1604                 point_add(
1605                         pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1606                         pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1607                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1608                         0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1609                         pre->g_pre_comp[i][4][2]);
1610                 /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
1611                 point_add(
1612                         pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1613                         pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1614                         pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1615                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1616                         pre->g_pre_comp[i][2][2]);
1617                 for (j = 1; j < 8; ++j)
1618                         {
1619                         /* odd multiples: add G resp. 2^28*G */
1620                         point_add(
1621                                 pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
1622                                 pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
1623                                 pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
1624                                 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1625                                 pre->g_pre_comp[i][1][2]);
1626                         }
1627                 }
1628         make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1629
1630         if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
1631                         nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
1632                 goto err;
1633         ret = 1;
1634         pre = NULL;
1635  err:
1636         BN_CTX_end(ctx);
1637         if (generator != NULL)
1638                 EC_POINT_free(generator);
1639         if (new_ctx != NULL)
1640                 BN_CTX_free(new_ctx);
1641         if (pre)
1642                 nistp224_pre_comp_free(pre);
1643         return ret;
1644         }
1645
1646 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1647         {
1648         if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
1649                         nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
1650                 != NULL)
1651                 return 1;
1652         else
1653                 return 0;
1654         }
1655
1656 #else
1657 static void *dummy=&dummy;
1658 #endif