Fix unwind directives in IA-64 assembler modules. This helps symbolic
[openssl.git] / crypto / bn / asm / ia64.S
1 .explicit
2 .text
3 .ident  "ia64.S, Version 2.1"
4 .ident  "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
5
6 //
7 // ====================================================================
8 // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
9 // project.
10 //
11 // Rights for redistribution and usage in source and binary forms are
12 // granted according to the OpenSSL license. Warranty of any kind is
13 // disclaimed.
14 // ====================================================================
15 //
16 // Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is
17 // different from Itanium to this module viewpoint. Most notably, is it
18 // "wider" than Itanium? Can you experience loop scalability as
19 // discussed in commentary sections? Not really:-( Itanium2 has 6
20 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
21 // spin twice as fast, as I need 8 IALU ports. Amount of floating point
22 // ports is the same, i.e. 2, while I need 4. In other words, to this
23 // module Itanium2 remains effectively as "wide" as Itanium. Yet it's
24 // essentially different in respect to this module, and a re-tune was
25 // required. Well, because some intruction latencies has changed. Most
26 // noticeably those intensively used:
27 //
28 //                      Itanium Itanium2
29 //      ldf8            9       6               L2 hit
30 //      ld8             2       1               L1 hit
31 //      getf            2       5
32 //      xma[->getf]     7[+1]   4[+0]
33 //      add[->st8]      1[+1]   1[+0]
34 //
35 // What does it mean? You might ratiocinate that the original code
36 // should run just faster... Because sum of latencies is smaller...
37 // Wrong! Note that getf latency increased. This means that if a loop is
38 // scheduled for lower latency (as they were), then it will suffer from
39 // stall condition and the code will therefore turn anti-scalable, e.g.
40 // original bn_mul_words spun at 5*n or 2.5 times slower than expected
41 // on Itanium2! What to do? Reschedule loops for Itanium2? But then
42 // Itanium would exhibit anti-scalability. So I've chosen to reschedule
43 // for worst latency for every instruction aiming for best *all-round*
44 // performance.  
45
46 // Q.   How much faster does it get?
47 // A.   Here is the output from 'openssl speed rsa dsa' for vanilla
48 //      0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
49 //      Linux 7.1 2.96-81):
50 //
51 //                        sign    verify    sign/s verify/s
52 //      rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
53 //      rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
54 //      rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
55 //      rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
56 //                        sign    verify    sign/s verify/s
57 //      dsa  512 bits   0.0035s   0.0043s    288.3    234.8
58 //      dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
59 //
60 //      And here is similar output but for this assembler
61 //      implementation:-)
62 //
63 //                        sign    verify    sign/s verify/s
64 //      rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
65 //      rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
66 //      rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
67 //      rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
68 //                        sign    verify    sign/s verify/s
69 //      dsa  512 bits   0.0012s   0.0013s    891.9    756.6
70 //      dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
71 //      
72 //      Yes, you may argue that it's not fair comparison as it's
73 //      possible to craft the C implementation with BN_UMULT_HIGH
74 //      inline assembler macro. But of course! Here is the output
75 //      with the macro:
76 //
77 //                        sign    verify    sign/s verify/s
78 //      rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
79 //      rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
80 //      rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
81 //      rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
82 //                        sign    verify    sign/s verify/s
83 //      dsa  512 bits   0.0016s   0.0020s    613.1    510.5
84 //      dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
85 //
86 //      My code is still way faster, huh:-) And I believe that even
87 //      higher performance can be achieved. Note that as keys get
88 //      longer, performance gain is larger. Why? According to the
89 //      profiler there is another player in the field, namely
90 //      BN_from_montgomery consuming larger and larger portion of CPU
91 //      time as keysize decreases. I therefore consider putting effort
92 //      to assembler implementation of the following routine:
93 //
94 //      void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
95 //      {
96 //      int      i,j;
97 //      BN_ULONG v;
98 //
99 //      for (i=0; i<nl; i++)
100 //              {
101 //              v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
102 //              nrp++;
103 //              rp++;
104 //              if (((nrp[-1]+=v)&BN_MASK2) < v)
105 //                      for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
106 //              }
107 //      }
108 //
109 //      It might as well be beneficial to implement even combaX
110 //      variants, as it appears as it can literally unleash the
111 //      performance (see comment section to bn_mul_comba8 below).
112 //
113 //      And finally for your reference the output for 0.9.6a compiled
114 //      with SGIcc version 0.01.0-12 (keep in mind that for the moment
115 //      of this writing it's not possible to convince SGIcc to use
116 //      BN_UMULT_HIGH inline assembler macro, yet the code is fast,
117 //      i.e. for a compiler generated one:-):
118 //
119 //                        sign    verify    sign/s verify/s
120 //      rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
121 //      rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
122 //      rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
123 //      rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
124 //                        sign    verify    sign/s verify/s
125 //      dsa  512 bits   0.0018s   0.0022s    547.3    459.6
126 //      dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
127 //
128 //      Oh! Benchmarks were performed on 733MHz Lion-class Itanium
129 //      system running Redhat Linux 7.1 (very special thanks to Ray
130 //      McCaffity of Williams Communications for providing an account).
131 //
132 // Q.   What's the heck with 'rum 1<<5' at the end of every function?
133 // A.   Well, by clearing the "upper FP registers written" bit of the
134 //      User Mask I want to excuse the kernel from preserving upper
135 //      (f32-f128) FP register bank over process context switch, thus
136 //      minimizing bus bandwidth consumption during the switch (i.e.
137 //      after PKI opration completes and the program is off doing
138 //      something else like bulk symmetric encryption). Having said
139 //      this, I also want to point out that it might be good idea
140 //      to compile the whole toolkit (as well as majority of the
141 //      programs for that matter) with -mfixed-range=f32-f127 command
142 //      line option. No, it doesn't prevent the compiler from writing
143 //      to upper bank, but at least discourages to do so. If you don't
144 //      like the idea you have the option to compile the module with
145 //      -Drum=nop.m in command line.
146 //
147
148 #if defined(_HPUX_SOURCE) && !defined(_LP64)
149 #define ADDP    addp4
150 #else
151 #define ADDP    add
152 #endif
153
154 #if 1
155 //
156 // bn_[add|sub]_words routines.
157 //
158 // Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the
159 // data reside in L1 cache, i.e. 2 ticks away). It's possible to
160 // compress the epilogue and get down to 2*n+6, but at the cost of
161 // scalability (the neat feature of this implementation is that it
162 // shall automagically spin in n+5 on "wider" IA-64 implementations:-)
163 // I consider that the epilogue is short enough as it is to trade tiny
164 // performance loss on Itanium for scalability.
165 //
166 // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
167 //
168 .global bn_add_words#
169 .proc   bn_add_words#
170 .align  64
171 .skip   32      // makes the loop body aligned at 64-byte boundary
172 bn_add_words:
173         .prologue
174         .save   ar.pfs,r2
175 { .mii; alloc           r2=ar.pfs,4,12,0,16
176         cmp4.le         p6,p0=r35,r0    };;
177 { .mfb; mov             r8=r0                   // return value
178 (p6)    br.ret.spnt.many        b0      };;
179
180 { .mib; sub             r10=r35,r0,1
181         .save   ar.lc,r3
182         mov             r3=ar.lc
183         brp.loop.imp    .L_bn_add_words_ctop,.L_bn_add_words_cend-16
184                                         }
185         .body
186 { .mib; ADDP            r14=0,r32               // rp
187         mov             r9=pr           };;
188 { .mii; ADDP            r15=0,r33               // ap
189         mov             ar.lc=r10
190         mov             ar.ec=6         }
191 { .mib; ADDP            r16=0,r34               // bp
192         mov             pr.rot=1<<16    };;
193
194 .L_bn_add_words_ctop:
195 { .mii; (p16)   ld8             r32=[r16],8       // b=*(bp++)
196         (p18)   add             r39=r37,r34
197         (p19)   cmp.ltu.unc     p56,p0=r40,r38  }
198 { .mfb; (p0)    nop.m           0x0
199         (p0)    nop.f           0x0
200         (p0)    nop.b           0x0             }
201 { .mii; (p16)   ld8             r35=[r15],8       // a=*(ap++)
202         (p58)   cmp.eq.or       p57,p0=-1,r41     // (p20)
203         (p58)   add             r41=1,r41       } // (p20)
204 { .mfb; (p21)   st8             [r14]=r42,8       // *(rp++)=r
205         (p0)    nop.f           0x0
206         br.ctop.sptk    .L_bn_add_words_ctop    };;
207 .L_bn_add_words_cend:
208
209 { .mii;
210 (p59)   add             r8=1,r8         // return value
211         mov             pr=r9,0x1ffff
212         mov             ar.lc=r3        }
213 { .mbb; nop.b           0x0
214         br.ret.sptk.many        b0      };;
215 .endp   bn_add_words#
216
217 //
218 // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
219 //
220 .global bn_sub_words#
221 .proc   bn_sub_words#
222 .align  64
223 .skip   32      // makes the loop body aligned at 64-byte boundary
224 bn_sub_words:
225         .prologue
226         .save   ar.pfs,r2
227 { .mii; alloc           r2=ar.pfs,4,12,0,16
228         cmp4.le         p6,p0=r35,r0    };;
229 { .mfb; mov             r8=r0                   // return value
230 (p6)    br.ret.spnt.many        b0      };;
231
232 { .mib; sub             r10=r35,r0,1
233         .save   ar.lc,r3
234         mov             r3=ar.lc
235         brp.loop.imp    .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
236                                         }
237         .body
238 { .mib; ADDP            r14=0,r32               // rp
239         mov             r9=pr           };;
240 { .mii; ADDP            r15=0,r33               // ap
241         mov             ar.lc=r10
242         mov             ar.ec=6         }
243 { .mib; ADDP            r16=0,r34               // bp
244         mov             pr.rot=1<<16    };;
245
246 .L_bn_sub_words_ctop:
247 { .mii; (p16)   ld8             r32=[r16],8       // b=*(bp++)
248         (p18)   sub             r39=r37,r34
249         (p19)   cmp.gtu.unc     p56,p0=r40,r38  }
250 { .mfb; (p0)    nop.m           0x0
251         (p0)    nop.f           0x0
252         (p0)    nop.b           0x0             }
253 { .mii; (p16)   ld8             r35=[r15],8       // a=*(ap++)
254         (p58)   cmp.eq.or       p57,p0=0,r41      // (p20)
255         (p58)   add             r41=-1,r41      } // (p20)
256 { .mbb; (p21)   st8             [r14]=r42,8       // *(rp++)=r
257         (p0)    nop.b           0x0
258         br.ctop.sptk    .L_bn_sub_words_ctop    };;
259 .L_bn_sub_words_cend:
260
261 { .mii;
262 (p59)   add             r8=1,r8         // return value
263         mov             pr=r9,0x1ffff
264         mov             ar.lc=r3        }
265 { .mbb; nop.b           0x0
266         br.ret.sptk.many        b0      };;
267 .endp   bn_sub_words#
268 #endif
269
270 #if 0
271 #define XMA_TEMPTATION
272 #endif
273
274 #if 1
275 //
276 // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
277 //
278 .global bn_mul_words#
279 .proc   bn_mul_words#
280 .align  64
281 .skip   32      // makes the loop body aligned at 64-byte boundary
282 bn_mul_words:
283         .prologue
284         .save   ar.pfs,r2
285 #ifdef XMA_TEMPTATION
286 { .mfi; alloc           r2=ar.pfs,4,0,0,0       };;
287 #else
288 { .mfi; alloc           r2=ar.pfs,4,12,0,16     };;
289 #endif
290 { .mib; mov             r8=r0                   // return value
291         cmp4.le         p6,p0=r34,r0
292 (p6)    br.ret.spnt.many        b0              };;
293
294 { .mii; sub     r10=r34,r0,1
295         .save   ar.lc,r3
296         mov     r3=ar.lc
297         mov     r9=pr                   };;
298
299         .body
300 { .mib; setf.sig        f8=r35  // w
301         mov             pr.rot=0x800001<<16
302                         // ------^----- serves as (p50) at first (p27)
303         brp.loop.imp    .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
304                                         }
305
306 #ifndef XMA_TEMPTATION
307
308 { .mmi; ADDP            r14=0,r32       // rp
309         ADDP            r15=0,r33       // ap
310         mov             ar.lc=r10       }
311 { .mmi; mov             r40=0           // serves as r35 at first (p27)
312         mov             ar.ec=13        };;
313
314 // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
315 // L2 cache (i.e. 9 ticks away) as floating point load/store instructions
316 // bypass L1 cache and L2 latency is actually best-case scenario for
317 // ldf8. The loop is not scalable and shall run in 2*(n+12) even on
318 // "wider" IA-64 implementations. It's a trade-off here. n+24 loop
319 // would give us ~5% in *overall* performance improvement on "wider"
320 // IA-64, but would hurt Itanium for about same because of longer
321 // epilogue. As it's a matter of few percents in either case I've
322 // chosen to trade the scalability for development time (you can see
323 // this very instruction sequence in bn_mul_add_words loop which in
324 // turn is scalable).
325 .L_bn_mul_words_ctop:
326 { .mfi; (p25)   getf.sig        r36=f52                 // low
327         (p21)   xmpy.lu         f48=f37,f8
328         (p28)   cmp.ltu         p54,p50=r41,r39 }
329 { .mfi; (p16)   ldf8            f32=[r15],8
330         (p21)   xmpy.hu         f40=f37,f8
331         (p0)    nop.i           0x0             };;
332 { .mii; (p25)   getf.sig        r32=f44                 // high
333         .pred.rel       "mutex",p50,p54
334         (p50)   add             r40=r38,r35             // (p27)
335         (p54)   add             r40=r38,r35,1   }       // (p27)
336 { .mfb; (p28)   st8             [r14]=r41,8
337         (p0)    nop.f           0x0
338         br.ctop.sptk    .L_bn_mul_words_ctop    };;
339 .L_bn_mul_words_cend:
340
341 { .mii; nop.m           0x0
342 .pred.rel       "mutex",p51,p55
343 (p51)   add             r8=r36,r0
344 (p55)   add             r8=r36,r0,1     }
345 { .mfb; nop.m   0x0
346         nop.f   0x0
347         nop.b   0x0                     }
348
349 #else   // XMA_TEMPTATION
350
351         setf.sig        f37=r0  // serves as carry at (p18) tick
352         mov             ar.lc=r10
353         mov             ar.ec=5;;
354
355 // Most of you examining this code very likely wonder why in the name
356 // of Intel the following loop is commented out? Indeed, it looks so
357 // neat that you find it hard to believe that it's something wrong
358 // with it, right? The catch is that every iteration depends on the
359 // result from previous one and the latter isn't available instantly.
360 // The loop therefore spins at the latency of xma minus 1, or in other
361 // words at 6*(n+4) ticks:-( Compare to the "production" loop above
362 // that runs in 2*(n+11) where the low latency problem is worked around
363 // by moving the dependency to one-tick latent interger ALU. Note that
364 // "distance" between ldf8 and xma is not latency of ldf8, but the
365 // *difference* between xma and ldf8 latencies.
366 .L_bn_mul_words_ctop:
367 { .mfi; (p16)   ldf8            f32=[r33],8
368         (p18)   xma.hu          f38=f34,f8,f39  }
369 { .mfb; (p20)   stf8            [r32]=f37,8
370         (p18)   xma.lu          f35=f34,f8,f39
371         br.ctop.sptk    .L_bn_mul_words_ctop    };;
372 .L_bn_mul_words_cend:
373
374         getf.sig        r8=f41          // the return value
375
376 #endif  // XMA_TEMPTATION
377
378 { .mii; nop.m           0x0
379         mov             pr=r9,0x1ffff
380         mov             ar.lc=r3        }
381 { .mfb; rum             1<<5            // clear um.mfh
382         nop.f           0x0
383         br.ret.sptk.many        b0      };;
384 .endp   bn_mul_words#
385 #endif
386
387 #if 1
388 //
389 // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
390 //
391 .global bn_mul_add_words#
392 .proc   bn_mul_add_words#
393 .align  64
394 .skip   48      // makes the loop body aligned at 64-byte boundary
395 bn_mul_add_words:
396         .prologue
397         .save   ar.pfs,r2
398 { .mmi; alloc           r2=ar.pfs,4,4,0,8
399         cmp4.le         p6,p0=r34,r0
400         .save   ar.lc,r3
401         mov             r3=ar.lc        };;
402 { .mib; mov             r8=r0           // return value
403         sub             r10=r34,r0,1
404 (p6)    br.ret.spnt.many        b0      };;
405
406         .body
407 { .mib; setf.sig        f8=r35          // w
408         .save   pr,r9
409         mov             r9=pr
410         brp.loop.imp    .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
411                                         }
412 { .mmi; ADDP            r14=0,r32       // rp
413         ADDP            r15=0,r33       // ap
414         mov             ar.lc=r10       }
415 { .mii; ADDP            r16=0,r32       // rp copy
416         mov             pr.rot=0x2001<<16
417                         // ------^----- serves as (p40) at first (p27)
418         mov             ar.ec=11        };;
419
420 // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
421 // Itanium 2. Yes, unlike previous versions it scales:-) Previous
422 // version was peforming *all* additions in IALU and was starving
423 // for those even on Itanium 2. In this version one addition is
424 // moved to FPU and is folded with multiplication. This is at cost
425 // of propogating the result from previous call to this subroutine
426 // to L2 cache... In other words negligible even for shorter keys.
427 // *Overall* performance improvement [over previous version] varies
428 // from 11 to 22 percent depending on key length.
429 .L_bn_mul_add_words_ctop:
430 .pred.rel       "mutex",p40,p42
431 { .mfi; (p23)   getf.sig        r36=f45                 // low
432         (p20)   xma.lu          f42=f36,f8,f50          // low
433         (p40)   add             r39=r39,r35     }       // (p27)
434 { .mfi; (p16)   ldf8            f32=[r15],8             // *(ap++)
435         (p20)   xma.hu          f36=f36,f8,f50          // high
436         (p42)   add             r39=r39,r35,1   };;     // (p27)
437 { .mmi; (p24)   getf.sig        r32=f40                 // high
438         (p16)   ldf8            f46=[r16],8             // *(rp1++)
439         (p40)   cmp.ltu         p41,p39=r39,r35 }       // (p27)
440 { .mib; (p26)   st8             [r14]=r39,8             // *(rp2++)
441         (p42)   cmp.leu         p41,p39=r39,r35         // (p27)
442         br.ctop.sptk    .L_bn_mul_add_words_ctop};;
443 .L_bn_mul_add_words_cend:
444
445 { .mmi; .pred.rel       "mutex",p40,p42
446 (p40)   add             r8=r35,r0
447 (p42)   add             r8=r35,r0,1
448         mov             pr=r9,0x1ffff   }
449 { .mib; rum             1<<5            // clear um.mfh
450         mov             ar.lc=r3
451         br.ret.sptk.many        b0      };;
452 .endp   bn_mul_add_words#
453 #endif
454
455 #if 1
456 //
457 // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
458 //
459 .global bn_sqr_words#
460 .proc   bn_sqr_words#
461 .align  64
462 .skip   32      // makes the loop body aligned at 64-byte boundary 
463 bn_sqr_words:
464         .prologue
465         .save   ar.pfs,r2
466 { .mii; alloc           r2=ar.pfs,3,0,0,0
467         sxt4            r34=r34         };;
468 { .mii; cmp.le          p6,p0=r34,r0
469         mov             r8=r0           }       // return value
470 { .mfb; ADDP            r32=0,r32
471         nop.f           0x0
472 (p6)    br.ret.spnt.many        b0      };;
473
474 { .mii; sub     r10=r34,r0,1
475         .save   ar.lc,r3
476         mov     r3=ar.lc
477         .save   pr,r9
478         mov     r9=pr                   };;
479
480         .body
481 { .mib; ADDP            r33=0,r33
482         mov             pr.rot=1<<16
483         brp.loop.imp    .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
484                                         }
485 { .mii; add             r34=8,r32
486         mov             ar.lc=r10
487         mov             ar.ec=18        };;
488
489 // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
490 // possible to compress the epilogue (I'm getting tired to write this
491 // comment over and over) and get down to 2*n+16 at the cost of
492 // scalability. The decision will very likely be reconsidered after the
493 // benchmark program is profiled. I.e. if perfomance gain on Itanium
494 // will appear larger than loss on "wider" IA-64, then the loop should
495 // be explicitely split and the epilogue compressed.
496 .L_bn_sqr_words_ctop:
497 { .mfi; (p16)   ldf8            f32=[r33],8
498         (p25)   xmpy.lu         f42=f41,f41
499         (p0)    nop.i           0x0             }
500 { .mib; (p33)   stf8            [r32]=f50,16
501         (p0)    nop.i           0x0
502         (p0)    nop.b           0x0             }
503 { .mfi; (p0)    nop.m           0x0
504         (p25)   xmpy.hu         f52=f41,f41
505         (p0)    nop.i           0x0             }
506 { .mib; (p33)   stf8            [r34]=f60,16
507         (p0)    nop.i           0x0
508         br.ctop.sptk    .L_bn_sqr_words_ctop    };;
509 .L_bn_sqr_words_cend:
510
511 { .mii; nop.m           0x0
512         mov             pr=r9,0x1ffff
513         mov             ar.lc=r3        }
514 { .mfb; rum             1<<5            // clear um.mfh
515         nop.f           0x0
516         br.ret.sptk.many        b0      };;
517 .endp   bn_sqr_words#
518 #endif
519
520 #if 1
521 // Apparently we win nothing by implementing special bn_sqr_comba8.
522 // Yes, it is possible to reduce the number of multiplications by
523 // almost factor of two, but then the amount of additions would
524 // increase by factor of two (as we would have to perform those
525 // otherwise performed by xma ourselves). Normally we would trade
526 // anyway as multiplications are way more expensive, but not this
527 // time... Multiplication kernel is fully pipelined and as we drain
528 // one 128-bit multiplication result per clock cycle multiplications
529 // are effectively as inexpensive as additions. Special implementation
530 // might become of interest for "wider" IA-64 implementation as you'll
531 // be able to get through the multiplication phase faster (there won't
532 // be any stall issues as discussed in the commentary section below and
533 // you therefore will be able to employ all 4 FP units)... But these
534 // Itanium days it's simply too hard to justify the effort so I just
535 // drop down to bn_mul_comba8 code:-)
536 //
537 // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
538 //
539 .global bn_sqr_comba8#
540 .proc   bn_sqr_comba8#
541 .align  64
542 bn_sqr_comba8:
543         .prologue
544         .save   ar.pfs,r2
545 #if defined(_HPUX_SOURCE) && !defined(_LP64)
546 { .mii; alloc   r2=ar.pfs,2,1,0,0
547         addp4   r33=0,r33
548         addp4   r32=0,r32               };;
549 { .mii;
550 #else
551 { .mii; alloc   r2=ar.pfs,2,1,0,0
552 #endif
553         mov     r34=r33
554         add     r14=8,r33               };;
555         .body
556 { .mii; add     r17=8,r34
557         add     r15=16,r33
558         add     r18=16,r34              }
559 { .mfb; add     r16=24,r33
560         br      .L_cheat_entry_point8   };;
561 .endp   bn_sqr_comba8#
562 #endif
563
564 #if 1
565 // I've estimated this routine to run in ~120 ticks, but in reality
566 // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
567 // cycles consumed for instructions fetch? Or did I misinterpret some
568 // clause in Itanium Âµ-architecture manual? Comments are welcomed and
569 // highly appreciated.
570 //
571 // On Itanium 2 it takes ~190 ticks. This is because of stalls on
572 // result from getf.sig. I do nothing about it at this point for
573 // reasons depicted below.
574 //
575 // However! It should be noted that even 160 ticks is darn good result
576 // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
577 // C version (compiled with gcc with inline assembler). I really
578 // kicked compiler's butt here, didn't I? Yeah! This brings us to the
579 // following statement. It's damn shame that this routine isn't called
580 // very often nowadays! According to the profiler most CPU time is
581 // consumed by bn_mul_add_words called from BN_from_montgomery. In
582 // order to estimate what we're missing, I've compared the performance
583 // of this routine against "traditional" implementation, i.e. against
584 // following routine:
585 //
586 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
587 // {    r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
588 //      r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
589 //      r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
590 //      r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
591 //      r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
592 //      r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
593 //      r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
594 //      r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
595 // }
596 //
597 // The one below is over 8 times faster than the one above:-( Even
598 // more reasons to "combafy" bn_mul_add_mont...
599 //
600 // And yes, this routine really made me wish there were an optimizing
601 // assembler! It also feels like it deserves a dedication.
602 //
603 //      To my wife for being there and to my kids...
604 //
605 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
606 //
607 #define carry1  r14
608 #define carry2  r15
609 #define carry3  r34
610 .global bn_mul_comba8#
611 .proc   bn_mul_comba8#
612 .align  64
613 bn_mul_comba8:
614         .prologue
615         .save   ar.pfs,r2
616 #if defined(_HPUX_SOURCE) && !defined(_LP64)
617 { .mii; alloc   r2=ar.pfs,3,0,0,0
618         addp4   r33=0,r33
619         addp4   r34=0,r34               };;
620 { .mii; addp4   r32=0,r32
621 #else
622 { .mii; alloc   r2=ar.pfs,3,0,0,0
623 #endif
624         add     r14=8,r33
625         add     r17=8,r34               }
626         .body
627 { .mii; add     r15=16,r33
628         add     r18=16,r34
629         add     r16=24,r33              }
630 .L_cheat_entry_point8:
631 { .mmi; add     r19=24,r34
632
633         ldf8    f32=[r33],32            };;
634
635 { .mmi; ldf8    f120=[r34],32
636         ldf8    f121=[r17],32           }
637 { .mmi; ldf8    f122=[r18],32
638         ldf8    f123=[r19],32           };;
639 { .mmi; ldf8    f124=[r34]
640         ldf8    f125=[r17]              }
641 { .mmi; ldf8    f126=[r18]
642         ldf8    f127=[r19]              }
643
644 { .mmi; ldf8    f33=[r14],32
645         ldf8    f34=[r15],32            }
646 { .mmi; ldf8    f35=[r16],32;;
647         ldf8    f36=[r33]               }
648 { .mmi; ldf8    f37=[r14]
649         ldf8    f38=[r15]               }
650 { .mfi; ldf8    f39=[r16]
651 // -------\ Entering multiplier's heaven /-------
652 // ------------\                    /------------
653 // -----------------\          /-----------------
654 // ----------------------\/----------------------
655                 xma.hu  f41=f32,f120,f0         }
656 { .mfi;         xma.lu  f40=f32,f120,f0         };; // (*)
657 { .mfi;         xma.hu  f51=f32,f121,f0         }
658 { .mfi;         xma.lu  f50=f32,f121,f0         };;
659 { .mfi;         xma.hu  f61=f32,f122,f0         }
660 { .mfi;         xma.lu  f60=f32,f122,f0         };;
661 { .mfi;         xma.hu  f71=f32,f123,f0         }
662 { .mfi;         xma.lu  f70=f32,f123,f0         };;
663 { .mfi;         xma.hu  f81=f32,f124,f0         }
664 { .mfi;         xma.lu  f80=f32,f124,f0         };;
665 { .mfi;         xma.hu  f91=f32,f125,f0         }
666 { .mfi;         xma.lu  f90=f32,f125,f0         };;
667 { .mfi;         xma.hu  f101=f32,f126,f0        }
668 { .mfi;         xma.lu  f100=f32,f126,f0        };;
669 { .mfi;         xma.hu  f111=f32,f127,f0        }
670 { .mfi;         xma.lu  f110=f32,f127,f0        };;//
671 // (*)  You can argue that splitting at every second bundle would
672 //      prevent "wider" IA-64 implementations from achieving the peak
673 //      performance. Well, not really... The catch is that if you
674 //      intend to keep 4 FP units busy by splitting at every fourth
675 //      bundle and thus perform these 16 multiplications in 4 ticks,
676 //      the first bundle *below* would stall because the result from
677 //      the first xma bundle *above* won't be available for another 3
678 //      ticks (if not more, being an optimist, I assume that "wider"
679 //      implementation will have same latency:-). This stall will hold
680 //      you back and the performance would be as if every second bundle
681 //      were split *anyway*...
682 { .mfi; getf.sig        r16=f40
683                 xma.hu  f42=f33,f120,f41
684         add             r33=8,r32               }
685 { .mfi;         xma.lu  f41=f33,f120,f41        };;
686 { .mfi; getf.sig        r24=f50
687                 xma.hu  f52=f33,f121,f51        }
688 { .mfi;         xma.lu  f51=f33,f121,f51        };;
689 { .mfi; st8             [r32]=r16,16
690                 xma.hu  f62=f33,f122,f61        }
691 { .mfi;         xma.lu  f61=f33,f122,f61        };;
692 { .mfi;         xma.hu  f72=f33,f123,f71        }
693 { .mfi;         xma.lu  f71=f33,f123,f71        };;
694 { .mfi;         xma.hu  f82=f33,f124,f81        }
695 { .mfi;         xma.lu  f81=f33,f124,f81        };;
696 { .mfi;         xma.hu  f92=f33,f125,f91        }
697 { .mfi;         xma.lu  f91=f33,f125,f91        };;
698 { .mfi;         xma.hu  f102=f33,f126,f101      }
699 { .mfi;         xma.lu  f101=f33,f126,f101      };;
700 { .mfi;         xma.hu  f112=f33,f127,f111      }
701 { .mfi;         xma.lu  f111=f33,f127,f111      };;//
702 //-------------------------------------------------//
703 { .mfi; getf.sig        r25=f41
704                 xma.hu  f43=f34,f120,f42        }
705 { .mfi;         xma.lu  f42=f34,f120,f42        };;
706 { .mfi; getf.sig        r16=f60
707                 xma.hu  f53=f34,f121,f52        }
708 { .mfi;         xma.lu  f52=f34,f121,f52        };;
709 { .mfi; getf.sig        r17=f51
710                 xma.hu  f63=f34,f122,f62
711         add             r25=r25,r24             }
712 { .mfi;         xma.lu  f62=f34,f122,f62
713         mov             carry1=0                };;
714 { .mfi; cmp.ltu         p6,p0=r25,r24
715                 xma.hu  f73=f34,f123,f72        }
716 { .mfi;         xma.lu  f72=f34,f123,f72        };;
717 { .mfi; st8             [r33]=r25,16
718                 xma.hu  f83=f34,f124,f82
719 (p6)    add             carry1=1,carry1         }
720 { .mfi;         xma.lu  f82=f34,f124,f82        };;
721 { .mfi;         xma.hu  f93=f34,f125,f92        }
722 { .mfi;         xma.lu  f92=f34,f125,f92        };;
723 { .mfi;         xma.hu  f103=f34,f126,f102      }
724 { .mfi;         xma.lu  f102=f34,f126,f102      };;
725 { .mfi;         xma.hu  f113=f34,f127,f112      }
726 { .mfi;         xma.lu  f112=f34,f127,f112      };;//
727 //-------------------------------------------------//
728 { .mfi; getf.sig        r18=f42
729                 xma.hu  f44=f35,f120,f43
730         add             r17=r17,r16             }
731 { .mfi;         xma.lu  f43=f35,f120,f43        };;
732 { .mfi; getf.sig        r24=f70
733                 xma.hu  f54=f35,f121,f53        }
734 { .mfi; mov             carry2=0
735                 xma.lu  f53=f35,f121,f53        };;
736 { .mfi; getf.sig        r25=f61
737                 xma.hu  f64=f35,f122,f63
738         cmp.ltu         p7,p0=r17,r16           }
739 { .mfi; add             r18=r18,r17
740                 xma.lu  f63=f35,f122,f63        };;
741 { .mfi; getf.sig        r26=f52
742                 xma.hu  f74=f35,f123,f73
743 (p7)    add             carry2=1,carry2         }
744 { .mfi; cmp.ltu         p7,p0=r18,r17
745                 xma.lu  f73=f35,f123,f73
746         add             r18=r18,carry1          };;
747 { .mfi;
748                 xma.hu  f84=f35,f124,f83
749 (p7)    add             carry2=1,carry2         }
750 { .mfi; cmp.ltu         p7,p0=r18,carry1
751                 xma.lu  f83=f35,f124,f83        };;
752 { .mfi; st8             [r32]=r18,16
753                 xma.hu  f94=f35,f125,f93
754 (p7)    add             carry2=1,carry2         }
755 { .mfi;         xma.lu  f93=f35,f125,f93        };;
756 { .mfi;         xma.hu  f104=f35,f126,f103      }
757 { .mfi;         xma.lu  f103=f35,f126,f103      };;
758 { .mfi;         xma.hu  f114=f35,f127,f113      }
759 { .mfi; mov             carry1=0
760                 xma.lu  f113=f35,f127,f113
761         add             r25=r25,r24             };;//
762 //-------------------------------------------------//
763 { .mfi; getf.sig        r27=f43
764                 xma.hu  f45=f36,f120,f44
765         cmp.ltu         p6,p0=r25,r24           }
766 { .mfi;         xma.lu  f44=f36,f120,f44        
767         add             r26=r26,r25             };;
768 { .mfi; getf.sig        r16=f80
769                 xma.hu  f55=f36,f121,f54
770 (p6)    add             carry1=1,carry1         }
771 { .mfi;         xma.lu  f54=f36,f121,f54        };;
772 { .mfi; getf.sig        r17=f71
773                 xma.hu  f65=f36,f122,f64
774         cmp.ltu         p6,p0=r26,r25           }
775 { .mfi;         xma.lu  f64=f36,f122,f64
776         add             r27=r27,r26             };;
777 { .mfi; getf.sig        r18=f62
778                 xma.hu  f75=f36,f123,f74
779 (p6)    add             carry1=1,carry1         }
780 { .mfi; cmp.ltu         p6,p0=r27,r26
781                 xma.lu  f74=f36,f123,f74
782         add             r27=r27,carry2          };;
783 { .mfi; getf.sig        r19=f53
784                 xma.hu  f85=f36,f124,f84
785 (p6)    add             carry1=1,carry1         }
786 { .mfi;         xma.lu  f84=f36,f124,f84
787         cmp.ltu         p6,p0=r27,carry2        };;
788 { .mfi; st8             [r33]=r27,16
789                 xma.hu  f95=f36,f125,f94
790 (p6)    add             carry1=1,carry1         }
791 { .mfi;         xma.lu  f94=f36,f125,f94        };;
792 { .mfi;         xma.hu  f105=f36,f126,f104      }
793 { .mfi; mov             carry2=0
794                 xma.lu  f104=f36,f126,f104
795         add             r17=r17,r16             };;
796 { .mfi;         xma.hu  f115=f36,f127,f114
797         cmp.ltu         p7,p0=r17,r16           }
798 { .mfi;         xma.lu  f114=f36,f127,f114
799         add             r18=r18,r17             };;//
800 //-------------------------------------------------//
801 { .mfi; getf.sig        r20=f44
802                 xma.hu  f46=f37,f120,f45
803 (p7)    add             carry2=1,carry2         }
804 { .mfi; cmp.ltu         p7,p0=r18,r17
805                 xma.lu  f45=f37,f120,f45
806         add             r19=r19,r18             };;
807 { .mfi; getf.sig        r24=f90
808                 xma.hu  f56=f37,f121,f55        }
809 { .mfi;         xma.lu  f55=f37,f121,f55        };;
810 { .mfi; getf.sig        r25=f81
811                 xma.hu  f66=f37,f122,f65
812 (p7)    add             carry2=1,carry2         }
813 { .mfi; cmp.ltu         p7,p0=r19,r18
814                 xma.lu  f65=f37,f122,f65
815         add             r20=r20,r19             };;
816 { .mfi; getf.sig        r26=f72
817                 xma.hu  f76=f37,f123,f75
818 (p7)    add             carry2=1,carry2         }
819 { .mfi; cmp.ltu         p7,p0=r20,r19
820                 xma.lu  f75=f37,f123,f75
821         add             r20=r20,carry1          };;
822 { .mfi; getf.sig        r27=f63
823                 xma.hu  f86=f37,f124,f85
824 (p7)    add             carry2=1,carry2         }
825 { .mfi;         xma.lu  f85=f37,f124,f85
826         cmp.ltu         p7,p0=r20,carry1        };;
827 { .mfi; getf.sig        r28=f54
828                 xma.hu  f96=f37,f125,f95
829 (p7)    add             carry2=1,carry2         }
830 { .mfi; st8             [r32]=r20,16
831                 xma.lu  f95=f37,f125,f95        };;
832 { .mfi;         xma.hu  f106=f37,f126,f105      }
833 { .mfi; mov             carry1=0
834                 xma.lu  f105=f37,f126,f105
835         add             r25=r25,r24             };;
836 { .mfi;         xma.hu  f116=f37,f127,f115
837         cmp.ltu         p6,p0=r25,r24           }
838 { .mfi;         xma.lu  f115=f37,f127,f115
839         add             r26=r26,r25             };;//
840 //-------------------------------------------------//
841 { .mfi; getf.sig        r29=f45
842                 xma.hu  f47=f38,f120,f46
843 (p6)    add             carry1=1,carry1         }
844 { .mfi; cmp.ltu         p6,p0=r26,r25
845                 xma.lu  f46=f38,f120,f46
846         add             r27=r27,r26             };;
847 { .mfi; getf.sig        r16=f100
848                 xma.hu  f57=f38,f121,f56
849 (p6)    add             carry1=1,carry1         }
850 { .mfi; cmp.ltu         p6,p0=r27,r26
851                 xma.lu  f56=f38,f121,f56
852         add             r28=r28,r27             };;
853 { .mfi; getf.sig        r17=f91
854                 xma.hu  f67=f38,f122,f66
855 (p6)    add             carry1=1,carry1         }
856 { .mfi; cmp.ltu         p6,p0=r28,r27
857                 xma.lu  f66=f38,f122,f66
858         add             r29=r29,r28             };;
859 { .mfi; getf.sig        r18=f82
860                 xma.hu  f77=f38,f123,f76
861 (p6)    add             carry1=1,carry1         }
862 { .mfi; cmp.ltu         p6,p0=r29,r28
863                 xma.lu  f76=f38,f123,f76
864         add             r29=r29,carry2          };;
865 { .mfi; getf.sig        r19=f73
866                 xma.hu  f87=f38,f124,f86
867 (p6)    add             carry1=1,carry1         }
868 { .mfi;         xma.lu  f86=f38,f124,f86
869         cmp.ltu         p6,p0=r29,carry2        };;
870 { .mfi; getf.sig        r20=f64
871                 xma.hu  f97=f38,f125,f96
872 (p6)    add             carry1=1,carry1         }
873 { .mfi; st8             [r33]=r29,16
874                 xma.lu  f96=f38,f125,f96        };;
875 { .mfi; getf.sig        r21=f55
876                 xma.hu  f107=f38,f126,f106      }
877 { .mfi; mov             carry2=0
878                 xma.lu  f106=f38,f126,f106
879         add             r17=r17,r16             };;
880 { .mfi;         xma.hu  f117=f38,f127,f116
881         cmp.ltu         p7,p0=r17,r16           }
882 { .mfi;         xma.lu  f116=f38,f127,f116
883         add             r18=r18,r17             };;//
884 //-------------------------------------------------//
885 { .mfi; getf.sig        r22=f46
886                 xma.hu  f48=f39,f120,f47
887 (p7)    add             carry2=1,carry2         }
888 { .mfi; cmp.ltu         p7,p0=r18,r17
889                 xma.lu  f47=f39,f120,f47
890         add             r19=r19,r18             };;
891 { .mfi; getf.sig        r24=f110
892                 xma.hu  f58=f39,f121,f57
893 (p7)    add             carry2=1,carry2         }
894 { .mfi; cmp.ltu         p7,p0=r19,r18
895                 xma.lu  f57=f39,f121,f57
896         add             r20=r20,r19             };;
897 { .mfi; getf.sig        r25=f101
898                 xma.hu  f68=f39,f122,f67
899 (p7)    add             carry2=1,carry2         }
900 { .mfi; cmp.ltu         p7,p0=r20,r19
901                 xma.lu  f67=f39,f122,f67
902         add             r21=r21,r20             };;
903 { .mfi; getf.sig        r26=f92
904                 xma.hu  f78=f39,f123,f77
905 (p7)    add             carry2=1,carry2         }
906 { .mfi; cmp.ltu         p7,p0=r21,r20
907                 xma.lu  f77=f39,f123,f77
908         add             r22=r22,r21             };;
909 { .mfi; getf.sig        r27=f83
910                 xma.hu  f88=f39,f124,f87
911 (p7)    add             carry2=1,carry2         }
912 { .mfi; cmp.ltu         p7,p0=r22,r21
913                 xma.lu  f87=f39,f124,f87
914         add             r22=r22,carry1          };;
915 { .mfi; getf.sig        r28=f74
916                 xma.hu  f98=f39,f125,f97
917 (p7)    add             carry2=1,carry2         }
918 { .mfi;         xma.lu  f97=f39,f125,f97
919         cmp.ltu         p7,p0=r22,carry1        };;
920 { .mfi; getf.sig        r29=f65
921                 xma.hu  f108=f39,f126,f107
922 (p7)    add             carry2=1,carry2         }
923 { .mfi; st8             [r32]=r22,16
924                 xma.lu  f107=f39,f126,f107      };;
925 { .mfi; getf.sig        r30=f56
926                 xma.hu  f118=f39,f127,f117      }
927 { .mfi;         xma.lu  f117=f39,f127,f117      };;//
928 //-------------------------------------------------//
929 // Leaving muliplier's heaven... Quite a ride, huh?
930
931 { .mii; getf.sig        r31=f47
932         add             r25=r25,r24
933         mov             carry1=0                };;
934 { .mii;         getf.sig        r16=f111
935         cmp.ltu         p6,p0=r25,r24
936         add             r26=r26,r25             };;
937 { .mfb;         getf.sig        r17=f102        }
938 { .mii;
939 (p6)    add             carry1=1,carry1
940         cmp.ltu         p6,p0=r26,r25
941         add             r27=r27,r26             };;
942 { .mfb; nop.m   0x0                             }
943 { .mii;
944 (p6)    add             carry1=1,carry1
945         cmp.ltu         p6,p0=r27,r26
946         add             r28=r28,r27             };;
947 { .mii;         getf.sig        r18=f93
948                 add             r17=r17,r16
949                 mov             carry3=0        }
950 { .mii;
951 (p6)    add             carry1=1,carry1
952         cmp.ltu         p6,p0=r28,r27
953         add             r29=r29,r28             };;
954 { .mii;         getf.sig        r19=f84
955                 cmp.ltu         p7,p0=r17,r16   }
956 { .mii;
957 (p6)    add             carry1=1,carry1
958         cmp.ltu         p6,p0=r29,r28
959         add             r30=r30,r29             };;
960 { .mii;         getf.sig        r20=f75
961                 add             r18=r18,r17     }
962 { .mii;
963 (p6)    add             carry1=1,carry1
964         cmp.ltu         p6,p0=r30,r29
965         add             r31=r31,r30             };;
966 { .mfb;         getf.sig        r21=f66         }
967 { .mii; (p7)    add             carry3=1,carry3
968                 cmp.ltu         p7,p0=r18,r17
969                 add             r19=r19,r18     }
970 { .mfb; nop.m   0x0                             }
971 { .mii;
972 (p6)    add             carry1=1,carry1
973         cmp.ltu         p6,p0=r31,r30
974         add             r31=r31,carry2          };;
975 { .mfb;         getf.sig        r22=f57         }
976 { .mii; (p7)    add             carry3=1,carry3
977                 cmp.ltu         p7,p0=r19,r18
978                 add             r20=r20,r19     }
979 { .mfb; nop.m   0x0                             }
980 { .mii;
981 (p6)    add             carry1=1,carry1
982         cmp.ltu         p6,p0=r31,carry2        };;
983 { .mfb;         getf.sig        r23=f48         }
984 { .mii; (p7)    add             carry3=1,carry3
985                 cmp.ltu         p7,p0=r20,r19
986                 add             r21=r21,r20     }
987 { .mii;
988 (p6)    add             carry1=1,carry1         }
989 { .mfb; st8             [r33]=r31,16            };;
990
991 { .mfb; getf.sig        r24=f112                }
992 { .mii; (p7)    add             carry3=1,carry3
993                 cmp.ltu         p7,p0=r21,r20
994                 add             r22=r22,r21     };;
995 { .mfb; getf.sig        r25=f103                }
996 { .mii; (p7)    add             carry3=1,carry3
997                 cmp.ltu         p7,p0=r22,r21
998                 add             r23=r23,r22     };;
999 { .mfb; getf.sig        r26=f94                 }
1000 { .mii; (p7)    add             carry3=1,carry3
1001                 cmp.ltu         p7,p0=r23,r22
1002                 add             r23=r23,carry1  };;
1003 { .mfb; getf.sig        r27=f85                 }
1004 { .mii; (p7)    add             carry3=1,carry3
1005                 cmp.ltu         p7,p8=r23,carry1};;
1006 { .mii; getf.sig        r28=f76
1007         add             r25=r25,r24
1008         mov             carry1=0                }
1009 { .mii;         st8             [r32]=r23,16
1010         (p7)    add             carry2=1,carry3
1011         (p8)    add             carry2=0,carry3 };;
1012
1013 { .mfb; nop.m   0x0                             }
1014 { .mii; getf.sig        r29=f67
1015         cmp.ltu         p6,p0=r25,r24
1016         add             r26=r26,r25             };;
1017 { .mfb; getf.sig        r30=f58                 }
1018 { .mii;
1019 (p6)    add             carry1=1,carry1
1020         cmp.ltu         p6,p0=r26,r25
1021         add             r27=r27,r26             };;
1022 { .mfb;         getf.sig        r16=f113        }
1023 { .mii;
1024 (p6)    add             carry1=1,carry1
1025         cmp.ltu         p6,p0=r27,r26
1026         add             r28=r28,r27             };;
1027 { .mfb;         getf.sig        r17=f104        }
1028 { .mii;
1029 (p6)    add             carry1=1,carry1
1030         cmp.ltu         p6,p0=r28,r27
1031         add             r29=r29,r28             };;
1032 { .mfb;         getf.sig        r18=f95         }
1033 { .mii;
1034 (p6)    add             carry1=1,carry1
1035         cmp.ltu         p6,p0=r29,r28
1036         add             r30=r30,r29             };;
1037 { .mii;         getf.sig        r19=f86
1038                 add             r17=r17,r16
1039                 mov             carry3=0        }
1040 { .mii;
1041 (p6)    add             carry1=1,carry1
1042         cmp.ltu         p6,p0=r30,r29
1043         add             r30=r30,carry2          };;
1044 { .mii;         getf.sig        r20=f77
1045                 cmp.ltu         p7,p0=r17,r16
1046                 add             r18=r18,r17     }
1047 { .mii;
1048 (p6)    add             carry1=1,carry1
1049         cmp.ltu         p6,p0=r30,carry2        };;
1050 { .mfb;         getf.sig        r21=f68         }
1051 { .mii; st8             [r33]=r30,16
1052 (p6)    add             carry1=1,carry1         };;
1053
1054 { .mfb; getf.sig        r24=f114                }
1055 { .mii; (p7)    add             carry3=1,carry3
1056                 cmp.ltu         p7,p0=r18,r17
1057                 add             r19=r19,r18     };;
1058 { .mfb; getf.sig        r25=f105                }
1059 { .mii; (p7)    add             carry3=1,carry3
1060                 cmp.ltu         p7,p0=r19,r18
1061                 add             r20=r20,r19     };;
1062 { .mfb; getf.sig        r26=f96                 }
1063 { .mii; (p7)    add             carry3=1,carry3
1064                 cmp.ltu         p7,p0=r20,r19
1065                 add             r21=r21,r20     };;
1066 { .mfb; getf.sig        r27=f87                 }
1067 { .mii; (p7)    add             carry3=1,carry3
1068                 cmp.ltu         p7,p0=r21,r20
1069                 add             r21=r21,carry1  };;
1070 { .mib; getf.sig        r28=f78                 
1071         add             r25=r25,r24             }
1072 { .mib; (p7)    add             carry3=1,carry3
1073                 cmp.ltu         p7,p8=r21,carry1};;
1074 { .mii;         st8             [r32]=r21,16
1075         (p7)    add             carry2=1,carry3
1076         (p8)    add             carry2=0,carry3 }
1077
1078 { .mii; mov             carry1=0
1079         cmp.ltu         p6,p0=r25,r24
1080         add             r26=r26,r25             };;
1081 { .mfb;         getf.sig        r16=f115        }
1082 { .mii;
1083 (p6)    add             carry1=1,carry1
1084         cmp.ltu         p6,p0=r26,r25
1085         add             r27=r27,r26             };;
1086 { .mfb;         getf.sig        r17=f106        }
1087 { .mii;
1088 (p6)    add             carry1=1,carry1
1089         cmp.ltu         p6,p0=r27,r26
1090         add             r28=r28,r27             };;
1091 { .mfb;         getf.sig        r18=f97         }
1092 { .mii;
1093 (p6)    add             carry1=1,carry1
1094         cmp.ltu         p6,p0=r28,r27
1095         add             r28=r28,carry2          };;
1096 { .mib;         getf.sig        r19=f88
1097                 add             r17=r17,r16     }
1098 { .mib;
1099 (p6)    add             carry1=1,carry1
1100         cmp.ltu         p6,p0=r28,carry2        };;
1101 { .mii; st8             [r33]=r28,16
1102 (p6)    add             carry1=1,carry1         }
1103
1104 { .mii;         mov             carry2=0
1105                 cmp.ltu         p7,p0=r17,r16
1106                 add             r18=r18,r17     };;
1107 { .mfb; getf.sig        r24=f116                }
1108 { .mii; (p7)    add             carry2=1,carry2
1109                 cmp.ltu         p7,p0=r18,r17
1110                 add             r19=r19,r18     };;
1111 { .mfb; getf.sig        r25=f107                }
1112 { .mii; (p7)    add             carry2=1,carry2
1113                 cmp.ltu         p7,p0=r19,r18
1114                 add             r19=r19,carry1  };;
1115 { .mfb; getf.sig        r26=f98                 }
1116 { .mii; (p7)    add             carry2=1,carry2
1117                 cmp.ltu         p7,p0=r19,carry1};;
1118 { .mii;         st8             [r32]=r19,16
1119         (p7)    add             carry2=1,carry2 }
1120
1121 { .mfb; add             r25=r25,r24             };;
1122
1123 { .mfb;         getf.sig        r16=f117        }
1124 { .mii; mov             carry1=0
1125         cmp.ltu         p6,p0=r25,r24
1126         add             r26=r26,r25             };;
1127 { .mfb;         getf.sig        r17=f108        }
1128 { .mii;
1129 (p6)    add             carry1=1,carry1
1130         cmp.ltu         p6,p0=r26,r25
1131         add             r26=r26,carry2          };;
1132 { .mfb; nop.m   0x0                             }
1133 { .mii;
1134 (p6)    add             carry1=1,carry1
1135         cmp.ltu         p6,p0=r26,carry2        };;
1136 { .mii; st8             [r33]=r26,16
1137 (p6)    add             carry1=1,carry1         }
1138
1139 { .mfb;         add             r17=r17,r16     };;
1140 { .mfb; getf.sig        r24=f118                }
1141 { .mii;         mov             carry2=0
1142                 cmp.ltu         p7,p0=r17,r16
1143                 add             r17=r17,carry1  };;
1144 { .mii; (p7)    add             carry2=1,carry2
1145                 cmp.ltu         p7,p0=r17,carry1};;
1146 { .mii;         st8             [r32]=r17
1147         (p7)    add             carry2=1,carry2 };;
1148 { .mfb; add             r24=r24,carry2          };;
1149 { .mib; st8             [r33]=r24               }
1150
1151 { .mib; rum             1<<5            // clear um.mfh
1152         br.ret.sptk.many        b0      };;
1153 .endp   bn_mul_comba8#
1154 #undef  carry3
1155 #undef  carry2
1156 #undef  carry1
1157 #endif
1158
1159 #if 1
1160 // It's possible to make it faster (see comment to bn_sqr_comba8), but
1161 // I reckon it doesn't worth the effort. Basically because the routine
1162 // (actually both of them) practically never called... So I just play
1163 // same trick as with bn_sqr_comba8.
1164 //
1165 // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1166 //
1167 .global bn_sqr_comba4#
1168 .proc   bn_sqr_comba4#
1169 .align  64
1170 bn_sqr_comba4:
1171         .prologue
1172         .save   ar.pfs,r2
1173 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1174 { .mii; alloc   r2=ar.pfs,2,1,0,0
1175         addp4   r32=0,r32
1176         addp4   r33=0,r33               };;
1177 { .mii;
1178 #else
1179 { .mii; alloc   r2=ar.pfs,2,1,0,0
1180 #endif
1181         mov     r34=r33
1182         add     r14=8,r33               };;
1183         .body
1184 { .mii; add     r17=8,r34
1185         add     r15=16,r33
1186         add     r18=16,r34              }
1187 { .mfb; add     r16=24,r33
1188         br      .L_cheat_entry_point4   };;
1189 .endp   bn_sqr_comba4#
1190 #endif
1191
1192 #if 1
1193 // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1194 //
1195 // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1196 //
1197 #define carry1  r14
1198 #define carry2  r15
1199 .global bn_mul_comba4#
1200 .proc   bn_mul_comba4#
1201 .align  64
1202 bn_mul_comba4:
1203         .prologue
1204         .save   ar.pfs,r2
1205 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1206 { .mii; alloc   r2=ar.pfs,3,0,0,0
1207         addp4   r33=0,r33
1208         addp4   r34=0,r34               };;
1209 { .mii; addp4   r32=0,r32
1210 #else
1211 { .mii; alloc   r2=ar.pfs,3,0,0,0
1212 #endif
1213         add     r14=8,r33
1214         add     r17=8,r34               }
1215         .body
1216 { .mii; add     r15=16,r33
1217         add     r18=16,r34
1218         add     r16=24,r33              };;
1219 .L_cheat_entry_point4:
1220 { .mmi; add     r19=24,r34
1221
1222         ldf8    f32=[r33]               }
1223
1224 { .mmi; ldf8    f120=[r34]
1225         ldf8    f121=[r17]              };;
1226 { .mmi; ldf8    f122=[r18]
1227         ldf8    f123=[r19]              }
1228
1229 { .mmi; ldf8    f33=[r14]
1230         ldf8    f34=[r15]               }
1231 { .mfi; ldf8    f35=[r16]
1232
1233                 xma.hu  f41=f32,f120,f0         }
1234 { .mfi;         xma.lu  f40=f32,f120,f0         };;
1235 { .mfi;         xma.hu  f51=f32,f121,f0         }
1236 { .mfi;         xma.lu  f50=f32,f121,f0         };;
1237 { .mfi;         xma.hu  f61=f32,f122,f0         }
1238 { .mfi;         xma.lu  f60=f32,f122,f0         };;
1239 { .mfi;         xma.hu  f71=f32,f123,f0         }
1240 { .mfi;         xma.lu  f70=f32,f123,f0         };;//
1241 // Major stall takes place here, and 3 more places below. Result from
1242 // first xma is not available for another 3 ticks.
1243 { .mfi; getf.sig        r16=f40
1244                 xma.hu  f42=f33,f120,f41
1245         add             r33=8,r32               }
1246 { .mfi;         xma.lu  f41=f33,f120,f41        };;
1247 { .mfi; getf.sig        r24=f50
1248                 xma.hu  f52=f33,f121,f51        }
1249 { .mfi;         xma.lu  f51=f33,f121,f51        };;
1250 { .mfi; st8             [r32]=r16,16
1251                 xma.hu  f62=f33,f122,f61        }
1252 { .mfi;         xma.lu  f61=f33,f122,f61        };;
1253 { .mfi;         xma.hu  f72=f33,f123,f71        }
1254 { .mfi;         xma.lu  f71=f33,f123,f71        };;//
1255 //-------------------------------------------------//
1256 { .mfi; getf.sig        r25=f41
1257                 xma.hu  f43=f34,f120,f42        }
1258 { .mfi;         xma.lu  f42=f34,f120,f42        };;
1259 { .mfi; getf.sig        r16=f60
1260                 xma.hu  f53=f34,f121,f52        }
1261 { .mfi;         xma.lu  f52=f34,f121,f52        };;
1262 { .mfi; getf.sig        r17=f51
1263                 xma.hu  f63=f34,f122,f62
1264         add             r25=r25,r24             }
1265 { .mfi; mov             carry1=0
1266                 xma.lu  f62=f34,f122,f62        };;
1267 { .mfi; st8             [r33]=r25,16
1268                 xma.hu  f73=f34,f123,f72
1269         cmp.ltu         p6,p0=r25,r24           }
1270 { .mfi;         xma.lu  f72=f34,f123,f72        };;//
1271 //-------------------------------------------------//
1272 { .mfi; getf.sig        r18=f42
1273                 xma.hu  f44=f35,f120,f43
1274 (p6)    add             carry1=1,carry1         }
1275 { .mfi; add             r17=r17,r16
1276                 xma.lu  f43=f35,f120,f43
1277         mov             carry2=0                };;
1278 { .mfi; getf.sig        r24=f70
1279                 xma.hu  f54=f35,f121,f53
1280         cmp.ltu         p7,p0=r17,r16           }
1281 { .mfi;         xma.lu  f53=f35,f121,f53        };;
1282 { .mfi; getf.sig        r25=f61
1283                 xma.hu  f64=f35,f122,f63
1284         add             r18=r18,r17             }
1285 { .mfi;         xma.lu  f63=f35,f122,f63
1286 (p7)    add             carry2=1,carry2         };;
1287 { .mfi; getf.sig        r26=f52
1288                 xma.hu  f74=f35,f123,f73
1289         cmp.ltu         p7,p0=r18,r17           }
1290 { .mfi;         xma.lu  f73=f35,f123,f73
1291         add             r18=r18,carry1          };;
1292 //-------------------------------------------------//
1293 { .mii; st8             [r32]=r18,16
1294 (p7)    add             carry2=1,carry2
1295         cmp.ltu         p7,p0=r18,carry1        };;
1296
1297 { .mfi; getf.sig        r27=f43 // last major stall
1298 (p7)    add             carry2=1,carry2         };;
1299 { .mii;         getf.sig        r16=f71
1300         add             r25=r25,r24
1301         mov             carry1=0                };;
1302 { .mii;         getf.sig        r17=f62 
1303         cmp.ltu         p6,p0=r25,r24
1304         add             r26=r26,r25             };;
1305 { .mii;
1306 (p6)    add             carry1=1,carry1
1307         cmp.ltu         p6,p0=r26,r25
1308         add             r27=r27,r26             };;
1309 { .mii;
1310 (p6)    add             carry1=1,carry1
1311         cmp.ltu         p6,p0=r27,r26
1312         add             r27=r27,carry2          };;
1313 { .mii;         getf.sig        r18=f53
1314 (p6)    add             carry1=1,carry1
1315         cmp.ltu         p6,p0=r27,carry2        };;
1316 { .mfi; st8             [r33]=r27,16
1317 (p6)    add             carry1=1,carry1         }
1318
1319 { .mii;         getf.sig        r19=f44
1320                 add             r17=r17,r16
1321                 mov             carry2=0        };;
1322 { .mii; getf.sig        r24=f72
1323                 cmp.ltu         p7,p0=r17,r16
1324                 add             r18=r18,r17     };;
1325 { .mii; (p7)    add             carry2=1,carry2
1326                 cmp.ltu         p7,p0=r18,r17
1327                 add             r19=r19,r18     };;
1328 { .mii; (p7)    add             carry2=1,carry2
1329                 cmp.ltu         p7,p0=r19,r18
1330                 add             r19=r19,carry1  };;
1331 { .mii; getf.sig        r25=f63
1332         (p7)    add             carry2=1,carry2
1333                 cmp.ltu         p7,p0=r19,carry1};;
1334 { .mii;         st8             [r32]=r19,16
1335         (p7)    add             carry2=1,carry2 }
1336
1337 { .mii; getf.sig        r26=f54
1338         add             r25=r25,r24
1339         mov             carry1=0                };;
1340 { .mii;         getf.sig        r16=f73
1341         cmp.ltu         p6,p0=r25,r24
1342         add             r26=r26,r25             };;
1343 { .mii;
1344 (p6)    add             carry1=1,carry1
1345         cmp.ltu         p6,p0=r26,r25
1346         add             r26=r26,carry2          };;
1347 { .mii;         getf.sig        r17=f64
1348 (p6)    add             carry1=1,carry1
1349         cmp.ltu         p6,p0=r26,carry2        };;
1350 { .mii; st8             [r33]=r26,16
1351 (p6)    add             carry1=1,carry1         }
1352
1353 { .mii; getf.sig        r24=f74
1354                 add             r17=r17,r16     
1355                 mov             carry2=0        };;
1356 { .mii;         cmp.ltu         p7,p0=r17,r16
1357                 add             r17=r17,carry1  };;
1358
1359 { .mii; (p7)    add             carry2=1,carry2
1360                 cmp.ltu         p7,p0=r17,carry1};;
1361 { .mii;         st8             [r32]=r17,16
1362         (p7)    add             carry2=1,carry2 };;
1363
1364 { .mii; add             r24=r24,carry2          };;
1365 { .mii; st8             [r33]=r24               }
1366
1367 { .mib; rum             1<<5            // clear um.mfh
1368         br.ret.sptk.many        b0      };;
1369 .endp   bn_mul_comba4#
1370 #undef  carry2
1371 #undef  carry1
1372 #endif
1373
1374 #if 1
1375 //
1376 // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1377 //
1378 // In the nutshell it's a port of my MIPS III/IV implementation.
1379 //
1380 #define AT      r14
1381 #define H       r16
1382 #define HH      r20
1383 #define L       r17
1384 #define D       r18
1385 #define DH      r22
1386 #define I       r21
1387
1388 #if 0
1389 // Some preprocessors (most notably HP-UX) appear to be allergic to
1390 // macros enclosed to parenthesis [as these three were].
1391 #define cont    p16
1392 #define break   p0      // p20
1393 #define equ     p24
1394 #else
1395 cont=p16
1396 break=p0
1397 equ=p24
1398 #endif
1399
1400 .global abort#
1401 .global bn_div_words#
1402 .proc   bn_div_words#
1403 .align  64
1404 bn_div_words:
1405         .prologue
1406         .save   ar.pfs,r2
1407 { .mii; alloc           r2=ar.pfs,3,5,0,8
1408         .save   b0,r3
1409         mov             r3=b0
1410         mov             r10=pr          };;
1411 { .mmb; cmp.eq          p6,p0=r34,r0
1412         mov             r8=-1
1413 (p6)    br.ret.spnt.many        b0      };;
1414
1415         .body
1416 { .mii; mov             H=r32           // save h
1417         mov             ar.ec=0         // don't rotate at exit
1418         mov             pr.rot=0        }
1419 { .mii; mov             L=r33           // save l
1420         mov             r36=r0          };;
1421
1422 .L_divw_shift:  // -vv- note signed comparison
1423 { .mfi; (p0)    cmp.lt          p16,p0=r0,r34   // d
1424         (p0)    shladd          r33=r34,1,r0    }
1425 { .mfb; (p0)    add             r35=1,r36
1426         (p0)    nop.f           0x0
1427 (p16)   br.wtop.dpnt            .L_divw_shift   };;
1428
1429 { .mii; mov             D=r34
1430         shr.u           DH=r34,32
1431         sub             r35=64,r36              };;
1432 { .mii; setf.sig        f7=DH
1433         shr.u           AT=H,r35
1434         mov             I=r36                   };;
1435 { .mib; cmp.ne          p6,p0=r0,AT
1436         shl             H=H,r36
1437 (p6)    br.call.spnt.clr        b0=abort        };;     // overflow, die...
1438
1439 { .mfi; fcvt.xuf.s1     f7=f7
1440         shr.u           AT=L,r35                };;
1441 { .mii; shl             L=L,r36
1442         or              H=H,AT                  };;
1443
1444 { .mii; nop.m           0x0
1445         cmp.leu         p6,p0=D,H;;
1446 (p6)    sub             H=H,D                   }
1447
1448 { .mlx; setf.sig        f14=D
1449         movl            AT=0xffffffff           };;
1450 ///////////////////////////////////////////////////////////
1451 { .mii; setf.sig        f6=H
1452         shr.u           HH=H,32;;
1453         cmp.eq          p6,p7=HH,DH             };;
1454 { .mfb;
1455 (p6)    setf.sig        f8=AT
1456 (p7)    fcvt.xuf.s1     f6=f6
1457 (p7)    br.call.sptk    b6=.L_udiv64_32_b6      };;
1458
1459 { .mfi; getf.sig        r33=f8                          // q
1460         xmpy.lu         f9=f8,f14               }
1461 { .mfi; xmpy.hu         f10=f8,f14
1462         shrp            H=H,L,32                };;
1463
1464 { .mmi; getf.sig        r35=f9                          // tl
1465         getf.sig        r31=f10                 };;     // th
1466
1467 .L_divw_1st_iter:
1468 { .mii; (p0)    add             r32=-1,r33
1469         (p0)    cmp.eq          equ,cont=HH,r31         };;
1470 { .mii; (p0)    cmp.ltu         p8,p0=r35,D
1471         (p0)    sub             r34=r35,D
1472         (equ)   cmp.leu         break,cont=r35,H        };;
1473 { .mib; (cont)  cmp.leu         cont,break=HH,r31
1474         (p8)    add             r31=-1,r31
1475 (cont)  br.wtop.spnt            .L_divw_1st_iter        };;
1476 ///////////////////////////////////////////////////////////
1477 { .mii; sub             H=H,r35
1478         shl             r8=r33,32
1479         shl             L=L,32                  };;
1480 ///////////////////////////////////////////////////////////
1481 { .mii; setf.sig        f6=H
1482         shr.u           HH=H,32;;
1483         cmp.eq          p6,p7=HH,DH             };;
1484 { .mfb;
1485 (p6)    setf.sig        f8=AT
1486 (p7)    fcvt.xuf.s1     f6=f6
1487 (p7)    br.call.sptk    b6=.L_udiv64_32_b6      };;
1488
1489 { .mfi; getf.sig        r33=f8                          // q
1490         xmpy.lu         f9=f8,f14               }
1491 { .mfi; xmpy.hu         f10=f8,f14
1492         shrp            H=H,L,32                };;
1493
1494 { .mmi; getf.sig        r35=f9                          // tl
1495         getf.sig        r31=f10                 };;     // th
1496
1497 .L_divw_2nd_iter:
1498 { .mii; (p0)    add             r32=-1,r33
1499         (p0)    cmp.eq          equ,cont=HH,r31         };;
1500 { .mii; (p0)    cmp.ltu         p8,p0=r35,D
1501         (p0)    sub             r34=r35,D
1502         (equ)   cmp.leu         break,cont=r35,H        };;
1503 { .mib; (cont)  cmp.leu         cont,break=HH,r31
1504         (p8)    add             r31=-1,r31
1505 (cont)  br.wtop.spnt            .L_divw_2nd_iter        };;
1506 ///////////////////////////////////////////////////////////
1507 { .mii; sub     H=H,r35
1508         or      r8=r8,r33
1509         mov     ar.pfs=r2               };;
1510 { .mii; shr.u   r9=H,I                  // remainder if anybody wants it
1511         mov     pr=r10,0x1ffff          }
1512 { .mfb; br.ret.sptk.many        b0      };;
1513
1514 // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1515 // procedure.
1516 //
1517 // inputs:      f6 = (double)a, f7 = (double)b
1518 // output:      f8 = (int)(a/b)
1519 // clobbered:   f8,f9,f10,f11,pred
1520 pred=p15
1521 // One can argue that this snippet is copyrighted to Intel
1522 // Corporation, as it's essentially identical to one of those
1523 // found in "Divide, Square Root and Remainder" section at
1524 // http://www.intel.com/software/products/opensource/libraries/num.htm.
1525 // Yes, I admit that the referred code was used as template,
1526 // but after I realized that there hardly is any other instruction
1527 // sequence which would perform this operation. I mean I figure that
1528 // any independent attempt to implement high-performance division
1529 // will result in code virtually identical to the Intel code. It
1530 // should be noted though that below division kernel is 1 cycle
1531 // faster than Intel one (note commented splits:-), not to mention
1532 // original prologue (rather lack of one) and epilogue.
1533 .align  32
1534 .skip   16
1535 .L_udiv64_32_b6:
1536         frcpa.s1        f8,pred=f6,f7;;         // [0]  y0 = 1 / b
1537
1538 (pred)  fnma.s1         f9=f7,f8,f1             // [5]  e0 = 1 - b * y0
1539 (pred)  fmpy.s1         f10=f6,f8;;             // [5]  q0 = a * y0
1540 (pred)  fmpy.s1         f11=f9,f9               // [10] e1 = e0 * e0
1541 (pred)  fma.s1          f10=f9,f10,f10;;        // [10] q1 = q0 + e0 * q0
1542 (pred)  fma.s1          f8=f9,f8,f8     //;;    // [15] y1 = y0 + e0 * y0
1543 (pred)  fma.s1          f9=f11,f10,f10;;        // [15] q2 = q1 + e1 * q1
1544 (pred)  fma.s1          f8=f11,f8,f8    //;;    // [20] y2 = y1 + e1 * y1
1545 (pred)  fnma.s1         f10=f7,f9,f6;;          // [20] r2 = a - b * q2
1546 (pred)  fma.s1          f8=f10,f8,f9;;          // [25] q3 = q2 + r2 * y2
1547
1548         fcvt.fxu.trunc.s1       f8=f8           // [30] q = trunc(q3)
1549         br.ret.sptk.many        b6;;
1550 .endp   bn_div_words#
1551 #endif