937004ac455e85e043e3f334a8b008b6aa76f20b
[openssl.git] / crypto / ec / ec_mult.c
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer. 
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63
64 #include <openssl/err.h>
65
66 #include "ec_lcl.h"
67
68
69 /*
70  * This file implements the wNAF-based interleaving multi-exponentation method
71  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
72  * for multiplication with precomputation, we use wNAF splitting
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
74  */
75
76
77
78
79 /* structure for precomputed multiples of the generator */
80 typedef struct ec_pre_comp_st {
81         const EC_GROUP *group; /* parent EC_GROUP object */
82         size_t blocksize;      /* block size for wNAF splitting */
83         size_t numblocks;      /* max. number of blocks for which we have precomputation */
84         size_t w;              /* window size */
85         EC_POINT **points;     /* array with pre-calculated multiples of generator:
86                                 * 'num' pointers to EC_POINT objects followed by a NULL */
87         size_t num;            /* numblocks * 2^(w-1) */
88 } EC_PRE_COMP;
89  
90 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
91 static void *ec_pre_comp_dup(void *);
92 static void ec_pre_comp_free(void *);
93 static void ec_pre_comp_clear_free(void *);
94
95 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
96         {
97         EC_PRE_COMP *ret = NULL;
98
99         if (!group)
100                 return NULL;
101
102         ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
103         if (!ret)
104                 return ret;
105         ret->group = group;
106         ret->blocksize = 8; /* default */
107         ret->numblocks = 0;
108         ret->w = 4; /* default */
109         ret->points = NULL;
110         ret->num = 0;
111         return ret;
112         }
113
114 static void *ec_pre_comp_dup(void *src_)
115         {
116         const EC_PRE_COMP *src = src_;
117         EC_PRE_COMP *ret = NULL;
118
119         ret = ec_pre_comp_new(src->group);
120         if (!ret)
121                 return ret;
122         ret->blocksize = src->blocksize;
123         ret->numblocks = src->numblocks;
124         ret->w = src->w;
125         ret->num = 0;
126
127         if (src->points)
128                 {
129                 EC_POINT **src_var, **dest_var;
130
131                 ret->points = (EC_POINT **)OPENSSL_malloc((src->num + 1) * sizeof(EC_POINT *));
132                 if (!ret->points)
133                         {
134                         ec_pre_comp_free(ret);
135                         return NULL;
136                         }
137
138                 for (dest_var = ret->points, src_var = src->points; *src_var != NULL; src_var++, dest_var++)
139                         {
140                         *dest_var = EC_POINT_dup(*src_var, src->group);
141                         if (*dest_var == NULL)
142                                 {
143                                 ec_pre_comp_free(ret);
144                                 return NULL;
145                                 }
146                         ret->num++;
147                         }
148
149                 ret->points[ret->num] = NULL;
150                 if (ret->num != src->num)
151                         {
152                         ec_pre_comp_free(ret);
153                         ECerr(EC_F_EC_PRE_COMP_DUP, ERR_R_INTERNAL_ERROR);
154                         return NULL;
155                         }
156                 }
157
158         return ret;
159         }
160
161 static void ec_pre_comp_free(void *pre_)
162         {
163         EC_PRE_COMP *pre = pre_;
164
165         if (!pre)
166                 return;
167         if (pre->points)
168                 {
169                 EC_POINT **var;
170
171                 for (var = pre->points; *var != NULL; var++)
172                         EC_POINT_free(*var);
173                 OPENSSL_free(pre->points);
174                 }
175         OPENSSL_free(pre);
176         }
177
178 static void ec_pre_comp_clear_free(void *pre_)
179         {
180         EC_PRE_COMP *pre = pre_;
181
182         if (!pre)
183                 return;
184         if (pre->points)
185                 {
186                 EC_POINT **p;
187
188                 for (p = pre->points; *p != NULL; p++)
189                         EC_POINT_clear_free(*p);
190                 OPENSSL_cleanse(pre->points, sizeof pre->points);
191                 OPENSSL_free(pre->points);
192                 }
193         OPENSSL_cleanse(pre, sizeof pre);
194         OPENSSL_free(pre);
195         }
196
197
198
199
200 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
201  * This is an array  r[]  of values that are either zero or odd with an
202  * absolute value less than  2^w  satisfying
203  *     scalar = \sum_j r[j]*2^j
204  * where at most one of any  w+1  consecutive digits is non-zero
205  * with the exception that the most significant digit may be only
206  * w-1 zeros away from that next non-zero digit.
207  */
208 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
209         {
210         int window_val;
211         int ok = 0;
212         signed char *r = NULL;
213         int sign = 1;
214         int bit, next_bit, mask;
215         size_t len = 0, j;
216         
217         if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
218                 {
219                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
220                 goto err;
221                 }
222         bit = 1 << w; /* at most 128 */
223         next_bit = bit << 1; /* at most 256 */
224         mask = next_bit - 1; /* at most 255 */
225
226         if (BN_get_sign(scalar))
227                 {
228                 sign = -1;
229                 }
230
231         len = BN_num_bits(scalar);
232         r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
233                                       * (*ret_len will be set to the actual length, i.e. at most
234                                       * BN_num_bits(scalar) + 1) */
235         if (r == NULL) goto err;
236
237         if (scalar->d == NULL || scalar->top == 0)
238                 {
239                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
240                 goto err;
241                 }
242         window_val = scalar->d[0] & mask;
243         j = 0;
244         while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
245                 {
246                 int digit = 0;
247
248                 /* 0 <= window_val <= 2^(w+1) */
249
250                 if (window_val & 1)
251                         {
252                         /* 0 < window_val < 2^(w+1) */
253
254                         if (window_val & bit)
255                                 {
256                                 digit = window_val - next_bit; /* -2^w < digit < 0 */
257
258 #if 1 /* modified wNAF */
259                                 if (j + w + 1 >= len)
260                                         {
261                                         /* special case for generating modified wNAFs:
262                                          * no new bits will be added into window_val,
263                                          * so using a positive digit here will decrease
264                                          * the total length of the representation */
265                                         
266                                         digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
267                                         }
268 #endif
269                                 }
270                         else
271                                 {
272                                 digit = window_val; /* 0 < digit < 2^w */
273                                 }
274                         
275                         if (digit <= -bit || digit >= bit || !(digit & 1))
276                                 {
277                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
278                                 goto err;
279                                 }
280
281                         window_val -= digit;
282
283                         /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
284                          * for modified window NAFs, it may also be 2^w
285                          */
286                         if (window_val != 0 && window_val != next_bit && window_val != bit)
287                                 {
288                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
289                                 goto err;
290                                 }
291                         }
292
293                 r[j++] = sign * digit;
294
295                 window_val >>= 1;
296                 window_val += bit * BN_is_bit_set(scalar, j + w);
297
298                 if (window_val > next_bit)
299                         {
300                         ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
301                         goto err;
302                         }
303                 }
304
305         if (j > len + 1)
306                 {
307                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
308                 goto err;
309                 }
310         len = j;
311         ok = 1;
312
313  err:
314         if (!ok)
315                 {
316                 OPENSSL_free(r);
317                 r = NULL;
318                 }
319         if (ok)
320                 *ret_len = len;
321         return r;
322         }
323
324
325 /* TODO: table should be optimised for the wNAF-based implementation,
326  *       sometimes smaller windows will give better performance
327  *       (thus the boundaries should be increased)
328  */
329 #define EC_window_bits_for_scalar_size(b) \
330                 ((b) >= 2000 ? 6 : \
331                  (b) >=  800 ? 5 : \
332                  (b) >=  300 ? 4 : \
333                  (b) >=   70 ? 3 : \
334                  (b) >=   20 ? 2 : \
335                   1)
336
337 /* Compute
338  *      \sum scalars[i]*points[i],
339  * also including
340  *      scalar*generator
341  * in the addition if scalar != NULL
342  */
343 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
344         size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
345         {
346         BN_CTX *new_ctx = NULL;
347         EC_POINT *generator = NULL;
348         EC_POINT *tmp = NULL;
349         size_t totalnum;
350         size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
351         size_t pre_points_per_block = 0;
352         size_t i, j;
353         int k;
354         int r_is_inverted = 0;
355         int r_is_at_infinity = 1;
356         size_t *wsize = NULL; /* individual window sizes */
357         signed char **wNAF = NULL; /* individual wNAFs */
358         size_t *wNAF_len = NULL;
359         size_t max_len = 0;
360         size_t num_val;
361         EC_POINT **val = NULL; /* precomputation */
362         EC_POINT **v;
363         EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
364         EC_PRE_COMP *pre_comp = NULL;
365         int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
366                              * i.e. precomputation is not available */
367         int ret = 0;
368         
369         if (group->meth != r->meth)
370                 {
371                 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
372                 return 0;
373                 }
374
375         if ((scalar == NULL) && (num == 0))
376                 {
377                 return EC_POINT_set_to_infinity(group, r);
378                 }
379
380         for (i = 0; i < num; i++)
381                 {
382                 if (group->meth != points[i]->meth)
383                         {
384                         ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
385                         return 0;
386                         }
387                 }
388
389         if (ctx == NULL)
390                 {
391                 ctx = new_ctx = BN_CTX_new();
392                 if (ctx == NULL)
393                         goto err;
394                 }
395
396         if (scalar != NULL)
397                 {
398                 generator = EC_GROUP_get0_generator(group);
399                 if (generator == NULL)
400                         {
401                         ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
402                         goto err;
403                         }
404                 
405                 /* look if we can use precomputed multiples of generator */
406
407                 pre_comp = EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
408
409                 if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
410                         {
411                         blocksize = pre_comp->blocksize;
412
413                         /* determine maximum number of blocks that wNAF splitting may yield
414                          * (NB: maximum wNAF length is bit length plus one) */
415                         numblocks = (BN_num_bits(scalar) / blocksize) + 1;
416
417                         /* we cannot use more blocks than we have precomputation for */
418                         if (numblocks > pre_comp->numblocks)
419                                 numblocks = pre_comp->numblocks;
420
421                         pre_points_per_block = 1u << (pre_comp->w - 1);
422
423                         /* check that pre_comp looks sane */
424                         if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
425                                 {
426                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
427                                 goto err;
428                                 }
429                         }
430                 else
431                         {
432                         /* can't use precomputation */
433                         pre_comp = NULL;
434                         numblocks = 1;
435                         num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
436                         }
437                 }
438         
439         totalnum = num + numblocks;
440
441         wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
442         wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
443         wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
444         val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
445                  
446         if (!wsize || !wNAF_len || !wNAF || !val_sub)
447                 goto err;
448
449         wNAF[0] = NULL; /* preliminary pivot */
450
451         /* num_val will be the total number of temporarily precomputed points */
452         num_val = 0;
453
454         for (i = 0; i < num + num_scalar; i++)
455                 {
456                 size_t bits;
457
458                 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
459                 wsize[i] = EC_window_bits_for_scalar_size(bits);
460                 num_val += 1u << (wsize[i] - 1);
461                 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
462                 wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
463                 if (wNAF[i] == NULL)
464                         goto err;
465                 if (wNAF_len[i] > max_len)
466                         max_len = wNAF_len[i];
467                 }
468
469         if (numblocks)
470                 {
471                 /* we go here iff scalar != NULL */
472                 
473                 if (pre_comp == NULL)
474                         {
475                         if (num_scalar != 1)
476                                 {
477                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
478                                 goto err;
479                                 }
480                         /* we have already generated a wNAF for 'scalar' */
481                         }
482                 else
483                         {
484                         signed char *tmp_wNAF = NULL;
485                         size_t tmp_len = 0;
486                         
487                         if (num_scalar != 0)
488                                 {
489                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
490                                 goto err;
491                                 }
492
493                         /* use the window size for which we have precomputation */
494                         wsize[num] = pre_comp->w;
495                         tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
496                         if (!tmp_wNAF)
497                                 goto err;
498
499                         if (tmp_len <= max_len)
500                                 {
501                                 /* One of the other wNAFs is at least as long
502                                  * as the wNAF belonging to the generator,
503                                  * so wNAF splitting will not buy us anything. */
504
505                                 numblocks = 1;
506                                 totalnum = num + 1; /* don't use wNAF splitting */
507                                 wNAF[num] = tmp_wNAF;
508                                 wNAF[num + 1] = NULL;
509                                 wNAF_len[num] = tmp_len;
510                                 if (tmp_len > max_len)
511                                         max_len = tmp_len;
512                                 /* pre_comp->points starts with the points that we need here: */
513                                 val_sub[num] = pre_comp->points;
514                                 }
515                         else
516                                 {
517                                 /* don't include tmp_wNAF directly into wNAF array
518                                  * - use wNAF splitting and include the blocks */
519
520                                 signed char *pp;
521                                 EC_POINT **tmp_points;
522                                 
523                                 if (tmp_len < numblocks * blocksize)
524                                         {
525                                         /* possibly we can do with fewer blocks than estimated */
526                                         numblocks = (tmp_len + blocksize - 1) / blocksize;
527                                         if (numblocks > pre_comp->numblocks)
528                                                 {
529                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
530                                                 goto err;
531                                                 }
532                                         totalnum = num + numblocks;
533                                         }
534                                 
535                                 /* split wNAF in 'numblocks' parts */
536                                 pp = tmp_wNAF;
537                                 tmp_points = pre_comp->points;
538
539                                 for (i = num; i < totalnum; i++)
540                                         {
541                                         if (i < totalnum - 1)
542                                                 {
543                                                 wNAF_len[i] = blocksize;
544                                                 if (tmp_len < blocksize)
545                                                         {
546                                                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
547                                                         goto err;
548                                                         }
549                                                 tmp_len -= blocksize;
550                                                 }
551                                         else
552                                                 /* last block gets whatever is left
553                                                  * (this could be more or less than 'blocksize'!) */
554                                                 wNAF_len[i] = tmp_len;
555                                         
556                                         wNAF[i + 1] = NULL;
557                                         wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
558                                         if (wNAF[i] == NULL)
559                                                 {
560                                                 OPENSSL_free(tmp_wNAF);
561                                                 goto err;
562                                                 }
563                                         memcpy(wNAF[i], pp, wNAF_len[i]);
564                                         if (wNAF_len[i] > max_len)
565                                                 max_len = wNAF_len[i];
566
567                                         if (*tmp_points == NULL)
568                                                 {
569                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
570                                                 OPENSSL_free(tmp_wNAF);
571                                                 goto err;
572                                                 }
573                                         val_sub[i] = tmp_points;
574                                         tmp_points += pre_points_per_block;
575                                         pp += blocksize;
576                                         }
577                                 OPENSSL_free(tmp_wNAF);
578                                 }
579                         }
580                 }
581
582         /* All points we precompute now go into a single array 'val'.
583          * 'val_sub[i]' is a pointer to the subarray for the i-th point,
584          * or to a subarray of 'pre_comp->points' if we already have precomputation. */
585         val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
586         if (val == NULL) goto err;
587         val[num_val] = NULL; /* pivot element */
588
589         /* allocate points for precomputation */
590         v = val;
591         for (i = 0; i < num + num_scalar; i++)
592                 {
593                 val_sub[i] = v;
594                 for (j = 0; j < (1u << (wsize[i] - 1)); j++)
595                         {
596                         *v = EC_POINT_new(group);
597                         if (*v == NULL) goto err;
598                         v++;
599                         }
600                 }
601         if (!(v == val + num_val))
602                 {
603                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
604                 goto err;
605                 }
606
607         if (!(tmp = EC_POINT_new(group)))
608                 goto err;
609
610         /* prepare precomputed values:
611          *    val_sub[i][0] :=     points[i]
612          *    val_sub[i][1] := 3 * points[i]
613          *    val_sub[i][2] := 5 * points[i]
614          *    ...
615          */
616         for (i = 0; i < num + num_scalar; i++)
617                 {
618                 if (i < num)
619                         {
620                         if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
621                         }
622                 else
623                         {
624                         if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
625                         }
626
627                 if (wsize[i] > 1)
628                         {
629                         if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
630                         for (j = 1; j < (1u << (wsize[i] - 1)); j++)
631                                 {
632                                 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
633                                 }
634                         }
635                 }
636
637 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
638         if (!EC_POINTs_make_affine(group, num_val, val, ctx))
639                 goto err;
640 #endif
641
642         r_is_at_infinity = 1;
643
644         for (k = max_len - 1; k >= 0; k--)
645                 {
646                 if (!r_is_at_infinity)
647                         {
648                         if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
649                         }
650                 
651                 for (i = 0; i < totalnum; i++)
652                         {
653                         if (wNAF_len[i] > (size_t)k)
654                                 {
655                                 int digit = wNAF[i][k];
656                                 int is_neg;
657
658                                 if (digit) 
659                                         {
660                                         is_neg = digit < 0;
661
662                                         if (is_neg)
663                                                 digit = -digit;
664
665                                         if (is_neg != r_is_inverted)
666                                                 {
667                                                 if (!r_is_at_infinity)
668                                                         {
669                                                         if (!EC_POINT_invert(group, r, ctx)) goto err;
670                                                         }
671                                                 r_is_inverted = !r_is_inverted;
672                                                 }
673
674                                         /* digit > 0 */
675
676                                         if (r_is_at_infinity)
677                                                 {
678                                                 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
679                                                 r_is_at_infinity = 0;
680                                                 }
681                                         else
682                                                 {
683                                                 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
684                                                 }
685                                         }
686                                 }
687                         }
688                 }
689
690         if (r_is_at_infinity)
691                 {
692                 if (!EC_POINT_set_to_infinity(group, r)) goto err;
693                 }
694         else
695                 {
696                 if (r_is_inverted)
697                         if (!EC_POINT_invert(group, r, ctx)) goto err;
698                 }
699         
700         ret = 1;
701
702  err:
703         if (new_ctx != NULL)
704                 BN_CTX_free(new_ctx);
705         if (tmp != NULL)
706                 EC_POINT_free(tmp);
707         if (wsize != NULL)
708                 OPENSSL_free(wsize);
709         if (wNAF_len != NULL)
710                 OPENSSL_free(wNAF_len);
711         if (wNAF != NULL)
712                 {
713                 signed char **w;
714                 
715                 for (w = wNAF; *w != NULL; w++)
716                         OPENSSL_free(*w);
717                 
718                 OPENSSL_free(wNAF);
719                 }
720         if (val != NULL)
721                 {
722                 for (v = val; *v != NULL; v++)
723                         EC_POINT_clear_free(*v);
724
725                 OPENSSL_free(val);
726                 }
727         if (val_sub != NULL)
728                 {
729                 OPENSSL_free(val_sub);
730                 }
731         return ret;
732         }
733
734
735 /* ec_wNAF_precompute_mult()
736  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
737  * for use with wNAF splitting as implemented in ec_wNAF_mul().
738  * 
739  * 'pre_comp->points' is an array of multiples of the generator
740  * of the following form:
741  * points[0] =     generator;
742  * points[1] = 3 * generator;
743  * ...
744  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
745  * points[2^(w-1)]   =     2^blocksize * generator;
746  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
747  * ...
748  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
749  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
750  * ...
751  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
752  * points[2^(w-1)*numblocks]       = NULL
753  */
754 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
755         {
756         const EC_POINT *generator;
757         EC_POINT *tmp_point = NULL, *base = NULL, **var;
758         BN_CTX *new_ctx = NULL;
759         BIGNUM *order;
760         size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
761         EC_POINT **points = NULL;
762         EC_PRE_COMP *pre_comp, *new_pre_comp = NULL;
763         int ret = 0;
764
765         pre_comp = EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
766         if (pre_comp == NULL)
767                 if ((pre_comp = new_pre_comp = ec_pre_comp_new(group)) == NULL)
768                         return 0;
769
770 CRYPTO_push_info("ec_wNAF_precompute_mult");
771
772         generator = EC_GROUP_get0_generator(group);
773         if (generator == NULL)
774                 {
775                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
776                 goto err;
777                 }
778
779         if (ctx == NULL)
780                 {
781                 ctx = new_ctx = BN_CTX_new();
782                 if (ctx == NULL)
783                         goto err;
784                 }
785         
786         BN_CTX_start(ctx);
787         order = BN_CTX_get(ctx);
788         if (order == NULL) goto err;
789         
790         if (!EC_GROUP_get_order(group, order, ctx)) goto err;           
791         if (BN_is_zero(order))
792                 {
793                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
794                 goto err;
795                 }
796
797         bits = BN_num_bits(order);
798         /* The following parameters mean we precompute (approximately)
799          * one point per bit.
800          *
801          * TBD: The combination  8, 4  is perfect for 160 bits; for other
802          * bit lengths, other parameter combinations might provide better
803          * efficiency.
804          */
805         blocksize = 8;
806         w = 4;
807         if (EC_window_bits_for_scalar_size(bits) > w)
808                 {
809                 /* let's not make the window too small ... */
810                 w = EC_window_bits_for_scalar_size(bits);
811                 }
812
813         numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
814         
815         pre_points_per_block = 1u << (w - 1);
816         num = pre_points_per_block * numblocks; /* number of points to compute and store */
817
818         points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
819         if (!points)
820                 {
821                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
822                 goto err;
823                 }
824
825         var = points;
826         var[num] = NULL; /* pivot */
827         for (i = 0; i < num; i++)
828                 {
829                 if ((var[i] = EC_POINT_new(group)) == NULL)
830                         {
831                         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
832                         goto err;
833                         }
834                 }
835
836         if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
837                 {
838                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
839                 goto err;
840                 }       
841         
842         if (!EC_POINT_copy(base, generator))
843                 goto err;
844         
845         /* do the precomputation */
846         for (i = 0; i < numblocks; i++)
847                 {
848                 size_t j;
849
850                 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
851                         goto err;
852
853                 if (!EC_POINT_copy(*var++, base))
854                         goto err;
855
856                 for (j = 1; j < pre_points_per_block; j++, var++)
857                         {
858                         /* calculate odd multiples of the current base point */
859                         if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
860                                 goto err;
861                         }
862
863                 if (i < numblocks - 1)
864                         {
865                         /* get the next base (multiply current one by 2^blocksize) */
866                         size_t k;
867
868                         if (blocksize <= 2)
869                                 {
870                                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
871                                 goto err;
872                                 }                               
873
874                         if (!EC_POINT_dbl(group, base, tmp_point, ctx))
875                                 goto err;
876                         for (k = 2; k < blocksize; k++)
877                                 {
878                                 if (!EC_POINT_dbl(group,base,base,ctx))
879                                         goto err;
880                                 }
881                         }
882                 }
883
884         if (!EC_POINTs_make_affine(group, num, points, ctx))
885                 goto err;
886         
887         pre_comp->group = group;
888         pre_comp->blocksize = blocksize;
889         pre_comp->numblocks = numblocks;
890         pre_comp->w = w;
891         if (pre_comp->points)
892                 {
893                 EC_POINT **p;
894
895                 for (p = pre_comp->points; *p != NULL; p++)
896                         EC_POINT_free(*p);
897                 OPENSSL_free(pre_comp->points);
898                 }
899         pre_comp->points = points;
900         points = NULL;
901         pre_comp->num = num;
902
903         if (new_pre_comp)
904                 {
905                 if (!EC_GROUP_set_extra_data(group, new_pre_comp, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
906                         goto err;
907                 new_pre_comp = NULL;
908                 }
909
910         ret = 1;
911  err:
912         CRYPTO_pop_info();
913
914         BN_CTX_end(ctx);
915         if (new_ctx != NULL)
916                 BN_CTX_free(new_ctx);
917         if (new_pre_comp)
918                 ec_pre_comp_free(new_pre_comp);
919         if (points)
920                 {
921                 EC_POINT **p;
922
923                 for (p = points; *p != NULL; p++)
924                         EC_POINT_free(*p);
925                 OPENSSL_free(points);
926                 }
927         if (tmp_point)
928                 EC_POINT_free(tmp_point);
929         if (base)
930                 EC_POINT_free(base);
931         return ret;
932         }
933
934
935 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
936         {
937         if (EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
938                 return 1;
939         else
940                 return 0;
941         }