riscv: Provide vector crypto implementation of AES-CTR mode.
[openssl.git] / crypto / aes / asm / aes-586.pl
1 #! /usr/bin/env perl
2 # Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License").  You may not use
5 # this file except in compliance with the License.  You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 #
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16 #
17 # Version 4.3.
18 #
19 # You might fail to appreciate this module performance from the first
20 # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
21 # to be *the* best Intel C compiler without -KPIC, performance appears
22 # to be virtually identical... But try to re-configure with shared
23 # library support... Aha! Intel compiler "suddenly" lags behind by 30%
24 # [on P4, more on others]:-) And if compared to position-independent
25 # code generated by GNU C, this code performs *more* than *twice* as
26 # fast! Yes, all this buzz about PIC means that unlike other hand-
27 # coded implementations, this one was explicitly designed to be safe
28 # to use even in shared library context... This also means that this
29 # code isn't necessarily absolutely fastest "ever," because in order
30 # to achieve position independence an extra register has to be
31 # off-loaded to stack, which affects the benchmark result.
32 #
33 # Special note about instruction choice. Do you recall RC4_INT code
34 # performing poorly on P4? It might be the time to figure out why.
35 # RC4_INT code implies effective address calculations in base+offset*4
36 # form. Trouble is that it seems that offset scaling turned to be
37 # critical path... At least eliminating scaling resulted in 2.8x RC4
38 # performance improvement [as you might recall]. As AES code is hungry
39 # for scaling too, I [try to] avoid the latter by favoring off-by-2
40 # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
41 #
42 # As was shown by Dean Gaudet, the above note turned out to be
43 # void. Performance improvement with off-by-2 shifts was observed on
44 # intermediate implementation, which was spilling yet another register
45 # to stack... Final offset*4 code below runs just a tad faster on P4,
46 # but exhibits up to 10% improvement on other cores.
47 #
48 # Second version is "monolithic" replacement for aes_core.c, which in
49 # addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
50 # This made it possible to implement little-endian variant of the
51 # algorithm without modifying the base C code. Motivating factor for
52 # the undertaken effort was that it appeared that in tight IA-32
53 # register window little-endian flavor could achieve slightly higher
54 # Instruction Level Parallelism, and it indeed resulted in up to 15%
55 # better performance on most recent ยต-archs...
56 #
57 # Third version adds AES_cbc_encrypt implementation, which resulted in
58 # up to 40% performance improvement of CBC benchmark results. 40% was
59 # observed on P4 core, where "overall" improvement coefficient, i.e. if
60 # compared to PIC generated by GCC and in CBC mode, was observed to be
61 # as large as 4x:-) CBC performance is virtually identical to ECB now
62 # and on some platforms even better, e.g. 17.6 "small" cycles/byte on
63 # Opteron, because certain function prologues and epilogues are
64 # effectively taken out of the loop...
65 #
66 # Version 3.2 implements compressed tables and prefetch of these tables
67 # in CBC[!] mode. Former means that 3/4 of table references are now
68 # misaligned, which unfortunately has negative impact on elder IA-32
69 # implementations, Pentium suffered 30% penalty, PIII - 10%.
70 #
71 # Version 3.3 avoids L1 cache aliasing between stack frame and
72 # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
73 # latter is achieved by copying the key schedule to controlled place in
74 # stack. This unfortunately has rather strong impact on small block CBC
75 # performance, ~2x deterioration on 16-byte block if compared to 3.3.
76 #
77 # Version 3.5 checks if there is L1 cache aliasing between user-supplied
78 # key schedule and S-boxes and abstains from copying the former if
79 # there is no. This allows end-user to consciously retain small block
80 # performance by aligning key schedule in specific manner.
81 #
82 # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
83 #
84 # Current ECB performance numbers for 128-bit key in CPU cycles per
85 # processed byte [measure commonly used by AES benchmarkers] are:
86 #
87 #               small footprint         fully unrolled
88 # P4            24                      22
89 # AMD K8        20                      19
90 # PIII          25                      23
91 # Pentium       81                      78
92 #
93 # Version 3.7 reimplements outer rounds as "compact." Meaning that
94 # first and last rounds reference compact 256 bytes S-box. This means
95 # that first round consumes a lot more CPU cycles and that encrypt
96 # and decrypt performance becomes asymmetric. Encrypt performance
97 # drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
98 # aggressively pre-fetched.
99 #
100 # Version 4.0 effectively rolls back to 3.6 and instead implements
101 # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
102 # which use exclusively 256 byte S-box. These functions are to be
103 # called in modes not concealing plain text, such as ECB, or when
104 # we're asked to process smaller amount of data [or unconditionally
105 # on hyper-threading CPU]. Currently it's called unconditionally from
106 # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
107 # still needs to be modified to switch between slower and faster
108 # mode when appropriate... But in either case benchmark landscape
109 # changes dramatically and below numbers are CPU cycles per processed
110 # byte for 128-bit key.
111 #
112 #               ECB encrypt     ECB decrypt     CBC large chunk
113 # P4            52[54]          83[95]          23
114 # AMD K8        46[41]          66[70]          18
115 # PIII          41[50]          60[77]          24
116 # Core 2        31[36]          45[64]          18.5
117 # Atom          76[100]         96[138]         60
118 # Pentium       115             150             77
119 #
120 # Version 4.1 switches to compact S-box even in key schedule setup.
121 #
122 # Version 4.2 prefetches compact S-box in every SSE round or in other
123 # words every cache-line is *guaranteed* to be accessed within ~50
124 # cycles window. Why just SSE? Because it's needed on hyper-threading
125 # CPU! Which is also why it's prefetched with 64 byte stride. Best
126 # part is that it has no negative effect on performance:-)
127 #
128 # Version 4.3 implements switch between compact and non-compact block
129 # functions in AES_cbc_encrypt depending on how much data was asked
130 # to be processed in one stroke.
131 #
132 ######################################################################
133 # Timing attacks are classified in two classes: synchronous when
134 # attacker consciously initiates cryptographic operation and collects
135 # timing data of various character afterwards, and asynchronous when
136 # malicious code is executed on same CPU simultaneously with AES,
137 # instruments itself and performs statistical analysis of this data.
138 #
139 # As far as synchronous attacks go the root to the AES timing
140 # vulnerability is twofold. Firstly, of 256 S-box elements at most 160
141 # are referred to in single 128-bit block operation. Well, in C
142 # implementation with 4 distinct tables it's actually as little as 40
143 # references per 256 elements table, but anyway... Secondly, even
144 # though S-box elements are clustered into smaller amount of cache-
145 # lines, smaller than 160 and even 40, it turned out that for certain
146 # plain-text pattern[s] or simply put chosen plain-text and given key
147 # few cache-lines remain unaccessed during block operation. Now, if
148 # attacker can figure out this access pattern, he can deduct the key
149 # [or at least part of it]. The natural way to mitigate this kind of
150 # attacks is to minimize the amount of cache-lines in S-box and/or
151 # prefetch them to ensure that every one is accessed for more uniform
152 # timing. But note that *if* plain-text was concealed in such way that
153 # input to block function is distributed *uniformly*, then attack
154 # wouldn't apply. Now note that some encryption modes, most notably
155 # CBC, do mask the plain-text in this exact way [secure cipher output
156 # is distributed uniformly]. Yes, one still might find input that
157 # would reveal the information about given key, but if amount of
158 # candidate inputs to be tried is larger than amount of possible key
159 # combinations then attack becomes infeasible. This is why revised
160 # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
161 # of data is to be processed in one stroke. The current size limit of
162 # 512 bytes is chosen to provide same [diminishingly low] probability
163 # for cache-line to remain untouched in large chunk operation with
164 # large S-box as for single block operation with compact S-box and
165 # surely needs more careful consideration...
166 #
167 # As for asynchronous attacks. There are two flavours: attacker code
168 # being interleaved with AES on hyper-threading CPU at *instruction*
169 # level, and two processes time sharing single core. As for latter.
170 # Two vectors. 1. Given that attacker process has higher priority,
171 # yield execution to process performing AES just before timer fires
172 # off the scheduler, immediately regain control of CPU and analyze the
173 # cache state. For this attack to be efficient attacker would have to
174 # effectively slow down the operation by several *orders* of magnitude,
175 # by ratio of time slice to duration of handful of AES rounds, which
176 # unlikely to remain unnoticed. Not to mention that this also means
177 # that he would spend correspondingly more time to collect enough
178 # statistical data to mount the attack. It's probably appropriate to
179 # say that if adversary reckons that this attack is beneficial and
180 # risks to be noticed, you probably have larger problems having him
181 # mere opportunity. In other words suggested code design expects you
182 # to preclude/mitigate this attack by overall system security design.
183 # 2. Attacker manages to make his code interrupt driven. In order for
184 # this kind of attack to be feasible, interrupt rate has to be high
185 # enough, again comparable to duration of handful of AES rounds. But
186 # is there interrupt source of such rate? Hardly, not even 1Gbps NIC
187 # generates interrupts at such raging rate...
188 #
189 # And now back to the former, hyper-threading CPU or more specifically
190 # Intel P4. Recall that asynchronous attack implies that malicious
191 # code instruments itself. And naturally instrumentation granularity
192 # has be noticeably lower than duration of codepath accessing S-box.
193 # Given that all cache-lines are accessed during that time that is.
194 # Current implementation accesses *all* cache-lines within ~50 cycles
195 # window, which is actually *less* than RDTSC latency on Intel P4!
196
197 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
198 push(@INC,"${dir}","${dir}../../perlasm");
199 require "x86asm.pl";
200
201 $output = pop and open STDOUT,">$output";
202
203 &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
204 &static_label("AES_Te");
205 &static_label("AES_Td");
206
207 $s0="eax";
208 $s1="ebx";
209 $s2="ecx";
210 $s3="edx";
211 $key="edi";
212 $acc="esi";
213 $tbl="ebp";
214
215 # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
216 # by caller
217 $__ra=&DWP(0,"esp");    # return address
218 $__s0=&DWP(4,"esp");    # s0 backing store
219 $__s1=&DWP(8,"esp");    # s1 backing store
220 $__s2=&DWP(12,"esp");   # s2 backing store
221 $__s3=&DWP(16,"esp");   # s3 backing store
222 $__key=&DWP(20,"esp");  # pointer to key schedule
223 $__end=&DWP(24,"esp");  # pointer to end of key schedule
224 $__tbl=&DWP(28,"esp");  # %ebp backing store
225
226 # stack frame layout in AES_[en|crypt] routines, which differs from
227 # above by 4 and overlaps by %ebp backing store
228 $_tbl=&DWP(24,"esp");
229 $_esp=&DWP(28,"esp");
230
231 sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
232
233 $speed_limit=512;       # chunks smaller than $speed_limit are
234                         # processed with compact routine in CBC mode
235 $small_footprint=1;     # $small_footprint=1 code is ~5% slower [on
236                         # recent ยต-archs], but ~5 times smaller!
237                         # I favor compact code to minimize cache
238                         # contention and in hope to "collect" 5% back
239                         # in real-life applications...
240
241 $vertical_spin=0;       # shift "vertically" defaults to 0, because of
242                         # its proof-of-concept status...
243 # Note that there is no decvert(), as well as last encryption round is
244 # performed with "horizontal" shifts. This is because this "vertical"
245 # implementation [one which groups shifts on a given $s[i] to form a
246 # "column," unlike "horizontal" one, which groups shifts on different
247 # $s[i] to form a "row"] is work in progress. It was observed to run
248 # few percents faster on Intel cores, but not AMD. On AMD K8 core it's
249 # whole 12% slower:-( So we face a trade-off... Shall it be resolved
250 # some day? Till then the code is considered experimental and by
251 # default remains dormant...
252
253 sub encvert()
254 { my ($te,@s) = @_;
255   my ($v0,$v1) = ($acc,$key);
256
257         &mov    ($v0,$s[3]);                            # copy s3
258         &mov    (&DWP(4,"esp"),$s[2]);                  # save s2
259         &mov    ($v1,$s[0]);                            # copy s0
260         &mov    (&DWP(8,"esp"),$s[1]);                  # save s1
261
262         &movz   ($s[2],&HB($s[0]));
263         &and    ($s[0],0xFF);
264         &mov    ($s[0],&DWP(0,$te,$s[0],8));            # s0>>0
265         &shr    ($v1,16);
266         &mov    ($s[3],&DWP(3,$te,$s[2],8));            # s0>>8
267         &movz   ($s[1],&HB($v1));
268         &and    ($v1,0xFF);
269         &mov    ($s[2],&DWP(2,$te,$v1,8));              # s0>>16
270          &mov   ($v1,$v0);
271         &mov    ($s[1],&DWP(1,$te,$s[1],8));            # s0>>24
272
273         &and    ($v0,0xFF);
274         &xor    ($s[3],&DWP(0,$te,$v0,8));              # s3>>0
275         &movz   ($v0,&HB($v1));
276         &shr    ($v1,16);
277         &xor    ($s[2],&DWP(3,$te,$v0,8));              # s3>>8
278         &movz   ($v0,&HB($v1));
279         &and    ($v1,0xFF);
280         &xor    ($s[1],&DWP(2,$te,$v1,8));              # s3>>16
281          &mov   ($v1,&DWP(4,"esp"));                    # restore s2
282         &xor    ($s[0],&DWP(1,$te,$v0,8));              # s3>>24
283
284         &mov    ($v0,$v1);
285         &and    ($v1,0xFF);
286         &xor    ($s[2],&DWP(0,$te,$v1,8));              # s2>>0
287         &movz   ($v1,&HB($v0));
288         &shr    ($v0,16);
289         &xor    ($s[1],&DWP(3,$te,$v1,8));              # s2>>8
290         &movz   ($v1,&HB($v0));
291         &and    ($v0,0xFF);
292         &xor    ($s[0],&DWP(2,$te,$v0,8));              # s2>>16
293          &mov   ($v0,&DWP(8,"esp"));                    # restore s1
294         &xor    ($s[3],&DWP(1,$te,$v1,8));              # s2>>24
295
296         &mov    ($v1,$v0);
297         &and    ($v0,0xFF);
298         &xor    ($s[1],&DWP(0,$te,$v0,8));              # s1>>0
299         &movz   ($v0,&HB($v1));
300         &shr    ($v1,16);
301         &xor    ($s[0],&DWP(3,$te,$v0,8));              # s1>>8
302         &movz   ($v0,&HB($v1));
303         &and    ($v1,0xFF);
304         &xor    ($s[3],&DWP(2,$te,$v1,8));              # s1>>16
305          &mov   ($key,$__key);                          # reincarnate v1 as key
306         &xor    ($s[2],&DWP(1,$te,$v0,8));              # s1>>24
307 }
308
309 # Another experimental routine, which features "horizontal spin," but
310 # eliminates one reference to stack. Strangely enough runs slower...
311 sub enchoriz()
312 { my ($v0,$v1) = ($key,$acc);
313
314         &movz   ($v0,&LB($s0));                 #  3, 2, 1, 0*
315         &rotr   ($s2,8);                        #  8,11,10, 9
316         &mov    ($v1,&DWP(0,$te,$v0,8));        #  0
317         &movz   ($v0,&HB($s1));                 #  7, 6, 5*, 4
318         &rotr   ($s3,16);                       # 13,12,15,14
319         &xor    ($v1,&DWP(3,$te,$v0,8));        #  5
320         &movz   ($v0,&HB($s2));                 #  8,11,10*, 9
321         &rotr   ($s0,16);                       #  1, 0, 3, 2
322         &xor    ($v1,&DWP(2,$te,$v0,8));        # 10
323         &movz   ($v0,&HB($s3));                 # 13,12,15*,14
324         &xor    ($v1,&DWP(1,$te,$v0,8));        # 15, t[0] collected
325         &mov    ($__s0,$v1);                    # t[0] saved
326
327         &movz   ($v0,&LB($s1));                 #  7, 6, 5, 4*
328         &shr    ($s1,16);                       #  -, -, 7, 6
329         &mov    ($v1,&DWP(0,$te,$v0,8));        #  4
330         &movz   ($v0,&LB($s3));                 # 13,12,15,14*
331         &xor    ($v1,&DWP(2,$te,$v0,8));        # 14
332         &movz   ($v0,&HB($s0));                 #  1, 0, 3*, 2
333         &and    ($s3,0xffff0000);               # 13,12, -, -
334         &xor    ($v1,&DWP(1,$te,$v0,8));        #  3
335         &movz   ($v0,&LB($s2));                 #  8,11,10, 9*
336         &or     ($s3,$s1);                      # 13,12, 7, 6
337         &xor    ($v1,&DWP(3,$te,$v0,8));        #  9, t[1] collected
338         &mov    ($s1,$v1);                      #  s[1]=t[1]
339
340         &movz   ($v0,&LB($s0));                 #  1, 0, 3, 2*
341         &shr    ($s2,16);                       #  -, -, 8,11
342         &mov    ($v1,&DWP(2,$te,$v0,8));        #  2
343         &movz   ($v0,&HB($s3));                 # 13,12, 7*, 6
344         &xor    ($v1,&DWP(1,$te,$v0,8));        #  7
345         &movz   ($v0,&HB($s2));                 #  -, -, 8*,11
346         &xor    ($v1,&DWP(0,$te,$v0,8));        #  8
347         &mov    ($v0,$s3);
348         &shr    ($v0,24);                       # 13
349         &xor    ($v1,&DWP(3,$te,$v0,8));        # 13, t[2] collected
350
351         &movz   ($v0,&LB($s2));                 #  -, -, 8,11*
352         &shr    ($s0,24);                       #  1*
353         &mov    ($s2,&DWP(1,$te,$v0,8));        # 11
354         &xor    ($s2,&DWP(3,$te,$s0,8));        #  1
355         &mov    ($s0,$__s0);                    # s[0]=t[0]
356         &movz   ($v0,&LB($s3));                 # 13,12, 7, 6*
357         &shr    ($s3,16);                       #   ,  ,13,12
358         &xor    ($s2,&DWP(2,$te,$v0,8));        #  6
359         &mov    ($key,$__key);                  # reincarnate v0 as key
360         &and    ($s3,0xff);                     #   ,  ,13,12*
361         &mov    ($s3,&DWP(0,$te,$s3,8));        # 12
362         &xor    ($s3,$s2);                      # s[2]=t[3] collected
363         &mov    ($s2,$v1);                      # s[2]=t[2]
364 }
365
366 # More experimental code... SSE one... Even though this one eliminates
367 # *all* references to stack, it's not faster...
368 sub sse_encbody()
369 {
370         &movz   ($acc,&LB("eax"));              #  0
371         &mov    ("ecx",&DWP(0,$tbl,$acc,8));    #  0
372         &pshufw ("mm2","mm0",0x0d);             #  7, 6, 3, 2
373         &movz   ("edx",&HB("eax"));             #  1
374         &mov    ("edx",&DWP(3,$tbl,"edx",8));   #  1
375         &shr    ("eax",16);                     #  5, 4
376
377         &movz   ($acc,&LB("ebx"));              # 10
378         &xor    ("ecx",&DWP(2,$tbl,$acc,8));    # 10
379         &pshufw ("mm6","mm4",0x08);             # 13,12, 9, 8
380         &movz   ($acc,&HB("ebx"));              # 11
381         &xor    ("edx",&DWP(1,$tbl,$acc,8));    # 11
382         &shr    ("ebx",16);                     # 15,14
383
384         &movz   ($acc,&HB("eax"));              #  5
385         &xor    ("ecx",&DWP(3,$tbl,$acc,8));    #  5
386         &movq   ("mm3",QWP(16,$key));
387         &movz   ($acc,&HB("ebx"));              # 15
388         &xor    ("ecx",&DWP(1,$tbl,$acc,8));    # 15
389         &movd   ("mm0","ecx");                  # t[0] collected
390
391         &movz   ($acc,&LB("eax"));              #  4
392         &mov    ("ecx",&DWP(0,$tbl,$acc,8));    #  4
393         &movd   ("eax","mm2");                  #  7, 6, 3, 2
394         &movz   ($acc,&LB("ebx"));              # 14
395         &xor    ("ecx",&DWP(2,$tbl,$acc,8));    # 14
396         &movd   ("ebx","mm6");                  # 13,12, 9, 8
397
398         &movz   ($acc,&HB("eax"));              #  3
399         &xor    ("ecx",&DWP(1,$tbl,$acc,8));    #  3
400         &movz   ($acc,&HB("ebx"));              #  9
401         &xor    ("ecx",&DWP(3,$tbl,$acc,8));    #  9
402         &movd   ("mm1","ecx");                  # t[1] collected
403
404         &movz   ($acc,&LB("eax"));              #  2
405         &mov    ("ecx",&DWP(2,$tbl,$acc,8));    #  2
406         &shr    ("eax",16);                     #  7, 6
407         &punpckldq      ("mm0","mm1");          # t[0,1] collected
408         &movz   ($acc,&LB("ebx"));              #  8
409         &xor    ("ecx",&DWP(0,$tbl,$acc,8));    #  8
410         &shr    ("ebx",16);                     # 13,12
411
412         &movz   ($acc,&HB("eax"));              #  7
413         &xor    ("ecx",&DWP(1,$tbl,$acc,8));    #  7
414         &pxor   ("mm0","mm3");
415         &movz   ("eax",&LB("eax"));             #  6
416         &xor    ("edx",&DWP(2,$tbl,"eax",8));   #  6
417         &pshufw ("mm1","mm0",0x08);             #  5, 4, 1, 0
418         &movz   ($acc,&HB("ebx"));              # 13
419         &xor    ("ecx",&DWP(3,$tbl,$acc,8));    # 13
420         &xor    ("ecx",&DWP(24,$key));          # t[2]
421         &movd   ("mm4","ecx");                  # t[2] collected
422         &movz   ("ebx",&LB("ebx"));             # 12
423         &xor    ("edx",&DWP(0,$tbl,"ebx",8));   # 12
424         &shr    ("ecx",16);
425         &movd   ("eax","mm1");                  #  5, 4, 1, 0
426         &mov    ("ebx",&DWP(28,$key));          # t[3]
427         &xor    ("ebx","edx");
428         &movd   ("mm5","ebx");                  # t[3] collected
429         &and    ("ebx",0xffff0000);
430         &or     ("ebx","ecx");
431
432         &punpckldq      ("mm4","mm5");          # t[2,3] collected
433 }
434
435 ######################################################################
436 # "Compact" block function
437 ######################################################################
438
439 sub enccompact()
440 { my $Fn = \&mov;
441   while ($#_>5) { pop(@_); $Fn=sub{}; }
442   my ($i,$te,@s)=@_;
443   my $tmp = $key;
444   my $out = $i==3?$s[0]:$acc;
445
446         # $Fn is used in first compact round and its purpose is to
447         # void restoration of some values from stack, so that after
448         # 4xenccompact with extra argument $key value is left there...
449         if ($i==3)  {   &$Fn    ($key,$__key);                  }##%edx
450         else        {   &mov    ($out,$s[0]);                   }
451                         &and    ($out,0xFF);
452         if ($i==1)  {   &shr    ($s[0],16);                     }#%ebx[1]
453         if ($i==2)  {   &shr    ($s[0],24);                     }#%ecx[2]
454                         &movz   ($out,&BP(-128,$te,$out,1));
455
456         if ($i==3)  {   $tmp=$s[1];                             }##%eax
457                         &movz   ($tmp,&HB($s[1]));
458                         &movz   ($tmp,&BP(-128,$te,$tmp,1));
459                         &shl    ($tmp,8);
460                         &xor    ($out,$tmp);
461
462         if ($i==3)  {   $tmp=$s[2]; &mov ($s[1],$__s0);         }##%ebx
463         else        {   &mov    ($tmp,$s[2]);
464                         &shr    ($tmp,16);                      }
465         if ($i==2)  {   &and    ($s[1],0xFF);                   }#%edx[2]
466                         &and    ($tmp,0xFF);
467                         &movz   ($tmp,&BP(-128,$te,$tmp,1));
468                         &shl    ($tmp,16);
469                         &xor    ($out,$tmp);
470
471         if ($i==3)  {   $tmp=$s[3]; &mov ($s[2],$__s1);         }##%ecx
472         elsif($i==2){   &movz   ($tmp,&HB($s[3]));              }#%ebx[2]
473         else        {   &mov    ($tmp,$s[3]);
474                         &shr    ($tmp,24);                      }
475                         &movz   ($tmp,&BP(-128,$te,$tmp,1));
476                         &shl    ($tmp,24);
477                         &xor    ($out,$tmp);
478         if ($i<2)   {   &mov    (&DWP(4+4*$i,"esp"),$out);      }
479         if ($i==3)  {   &mov    ($s[3],$acc);                   }
480         &comment();
481 }
482
483 sub enctransform()
484 { my @s = ($s0,$s1,$s2,$s3);
485   my $i = shift;
486   my $tmp = $tbl;
487   my $r2  = $key ;
488
489         &and    ($tmp,$s[$i]);
490         &lea    ($r2,&DWP(0,$s[$i],$s[$i]));
491         &mov    ($acc,$tmp);
492         &shr    ($tmp,7);
493         &and    ($r2,0xfefefefe);
494         &sub    ($acc,$tmp);
495         &mov    ($tmp,$s[$i]);
496         &and    ($acc,0x1b1b1b1b);
497         &rotr   ($tmp,16);
498         &xor    ($acc,$r2);     # r2
499         &mov    ($r2,$s[$i]);
500
501         &xor    ($s[$i],$acc);  # r0 ^ r2
502         &rotr   ($r2,16+8);
503         &xor    ($acc,$tmp);
504         &rotl   ($s[$i],24);
505         &xor    ($acc,$r2);
506         &mov    ($tmp,0x80808080)       if ($i!=1);
507         &xor    ($s[$i],$acc);  # ROTATE(r2^r0,24) ^ r2
508 }
509
510 &function_begin_B("_x86_AES_encrypt_compact");
511         # note that caller is expected to allocate stack frame for me!
512         &mov    ($__key,$key);                  # save key
513
514         &xor    ($s0,&DWP(0,$key));             # xor with key
515         &xor    ($s1,&DWP(4,$key));
516         &xor    ($s2,&DWP(8,$key));
517         &xor    ($s3,&DWP(12,$key));
518
519         &mov    ($acc,&DWP(240,$key));          # load key->rounds
520         &lea    ($acc,&DWP(-2,$acc,$acc));
521         &lea    ($acc,&DWP(0,$key,$acc,8));
522         &mov    ($__end,$acc);                  # end of key schedule
523
524         # prefetch Te4
525         &mov    ($key,&DWP(0-128,$tbl));
526         &mov    ($acc,&DWP(32-128,$tbl));
527         &mov    ($key,&DWP(64-128,$tbl));
528         &mov    ($acc,&DWP(96-128,$tbl));
529         &mov    ($key,&DWP(128-128,$tbl));
530         &mov    ($acc,&DWP(160-128,$tbl));
531         &mov    ($key,&DWP(192-128,$tbl));
532         &mov    ($acc,&DWP(224-128,$tbl));
533
534         &set_label("loop",16);
535
536                 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
537                 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
538                 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
539                 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
540                 &mov    ($tbl,0x80808080);
541                 &enctransform(2);
542                 &enctransform(3);
543                 &enctransform(0);
544                 &enctransform(1);
545                 &mov    ($key,$__key);
546                 &mov    ($tbl,$__tbl);
547                 &add    ($key,16);              # advance rd_key
548                 &xor    ($s0,&DWP(0,$key));
549                 &xor    ($s1,&DWP(4,$key));
550                 &xor    ($s2,&DWP(8,$key));
551                 &xor    ($s3,&DWP(12,$key));
552
553         &cmp    ($key,$__end);
554         &mov    ($__key,$key);
555         &jb     (&label("loop"));
556
557         &enccompact(0,$tbl,$s0,$s1,$s2,$s3);
558         &enccompact(1,$tbl,$s1,$s2,$s3,$s0);
559         &enccompact(2,$tbl,$s2,$s3,$s0,$s1);
560         &enccompact(3,$tbl,$s3,$s0,$s1,$s2);
561
562         &xor    ($s0,&DWP(16,$key));
563         &xor    ($s1,&DWP(20,$key));
564         &xor    ($s2,&DWP(24,$key));
565         &xor    ($s3,&DWP(28,$key));
566
567         &ret    ();
568 &function_end_B("_x86_AES_encrypt_compact");
569
570 ######################################################################
571 # "Compact" SSE block function.
572 ######################################################################
573 #
574 # Performance is not actually extraordinary in comparison to pure
575 # x86 code. In particular encrypt performance is virtually the same.
576 # Decrypt performance on the other hand is 15-20% better on newer
577 # ยต-archs [but we're thankful for *any* improvement here], and ~50%
578 # better on PIII:-) And additionally on the pros side this code
579 # eliminates redundant references to stack and thus relieves/
580 # minimizes the pressure on the memory bus.
581 #
582 # MMX register layout                           lsb
583 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
584 # |          mm4          |          mm0          |
585 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
586 # |     s3    |     s2    |     s1    |     s0    |
587 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
588 # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
589 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
590 #
591 # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
592 # In this terms encryption and decryption "compact" permutation
593 # matrices can be depicted as following:
594 #
595 # encryption              lsb   # decryption              lsb
596 # +----++----+----+----+----+   # +----++----+----+----+----+
597 # | t0 || 15 | 10 |  5 |  0 |   # | t0 ||  7 | 10 | 13 |  0 |
598 # +----++----+----+----+----+   # +----++----+----+----+----+
599 # | t1 ||  3 | 14 |  9 |  4 |   # | t1 || 11 | 14 |  1 |  4 |
600 # +----++----+----+----+----+   # +----++----+----+----+----+
601 # | t2 ||  7 |  2 | 13 |  8 |   # | t2 || 15 |  2 |  5 |  8 |
602 # +----++----+----+----+----+   # +----++----+----+----+----+
603 # | t3 || 11 |  6 |  1 | 12 |   # | t3 ||  3 |  6 |  9 | 12 |
604 # +----++----+----+----+----+   # +----++----+----+----+----+
605 #
606 ######################################################################
607 # Why not xmm registers? Short answer. It was actually tested and
608 # was not any faster, but *contrary*, most notably on Intel CPUs.
609 # Longer answer. Main advantage of using mm registers is that movd
610 # latency is lower, especially on Intel P4. While arithmetic
611 # instructions are twice as many, they can be scheduled every cycle
612 # and not every second one when they are operating on xmm register,
613 # so that "arithmetic throughput" remains virtually the same. And
614 # finally the code can be executed even on elder SSE-only CPUs:-)
615
616 sub sse_enccompact()
617 {
618         &pshufw ("mm1","mm0",0x08);             #  5, 4, 1, 0
619         &pshufw ("mm5","mm4",0x0d);             # 15,14,11,10
620         &movd   ("eax","mm1");                  #  5, 4, 1, 0
621         &movd   ("ebx","mm5");                  # 15,14,11,10
622         &mov    ($__key,$key);
623
624         &movz   ($acc,&LB("eax"));              #  0
625         &movz   ("edx",&HB("eax"));             #  1
626         &pshufw ("mm2","mm0",0x0d);             #  7, 6, 3, 2
627         &movz   ("ecx",&BP(-128,$tbl,$acc,1));  #  0
628         &movz   ($key,&LB("ebx"));              # 10
629         &movz   ("edx",&BP(-128,$tbl,"edx",1)); #  1
630         &shr    ("eax",16);                     #  5, 4
631         &shl    ("edx",8);                      #  1
632
633         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 10
634         &movz   ($key,&HB("ebx"));              # 11
635         &shl    ($acc,16);                      # 10
636         &pshufw ("mm6","mm4",0x08);             # 13,12, 9, 8
637         &or     ("ecx",$acc);                   # 10
638         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 11
639         &movz   ($key,&HB("eax"));              #  5
640         &shl    ($acc,24);                      # 11
641         &shr    ("ebx",16);                     # 15,14
642         &or     ("edx",$acc);                   # 11
643
644         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  5
645         &movz   ($key,&HB("ebx"));              # 15
646         &shl    ($acc,8);                       #  5
647         &or     ("ecx",$acc);                   #  5
648         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 15
649         &movz   ($key,&LB("eax"));              #  4
650         &shl    ($acc,24);                      # 15
651         &or     ("ecx",$acc);                   # 15
652
653         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  4
654         &movz   ($key,&LB("ebx"));              # 14
655         &movd   ("eax","mm2");                  #  7, 6, 3, 2
656         &movd   ("mm0","ecx");                  # t[0] collected
657         &movz   ("ecx",&BP(-128,$tbl,$key,1));  # 14
658         &movz   ($key,&HB("eax"));              #  3
659         &shl    ("ecx",16);                     # 14
660         &movd   ("ebx","mm6");                  # 13,12, 9, 8
661         &or     ("ecx",$acc);                   # 14
662
663         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  3
664         &movz   ($key,&HB("ebx"));              #  9
665         &shl    ($acc,24);                      #  3
666         &or     ("ecx",$acc);                   #  3
667         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  9
668         &movz   ($key,&LB("ebx"));              #  8
669         &shl    ($acc,8);                       #  9
670         &shr    ("ebx",16);                     # 13,12
671         &or     ("ecx",$acc);                   #  9
672
673         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  8
674         &movz   ($key,&LB("eax"));              #  2
675         &shr    ("eax",16);                     #  7, 6
676         &movd   ("mm1","ecx");                  # t[1] collected
677         &movz   ("ecx",&BP(-128,$tbl,$key,1));  #  2
678         &movz   ($key,&HB("eax"));              #  7
679         &shl    ("ecx",16);                     #  2
680         &and    ("eax",0xff);                   #  6
681         &or     ("ecx",$acc);                   #  2
682
683         &punpckldq      ("mm0","mm1");          # t[0,1] collected
684
685         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  7
686         &movz   ($key,&HB("ebx"));              # 13
687         &shl    ($acc,24);                      #  7
688         &and    ("ebx",0xff);                   # 12
689         &movz   ("eax",&BP(-128,$tbl,"eax",1)); #  6
690         &or     ("ecx",$acc);                   #  7
691         &shl    ("eax",16);                     #  6
692         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 13
693         &or     ("edx","eax");                  #  6
694         &shl    ($acc,8);                       # 13
695         &movz   ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
696         &or     ("ecx",$acc);                   # 13
697         &or     ("edx","ebx");                  # 12
698         &mov    ($key,$__key);
699         &movd   ("mm4","ecx");                  # t[2] collected
700         &movd   ("mm5","edx");                  # t[3] collected
701
702         &punpckldq      ("mm4","mm5");          # t[2,3] collected
703 }
704
705                                         if (!$x86only) {
706 &function_begin_B("_sse_AES_encrypt_compact");
707         &pxor   ("mm0",&QWP(0,$key));   #  7, 6, 5, 4, 3, 2, 1, 0
708         &pxor   ("mm4",&QWP(8,$key));   # 15,14,13,12,11,10, 9, 8
709
710         # note that caller is expected to allocate stack frame for me!
711         &mov    ($acc,&DWP(240,$key));          # load key->rounds
712         &lea    ($acc,&DWP(-2,$acc,$acc));
713         &lea    ($acc,&DWP(0,$key,$acc,8));
714         &mov    ($__end,$acc);                  # end of key schedule
715
716         &mov    ($s0,0x1b1b1b1b);               # magic constant
717         &mov    (&DWP(8,"esp"),$s0);
718         &mov    (&DWP(12,"esp"),$s0);
719
720         # prefetch Te4
721         &mov    ($s0,&DWP(0-128,$tbl));
722         &mov    ($s1,&DWP(32-128,$tbl));
723         &mov    ($s2,&DWP(64-128,$tbl));
724         &mov    ($s3,&DWP(96-128,$tbl));
725         &mov    ($s0,&DWP(128-128,$tbl));
726         &mov    ($s1,&DWP(160-128,$tbl));
727         &mov    ($s2,&DWP(192-128,$tbl));
728         &mov    ($s3,&DWP(224-128,$tbl));
729
730         &set_label("loop",16);
731                 &sse_enccompact();
732                 &add    ($key,16);
733                 &cmp    ($key,$__end);
734                 &ja     (&label("out"));
735
736                 &movq   ("mm2",&QWP(8,"esp"));
737                 &pxor   ("mm3","mm3");          &pxor   ("mm7","mm7");
738                 &movq   ("mm1","mm0");          &movq   ("mm5","mm4");  # r0
739                 &pcmpgtb("mm3","mm0");          &pcmpgtb("mm7","mm4");
740                 &pand   ("mm3","mm2");          &pand   ("mm7","mm2");
741                 &pshufw ("mm2","mm0",0xb1);     &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16)
742                 &paddb  ("mm0","mm0");          &paddb  ("mm4","mm4");
743                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # = r2
744                 &pshufw ("mm3","mm2",0xb1);     &pshufw ("mm7","mm6",0xb1);# r0
745                 &pxor   ("mm1","mm0");          &pxor   ("mm5","mm4");  # r0^r2
746                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");  # ^= ROTATE(r0,16)
747
748                 &movq   ("mm2","mm3");          &movq   ("mm6","mm7");
749                 &pslld  ("mm3",8);              &pslld  ("mm7",8);
750                 &psrld  ("mm2",24);             &psrld  ("mm6",24);
751                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= r0<<8
752                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");  # ^= r0>>24
753
754                 &movq   ("mm3","mm1");          &movq   ("mm7","mm5");
755                 &movq   ("mm2",&QWP(0,$key));   &movq   ("mm6",&QWP(8,$key));
756                 &psrld  ("mm1",8);              &psrld  ("mm5",8);
757                 &mov    ($s0,&DWP(0-128,$tbl));
758                 &pslld  ("mm3",24);             &pslld  ("mm7",24);
759                 &mov    ($s1,&DWP(64-128,$tbl));
760                 &pxor   ("mm0","mm1");          &pxor   ("mm4","mm5");  # ^= (r2^r0)<<8
761                 &mov    ($s2,&DWP(128-128,$tbl));
762                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= (r2^r0)>>24
763                 &mov    ($s3,&DWP(192-128,$tbl));
764
765                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");
766         &jmp    (&label("loop"));
767
768         &set_label("out",16);
769         &pxor   ("mm0",&QWP(0,$key));
770         &pxor   ("mm4",&QWP(8,$key));
771
772         &ret    ();
773 &function_end_B("_sse_AES_encrypt_compact");
774                                         }
775
776 ######################################################################
777 # Vanilla block function.
778 ######################################################################
779
780 sub encstep()
781 { my ($i,$te,@s) = @_;
782   my $tmp = $key;
783   my $out = $i==3?$s[0]:$acc;
784
785         # lines marked with #%e?x[i] denote "reordered" instructions...
786         if ($i==3)  {   &mov    ($key,$__key);                  }##%edx
787         else        {   &mov    ($out,$s[0]);
788                         &and    ($out,0xFF);                    }
789         if ($i==1)  {   &shr    ($s[0],16);                     }#%ebx[1]
790         if ($i==2)  {   &shr    ($s[0],24);                     }#%ecx[2]
791                         &mov    ($out,&DWP(0,$te,$out,8));
792
793         if ($i==3)  {   $tmp=$s[1];                             }##%eax
794                         &movz   ($tmp,&HB($s[1]));
795                         &xor    ($out,&DWP(3,$te,$tmp,8));
796
797         if ($i==3)  {   $tmp=$s[2]; &mov ($s[1],$__s0);         }##%ebx
798         else        {   &mov    ($tmp,$s[2]);
799                         &shr    ($tmp,16);                      }
800         if ($i==2)  {   &and    ($s[1],0xFF);                   }#%edx[2]
801                         &and    ($tmp,0xFF);
802                         &xor    ($out,&DWP(2,$te,$tmp,8));
803
804         if ($i==3)  {   $tmp=$s[3]; &mov ($s[2],$__s1);         }##%ecx
805         elsif($i==2){   &movz   ($tmp,&HB($s[3]));              }#%ebx[2]
806         else        {   &mov    ($tmp,$s[3]);
807                         &shr    ($tmp,24)                       }
808                         &xor    ($out,&DWP(1,$te,$tmp,8));
809         if ($i<2)   {   &mov    (&DWP(4+4*$i,"esp"),$out);      }
810         if ($i==3)  {   &mov    ($s[3],$acc);                   }
811                         &comment();
812 }
813
814 sub enclast()
815 { my ($i,$te,@s)=@_;
816   my $tmp = $key;
817   my $out = $i==3?$s[0]:$acc;
818
819         if ($i==3)  {   &mov    ($key,$__key);                  }##%edx
820         else        {   &mov    ($out,$s[0]);                   }
821                         &and    ($out,0xFF);
822         if ($i==1)  {   &shr    ($s[0],16);                     }#%ebx[1]
823         if ($i==2)  {   &shr    ($s[0],24);                     }#%ecx[2]
824                         &mov    ($out,&DWP(2,$te,$out,8));
825                         &and    ($out,0x000000ff);
826
827         if ($i==3)  {   $tmp=$s[1];                             }##%eax
828                         &movz   ($tmp,&HB($s[1]));
829                         &mov    ($tmp,&DWP(0,$te,$tmp,8));
830                         &and    ($tmp,0x0000ff00);
831                         &xor    ($out,$tmp);
832
833         if ($i==3)  {   $tmp=$s[2]; &mov ($s[1],$__s0);         }##%ebx
834         else        {   &mov    ($tmp,$s[2]);
835                         &shr    ($tmp,16);                      }
836         if ($i==2)  {   &and    ($s[1],0xFF);                   }#%edx[2]
837                         &and    ($tmp,0xFF);
838                         &mov    ($tmp,&DWP(0,$te,$tmp,8));
839                         &and    ($tmp,0x00ff0000);
840                         &xor    ($out,$tmp);
841
842         if ($i==3)  {   $tmp=$s[3]; &mov ($s[2],$__s1);         }##%ecx
843         elsif($i==2){   &movz   ($tmp,&HB($s[3]));              }#%ebx[2]
844         else        {   &mov    ($tmp,$s[3]);
845                         &shr    ($tmp,24);                      }
846                         &mov    ($tmp,&DWP(2,$te,$tmp,8));
847                         &and    ($tmp,0xff000000);
848                         &xor    ($out,$tmp);
849         if ($i<2)   {   &mov    (&DWP(4+4*$i,"esp"),$out);      }
850         if ($i==3)  {   &mov    ($s[3],$acc);                   }
851 }
852
853 &function_begin_B("_x86_AES_encrypt");
854         if ($vertical_spin) {
855                 # I need high parts of volatile registers to be accessible...
856                 &exch   ($s1="edi",$key="ebx");
857                 &mov    ($s2="esi",$acc="ecx");
858         }
859
860         # note that caller is expected to allocate stack frame for me!
861         &mov    ($__key,$key);                  # save key
862
863         &xor    ($s0,&DWP(0,$key));             # xor with key
864         &xor    ($s1,&DWP(4,$key));
865         &xor    ($s2,&DWP(8,$key));
866         &xor    ($s3,&DWP(12,$key));
867
868         &mov    ($acc,&DWP(240,$key));          # load key->rounds
869
870         if ($small_footprint) {
871             &lea        ($acc,&DWP(-2,$acc,$acc));
872             &lea        ($acc,&DWP(0,$key,$acc,8));
873             &mov        ($__end,$acc);          # end of key schedule
874
875             &set_label("loop",16);
876                 if ($vertical_spin) {
877                     &encvert($tbl,$s0,$s1,$s2,$s3);
878                 } else {
879                     &encstep(0,$tbl,$s0,$s1,$s2,$s3);
880                     &encstep(1,$tbl,$s1,$s2,$s3,$s0);
881                     &encstep(2,$tbl,$s2,$s3,$s0,$s1);
882                     &encstep(3,$tbl,$s3,$s0,$s1,$s2);
883                 }
884                 &add    ($key,16);              # advance rd_key
885                 &xor    ($s0,&DWP(0,$key));
886                 &xor    ($s1,&DWP(4,$key));
887                 &xor    ($s2,&DWP(8,$key));
888                 &xor    ($s3,&DWP(12,$key));
889             &cmp        ($key,$__end);
890             &mov        ($__key,$key);
891             &jb         (&label("loop"));
892         }
893         else {
894             &cmp        ($acc,10);
895             &jle        (&label("10rounds"));
896             &cmp        ($acc,12);
897             &jle        (&label("12rounds"));
898
899         &set_label("14rounds",4);
900             for ($i=1;$i<3;$i++) {
901                 if ($vertical_spin) {
902                     &encvert($tbl,$s0,$s1,$s2,$s3);
903                 } else {
904                     &encstep(0,$tbl,$s0,$s1,$s2,$s3);
905                     &encstep(1,$tbl,$s1,$s2,$s3,$s0);
906                     &encstep(2,$tbl,$s2,$s3,$s0,$s1);
907                     &encstep(3,$tbl,$s3,$s0,$s1,$s2);
908                 }
909                 &xor    ($s0,&DWP(16*$i+0,$key));
910                 &xor    ($s1,&DWP(16*$i+4,$key));
911                 &xor    ($s2,&DWP(16*$i+8,$key));
912                 &xor    ($s3,&DWP(16*$i+12,$key));
913             }
914             &add        ($key,32);
915             &mov        ($__key,$key);          # advance rd_key
916         &set_label("12rounds",4);
917             for ($i=1;$i<3;$i++) {
918                 if ($vertical_spin) {
919                     &encvert($tbl,$s0,$s1,$s2,$s3);
920                 } else {
921                     &encstep(0,$tbl,$s0,$s1,$s2,$s3);
922                     &encstep(1,$tbl,$s1,$s2,$s3,$s0);
923                     &encstep(2,$tbl,$s2,$s3,$s0,$s1);
924                     &encstep(3,$tbl,$s3,$s0,$s1,$s2);
925                 }
926                 &xor    ($s0,&DWP(16*$i+0,$key));
927                 &xor    ($s1,&DWP(16*$i+4,$key));
928                 &xor    ($s2,&DWP(16*$i+8,$key));
929                 &xor    ($s3,&DWP(16*$i+12,$key));
930             }
931             &add        ($key,32);
932             &mov        ($__key,$key);          # advance rd_key
933         &set_label("10rounds",4);
934             for ($i=1;$i<10;$i++) {
935                 if ($vertical_spin) {
936                     &encvert($tbl,$s0,$s1,$s2,$s3);
937                 } else {
938                     &encstep(0,$tbl,$s0,$s1,$s2,$s3);
939                     &encstep(1,$tbl,$s1,$s2,$s3,$s0);
940                     &encstep(2,$tbl,$s2,$s3,$s0,$s1);
941                     &encstep(3,$tbl,$s3,$s0,$s1,$s2);
942                 }
943                 &xor    ($s0,&DWP(16*$i+0,$key));
944                 &xor    ($s1,&DWP(16*$i+4,$key));
945                 &xor    ($s2,&DWP(16*$i+8,$key));
946                 &xor    ($s3,&DWP(16*$i+12,$key));
947             }
948         }
949
950         if ($vertical_spin) {
951             # "reincarnate" some registers for "horizontal" spin...
952             &mov        ($s1="ebx",$key="edi");
953             &mov        ($s2="ecx",$acc="esi");
954         }
955         &enclast(0,$tbl,$s0,$s1,$s2,$s3);
956         &enclast(1,$tbl,$s1,$s2,$s3,$s0);
957         &enclast(2,$tbl,$s2,$s3,$s0,$s1);
958         &enclast(3,$tbl,$s3,$s0,$s1,$s2);
959
960         &add    ($key,$small_footprint?16:160);
961         &xor    ($s0,&DWP(0,$key));
962         &xor    ($s1,&DWP(4,$key));
963         &xor    ($s2,&DWP(8,$key));
964         &xor    ($s3,&DWP(12,$key));
965
966         &ret    ();
967
968 &set_label("AES_Te",64);        # Yes! I keep it in the code segment!
969         &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
970         &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
971         &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
972         &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
973         &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
974         &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
975         &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
976         &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
977         &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
978         &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
979         &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
980         &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
981         &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
982         &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
983         &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
984         &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
985         &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
986         &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
987         &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
988         &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
989         &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
990         &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
991         &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
992         &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
993         &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
994         &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
995         &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
996         &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
997         &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
998         &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
999         &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
1000         &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
1001         &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
1002         &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
1003         &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
1004         &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
1005         &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
1006         &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
1007         &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
1008         &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
1009         &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
1010         &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
1011         &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
1012         &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
1013         &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1014         &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1015         &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1016         &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1017         &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1018         &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1019         &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1020         &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1021         &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1022         &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1023         &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1024         &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1025         &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1026         &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1027         &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1028         &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1029         &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1030         &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1031         &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1032         &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1033
1034 #Te4    # four copies of Te4 to choose from to avoid L1 aliasing
1035         &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1036         &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1037         &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1038         &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1039         &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1040         &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1041         &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1042         &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1043         &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1044         &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1045         &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1046         &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1047         &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1048         &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1049         &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1050         &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1051         &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1052         &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1053         &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1054         &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1055         &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1056         &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1057         &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1058         &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1059         &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1060         &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1061         &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1062         &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1063         &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1064         &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1065         &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1066         &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1067
1068         &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1069         &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1070         &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1071         &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1072         &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1073         &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1074         &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1075         &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1076         &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1077         &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1078         &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1079         &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1080         &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1081         &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1082         &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1083         &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1084         &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1085         &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1086         &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1087         &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1088         &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1089         &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1090         &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1091         &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1092         &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1093         &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1094         &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1095         &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1096         &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1097         &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1098         &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1099         &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1100
1101         &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1102         &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1103         &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1104         &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1105         &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1106         &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1107         &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1108         &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1109         &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1110         &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1111         &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1112         &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1113         &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1114         &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1115         &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1116         &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1117         &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1118         &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1119         &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1120         &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1121         &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1122         &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1123         &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1124         &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1125         &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1126         &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1127         &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1128         &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1129         &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1130         &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1131         &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1132         &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1133
1134         &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1135         &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1136         &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1137         &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1138         &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1139         &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1140         &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1141         &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1142         &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1143         &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1144         &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1145         &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1146         &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1147         &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1148         &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1149         &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1150         &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1151         &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1152         &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1153         &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1154         &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1155         &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1156         &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1157         &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1158         &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1159         &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1160         &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1161         &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1162         &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1163         &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1164         &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1165         &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1166 #rcon:
1167         &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1168         &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1169         &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1170         &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1171 &function_end_B("_x86_AES_encrypt");
1172
1173 # void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1174 &function_begin("AES_encrypt");
1175         &mov    ($acc,&wparam(0));              # load inp
1176         &mov    ($key,&wparam(2));              # load key
1177
1178         &mov    ($s0,"esp");
1179         &sub    ("esp",36);
1180         &and    ("esp",-64);                    # align to cache-line
1181
1182         # place stack frame just "above" the key schedule
1183         &lea    ($s1,&DWP(-64-63,$key));
1184         &sub    ($s1,"esp");
1185         &neg    ($s1);
1186         &and    ($s1,0x3C0);    # modulo 1024, but aligned to cache-line
1187         &sub    ("esp",$s1);
1188         &add    ("esp",4);      # 4 is reserved for caller's return address
1189         &mov    ($_esp,$s0);                    # save stack pointer
1190
1191         &call   (&label("pic_point"));          # make it PIC!
1192         &set_label("pic_point");
1193         &blindpop($tbl);
1194         &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
1195         &lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1196
1197         # pick Te4 copy which can't "overlap" with stack frame or key schedule
1198         &lea    ($s1,&DWP(768-4,"esp"));
1199         &sub    ($s1,$tbl);
1200         &and    ($s1,0x300);
1201         &lea    ($tbl,&DWP(2048+128,$tbl,$s1));
1202
1203                                         if (!$x86only) {
1204         &bt     (&DWP(0,$s0),25);       # check for SSE bit
1205         &jnc    (&label("x86"));
1206
1207         &movq   ("mm0",&QWP(0,$acc));
1208         &movq   ("mm4",&QWP(8,$acc));
1209         &call   ("_sse_AES_encrypt_compact");
1210         &mov    ("esp",$_esp);                  # restore stack pointer
1211         &mov    ($acc,&wparam(1));              # load out
1212         &movq   (&QWP(0,$acc),"mm0");           # write output data
1213         &movq   (&QWP(8,$acc),"mm4");
1214         &emms   ();
1215         &function_end_A();
1216                                         }
1217         &set_label("x86",16);
1218         &mov    ($_tbl,$tbl);
1219         &mov    ($s0,&DWP(0,$acc));             # load input data
1220         &mov    ($s1,&DWP(4,$acc));
1221         &mov    ($s2,&DWP(8,$acc));
1222         &mov    ($s3,&DWP(12,$acc));
1223         &call   ("_x86_AES_encrypt_compact");
1224         &mov    ("esp",$_esp);                  # restore stack pointer
1225         &mov    ($acc,&wparam(1));              # load out
1226         &mov    (&DWP(0,$acc),$s0);             # write output data
1227         &mov    (&DWP(4,$acc),$s1);
1228         &mov    (&DWP(8,$acc),$s2);
1229         &mov    (&DWP(12,$acc),$s3);
1230 &function_end("AES_encrypt");
1231
1232 #--------------------------------------------------------------------#
1233
1234 ######################################################################
1235 # "Compact" block function
1236 ######################################################################
1237
1238 sub deccompact()
1239 { my $Fn = \&mov;
1240   while ($#_>5) { pop(@_); $Fn=sub{}; }
1241   my ($i,$td,@s)=@_;
1242   my $tmp = $key;
1243   my $out = $i==3?$s[0]:$acc;
1244
1245         # $Fn is used in first compact round and its purpose is to
1246         # void restoration of some values from stack, so that after
1247         # 4xdeccompact with extra argument $key, $s0 and $s1 values
1248         # are left there...
1249         if($i==3)   {   &$Fn    ($key,$__key);                  }
1250         else        {   &mov    ($out,$s[0]);                   }
1251                         &and    ($out,0xFF);
1252                         &movz   ($out,&BP(-128,$td,$out,1));
1253
1254         if ($i==3)  {   $tmp=$s[1];                             }
1255                         &movz   ($tmp,&HB($s[1]));
1256                         &movz   ($tmp,&BP(-128,$td,$tmp,1));
1257                         &shl    ($tmp,8);
1258                         &xor    ($out,$tmp);
1259
1260         if ($i==3)  {   $tmp=$s[2]; &mov ($s[1],$acc);          }
1261         else        {   mov     ($tmp,$s[2]);                   }
1262                         &shr    ($tmp,16);
1263                         &and    ($tmp,0xFF);
1264                         &movz   ($tmp,&BP(-128,$td,$tmp,1));
1265                         &shl    ($tmp,16);
1266                         &xor    ($out,$tmp);
1267
1268         if ($i==3)  {   $tmp=$s[3]; &$Fn ($s[2],$__s1);         }
1269         else        {   &mov    ($tmp,$s[3]);                   }
1270                         &shr    ($tmp,24);
1271                         &movz   ($tmp,&BP(-128,$td,$tmp,1));
1272                         &shl    ($tmp,24);
1273                         &xor    ($out,$tmp);
1274         if ($i<2)   {   &mov    (&DWP(4+4*$i,"esp"),$out);      }
1275         if ($i==3)  {   &$Fn    ($s[3],$__s0);                  }
1276 }
1277
1278 # must be called with 2,3,0,1 as argument sequence!!!
1279 sub dectransform()
1280 { my @s = ($s0,$s1,$s2,$s3);
1281   my $i = shift;
1282   my $tmp = $key;
1283   my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1284   my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1285   my $tp8 = $tbl;
1286
1287         &mov    ($tmp,0x80808080);
1288         &and    ($tmp,$s[$i]);
1289         &mov    ($acc,$tmp);
1290         &shr    ($tmp,7);
1291         &lea    ($tp2,&DWP(0,$s[$i],$s[$i]));
1292         &sub    ($acc,$tmp);
1293         &and    ($tp2,0xfefefefe);
1294         &and    ($acc,0x1b1b1b1b);
1295         &xor    ($tp2,$acc);
1296         &mov    ($tmp,0x80808080);
1297
1298         &and    ($tmp,$tp2);
1299         &mov    ($acc,$tmp);
1300         &shr    ($tmp,7);
1301         &lea    ($tp4,&DWP(0,$tp2,$tp2));
1302         &sub    ($acc,$tmp);
1303         &and    ($tp4,0xfefefefe);
1304         &and    ($acc,0x1b1b1b1b);
1305          &xor   ($tp2,$s[$i]);  # tp2^tp1
1306         &xor    ($tp4,$acc);
1307         &mov    ($tmp,0x80808080);
1308
1309         &and    ($tmp,$tp4);
1310         &mov    ($acc,$tmp);
1311         &shr    ($tmp,7);
1312         &lea    ($tp8,&DWP(0,$tp4,$tp4));
1313         &sub    ($acc,$tmp);
1314         &and    ($tp8,0xfefefefe);
1315         &and    ($acc,0x1b1b1b1b);
1316          &xor   ($tp4,$s[$i]);  # tp4^tp1
1317          &rotl  ($s[$i],8);     # = ROTATE(tp1,8)
1318         &xor    ($tp8,$acc);
1319
1320         &xor    ($s[$i],$tp2);
1321         &xor    ($tp2,$tp8);
1322         &xor    ($s[$i],$tp4);
1323         &xor    ($tp4,$tp8);
1324         &rotl   ($tp2,24);
1325         &xor    ($s[$i],$tp8);  # ^= tp8^(tp4^tp1)^(tp2^tp1)
1326         &rotl   ($tp4,16);
1327         &xor    ($s[$i],$tp2);  # ^= ROTATE(tp8^tp2^tp1,24)
1328         &rotl   ($tp8,8);
1329         &xor    ($s[$i],$tp4);  # ^= ROTATE(tp8^tp4^tp1,16)
1330          &mov   ($s[0],$__s0)                   if($i==2); #prefetch $s0
1331          &mov   ($s[1],$__s1)                   if($i==3); #prefetch $s1
1332          &mov   ($s[2],$__s2)                   if($i==1);
1333         &xor    ($s[$i],$tp8);  # ^= ROTATE(tp8,8)
1334
1335         &mov    ($s[3],$__s3)                   if($i==1);
1336         &mov    (&DWP(4+4*$i,"esp"),$s[$i])     if($i>=2);
1337 }
1338
1339 &function_begin_B("_x86_AES_decrypt_compact");
1340         # note that caller is expected to allocate stack frame for me!
1341         &mov    ($__key,$key);                  # save key
1342
1343         &xor    ($s0,&DWP(0,$key));             # xor with key
1344         &xor    ($s1,&DWP(4,$key));
1345         &xor    ($s2,&DWP(8,$key));
1346         &xor    ($s3,&DWP(12,$key));
1347
1348         &mov    ($acc,&DWP(240,$key));          # load key->rounds
1349
1350         &lea    ($acc,&DWP(-2,$acc,$acc));
1351         &lea    ($acc,&DWP(0,$key,$acc,8));
1352         &mov    ($__end,$acc);                  # end of key schedule
1353
1354         # prefetch Td4
1355         &mov    ($key,&DWP(0-128,$tbl));
1356         &mov    ($acc,&DWP(32-128,$tbl));
1357         &mov    ($key,&DWP(64-128,$tbl));
1358         &mov    ($acc,&DWP(96-128,$tbl));
1359         &mov    ($key,&DWP(128-128,$tbl));
1360         &mov    ($acc,&DWP(160-128,$tbl));
1361         &mov    ($key,&DWP(192-128,$tbl));
1362         &mov    ($acc,&DWP(224-128,$tbl));
1363
1364         &set_label("loop",16);
1365
1366                 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1367                 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1368                 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1369                 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1370                 &dectransform(2);
1371                 &dectransform(3);
1372                 &dectransform(0);
1373                 &dectransform(1);
1374                 &mov    ($key,$__key);
1375                 &mov    ($tbl,$__tbl);
1376                 &add    ($key,16);              # advance rd_key
1377                 &xor    ($s0,&DWP(0,$key));
1378                 &xor    ($s1,&DWP(4,$key));
1379                 &xor    ($s2,&DWP(8,$key));
1380                 &xor    ($s3,&DWP(12,$key));
1381
1382         &cmp    ($key,$__end);
1383         &mov    ($__key,$key);
1384         &jb     (&label("loop"));
1385
1386         &deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1387         &deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1388         &deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1389         &deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1390
1391         &xor    ($s0,&DWP(16,$key));
1392         &xor    ($s1,&DWP(20,$key));
1393         &xor    ($s2,&DWP(24,$key));
1394         &xor    ($s3,&DWP(28,$key));
1395
1396         &ret    ();
1397 &function_end_B("_x86_AES_decrypt_compact");
1398
1399 ######################################################################
1400 # "Compact" SSE block function.
1401 ######################################################################
1402
1403 sub sse_deccompact()
1404 {
1405         &pshufw ("mm1","mm0",0x0c);             #  7, 6, 1, 0
1406         &pshufw ("mm5","mm4",0x09);             # 13,12,11,10
1407         &movd   ("eax","mm1");                  #  7, 6, 1, 0
1408         &movd   ("ebx","mm5");                  # 13,12,11,10
1409         &mov    ($__key,$key);
1410
1411         &movz   ($acc,&LB("eax"));              #  0
1412         &movz   ("edx",&HB("eax"));             #  1
1413         &pshufw ("mm2","mm0",0x06);             #  3, 2, 5, 4
1414         &movz   ("ecx",&BP(-128,$tbl,$acc,1));  #  0
1415         &movz   ($key,&LB("ebx"));              # 10
1416         &movz   ("edx",&BP(-128,$tbl,"edx",1)); #  1
1417         &shr    ("eax",16);                     #  7, 6
1418         &shl    ("edx",8);                      #  1
1419
1420         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 10
1421         &movz   ($key,&HB("ebx"));              # 11
1422         &shl    ($acc,16);                      # 10
1423         &pshufw ("mm6","mm4",0x03);             # 9, 8,15,14
1424         &or     ("ecx",$acc);                   # 10
1425         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 11
1426         &movz   ($key,&HB("eax"));              #  7
1427         &shl    ($acc,24);                      # 11
1428         &shr    ("ebx",16);                     # 13,12
1429         &or     ("edx",$acc);                   # 11
1430
1431         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  7
1432         &movz   ($key,&HB("ebx"));              # 13
1433         &shl    ($acc,24);                      #  7
1434         &or     ("ecx",$acc);                   #  7
1435         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 13
1436         &movz   ($key,&LB("eax"));              #  6
1437         &shl    ($acc,8);                       # 13
1438         &movd   ("eax","mm2");                  #  3, 2, 5, 4
1439         &or     ("ecx",$acc);                   # 13
1440
1441         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  6
1442         &movz   ($key,&LB("ebx"));              # 12
1443         &shl    ($acc,16);                      #  6
1444         &movd   ("ebx","mm6");                  #  9, 8,15,14
1445         &movd   ("mm0","ecx");                  # t[0] collected
1446         &movz   ("ecx",&BP(-128,$tbl,$key,1));  # 12
1447         &movz   ($key,&LB("eax"));              #  4
1448         &or     ("ecx",$acc);                   # 12
1449
1450         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  4
1451         &movz   ($key,&LB("ebx"));              # 14
1452         &or     ("edx",$acc);                   #  4
1453         &movz   ($acc,&BP(-128,$tbl,$key,1));   # 14
1454         &movz   ($key,&HB("eax"));              #  5
1455         &shl    ($acc,16);                      # 14
1456         &shr    ("eax",16);                     #  3, 2
1457         &or     ("edx",$acc);                   # 14
1458
1459         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  5
1460         &movz   ($key,&HB("ebx"));              # 15
1461         &shr    ("ebx",16);                     #  9, 8
1462         &shl    ($acc,8);                       #  5
1463         &movd   ("mm1","edx");                  # t[1] collected
1464         &movz   ("edx",&BP(-128,$tbl,$key,1));  # 15
1465         &movz   ($key,&HB("ebx"));              #  9
1466         &shl    ("edx",24);                     # 15
1467         &and    ("ebx",0xff);                   #  8
1468         &or     ("edx",$acc);                   # 15
1469
1470         &punpckldq      ("mm0","mm1");          # t[0,1] collected
1471
1472         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  9
1473         &movz   ($key,&LB("eax"));              #  2
1474         &shl    ($acc,8);                       #  9
1475         &movz   ("eax",&HB("eax"));             #  3
1476         &movz   ("ebx",&BP(-128,$tbl,"ebx",1)); #  8
1477         &or     ("ecx",$acc);                   #  9
1478         &movz   ($acc,&BP(-128,$tbl,$key,1));   #  2
1479         &or     ("edx","ebx");                  #  8
1480         &shl    ($acc,16);                      #  2
1481         &movz   ("eax",&BP(-128,$tbl,"eax",1)); #  3
1482         &or     ("edx",$acc);                   #  2
1483         &shl    ("eax",24);                     #  3
1484         &or     ("ecx","eax");                  #  3
1485         &mov    ($key,$__key);
1486         &movd   ("mm4","edx");                  # t[2] collected
1487         &movd   ("mm5","ecx");                  # t[3] collected
1488
1489         &punpckldq      ("mm4","mm5");          # t[2,3] collected
1490 }
1491
1492                                         if (!$x86only) {
1493 &function_begin_B("_sse_AES_decrypt_compact");
1494         &pxor   ("mm0",&QWP(0,$key));   #  7, 6, 5, 4, 3, 2, 1, 0
1495         &pxor   ("mm4",&QWP(8,$key));   # 15,14,13,12,11,10, 9, 8
1496
1497         # note that caller is expected to allocate stack frame for me!
1498         &mov    ($acc,&DWP(240,$key));          # load key->rounds
1499         &lea    ($acc,&DWP(-2,$acc,$acc));
1500         &lea    ($acc,&DWP(0,$key,$acc,8));
1501         &mov    ($__end,$acc);                  # end of key schedule
1502
1503         &mov    ($s0,0x1b1b1b1b);               # magic constant
1504         &mov    (&DWP(8,"esp"),$s0);
1505         &mov    (&DWP(12,"esp"),$s0);
1506
1507         # prefetch Td4
1508         &mov    ($s0,&DWP(0-128,$tbl));
1509         &mov    ($s1,&DWP(32-128,$tbl));
1510         &mov    ($s2,&DWP(64-128,$tbl));
1511         &mov    ($s3,&DWP(96-128,$tbl));
1512         &mov    ($s0,&DWP(128-128,$tbl));
1513         &mov    ($s1,&DWP(160-128,$tbl));
1514         &mov    ($s2,&DWP(192-128,$tbl));
1515         &mov    ($s3,&DWP(224-128,$tbl));
1516
1517         &set_label("loop",16);
1518                 &sse_deccompact();
1519                 &add    ($key,16);
1520                 &cmp    ($key,$__end);
1521                 &ja     (&label("out"));
1522
1523                 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1524                 &movq   ("mm3","mm0");          &movq   ("mm7","mm4");
1525                 &movq   ("mm2","mm0",1);        &movq   ("mm6","mm4",1);
1526                 &movq   ("mm1","mm0");          &movq   ("mm5","mm4");
1527                 &pshufw ("mm0","mm0",0xb1);     &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16)
1528                 &pslld  ("mm2",8);              &pslld  ("mm6",8);
1529                 &psrld  ("mm3",8);              &psrld  ("mm7",8);
1530                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");  # ^= tp0<<8
1531                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= tp0>>8
1532                 &pslld  ("mm2",16);             &pslld  ("mm6",16);
1533                 &psrld  ("mm3",16);             &psrld  ("mm7",16);
1534                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");  # ^= tp0<<24
1535                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= tp0>>24
1536
1537                 &movq   ("mm3",&QWP(8,"esp"));
1538                 &pxor   ("mm2","mm2");          &pxor   ("mm6","mm6");
1539                 &pcmpgtb("mm2","mm1");          &pcmpgtb("mm6","mm5");
1540                 &pand   ("mm2","mm3");          &pand   ("mm6","mm3");
1541                 &paddb  ("mm1","mm1");          &paddb  ("mm5","mm5");
1542                 &pxor   ("mm1","mm2");          &pxor   ("mm5","mm6");  # tp2
1543                 &movq   ("mm3","mm1");          &movq   ("mm7","mm5");
1544                 &movq   ("mm2","mm1");          &movq   ("mm6","mm5");
1545                 &pxor   ("mm0","mm1");          &pxor   ("mm4","mm5");  # ^= tp2
1546                 &pslld  ("mm3",24);             &pslld  ("mm7",24);
1547                 &psrld  ("mm2",8);              &psrld  ("mm6",8);
1548                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= tp2<<24
1549                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");  # ^= tp2>>8
1550
1551                 &movq   ("mm2",&QWP(8,"esp"));
1552                 &pxor   ("mm3","mm3");          &pxor   ("mm7","mm7");
1553                 &pcmpgtb("mm3","mm1");          &pcmpgtb("mm7","mm5");
1554                 &pand   ("mm3","mm2");          &pand   ("mm7","mm2");
1555                 &paddb  ("mm1","mm1");          &paddb  ("mm5","mm5");
1556                 &pxor   ("mm1","mm3");          &pxor   ("mm5","mm7");  # tp4
1557                 &pshufw ("mm3","mm1",0xb1);     &pshufw ("mm7","mm5",0xb1);
1558                 &pxor   ("mm0","mm1");          &pxor   ("mm4","mm5");  # ^= tp4
1559                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= ROTATE(tp4,16)
1560
1561                 &pxor   ("mm3","mm3");          &pxor   ("mm7","mm7");
1562                 &pcmpgtb("mm3","mm1");          &pcmpgtb("mm7","mm5");
1563                 &pand   ("mm3","mm2");          &pand   ("mm7","mm2");
1564                 &paddb  ("mm1","mm1");          &paddb  ("mm5","mm5");
1565                 &pxor   ("mm1","mm3");          &pxor   ("mm5","mm7");  # tp8
1566                 &pxor   ("mm0","mm1");          &pxor   ("mm4","mm5");  # ^= tp8
1567                 &movq   ("mm3","mm1");          &movq   ("mm7","mm5");
1568                 &pshufw ("mm2","mm1",0xb1);     &pshufw ("mm6","mm5",0xb1);
1569                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");  # ^= ROTATE(tp8,16)
1570                 &pslld  ("mm1",8);              &pslld  ("mm5",8);
1571                 &psrld  ("mm3",8);              &psrld  ("mm7",8);
1572                 &movq   ("mm2",&QWP(0,$key));   &movq   ("mm6",&QWP(8,$key));
1573                 &pxor   ("mm0","mm1");          &pxor   ("mm4","mm5");  # ^= tp8<<8
1574                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= tp8>>8
1575                 &mov    ($s0,&DWP(0-128,$tbl));
1576                 &pslld  ("mm1",16);             &pslld  ("mm5",16);
1577                 &mov    ($s1,&DWP(64-128,$tbl));
1578                 &psrld  ("mm3",16);             &psrld  ("mm7",16);
1579                 &mov    ($s2,&DWP(128-128,$tbl));
1580                 &pxor   ("mm0","mm1");          &pxor   ("mm4","mm5");  # ^= tp8<<24
1581                 &mov    ($s3,&DWP(192-128,$tbl));
1582                 &pxor   ("mm0","mm3");          &pxor   ("mm4","mm7");  # ^= tp8>>24
1583
1584                 &pxor   ("mm0","mm2");          &pxor   ("mm4","mm6");
1585         &jmp    (&label("loop"));
1586
1587         &set_label("out",16);
1588         &pxor   ("mm0",&QWP(0,$key));
1589         &pxor   ("mm4",&QWP(8,$key));
1590
1591         &ret    ();
1592 &function_end_B("_sse_AES_decrypt_compact");
1593                                         }
1594
1595 ######################################################################
1596 # Vanilla block function.
1597 ######################################################################
1598
1599 sub decstep()
1600 { my ($i,$td,@s) = @_;
1601   my $tmp = $key;
1602   my $out = $i==3?$s[0]:$acc;
1603
1604         # no instructions are reordered, as performance appears
1605         # optimal... or rather that all attempts to reorder didn't
1606         # result in better performance [which by the way is not a
1607         # bit lower than encryption].
1608         if($i==3)   {   &mov    ($key,$__key);                  }
1609         else        {   &mov    ($out,$s[0]);                   }
1610                         &and    ($out,0xFF);
1611                         &mov    ($out,&DWP(0,$td,$out,8));
1612
1613         if ($i==3)  {   $tmp=$s[1];                             }
1614                         &movz   ($tmp,&HB($s[1]));
1615                         &xor    ($out,&DWP(3,$td,$tmp,8));
1616
1617         if ($i==3)  {   $tmp=$s[2]; &mov ($s[1],$acc);          }
1618         else        {   &mov    ($tmp,$s[2]);                   }
1619                         &shr    ($tmp,16);
1620                         &and    ($tmp,0xFF);
1621                         &xor    ($out,&DWP(2,$td,$tmp,8));
1622
1623         if ($i==3)  {   $tmp=$s[3]; &mov ($s[2],$__s1);         }
1624         else        {   &mov    ($tmp,$s[3]);                   }
1625                         &shr    ($tmp,24);
1626                         &xor    ($out,&DWP(1,$td,$tmp,8));
1627         if ($i<2)   {   &mov    (&DWP(4+4*$i,"esp"),$out);      }
1628         if ($i==3)  {   &mov    ($s[3],$__s0);                  }
1629                         &comment();
1630 }
1631
1632 sub declast()
1633 { my ($i,$td,@s)=@_;
1634   my $tmp = $key;
1635   my $out = $i==3?$s[0]:$acc;
1636
1637         if($i==0)   {   &lea    ($td,&DWP(2048+128,$td));
1638                         &mov    ($tmp,&DWP(0-128,$td));
1639                         &mov    ($acc,&DWP(32-128,$td));
1640                         &mov    ($tmp,&DWP(64-128,$td));
1641                         &mov    ($acc,&DWP(96-128,$td));
1642                         &mov    ($tmp,&DWP(128-128,$td));
1643                         &mov    ($acc,&DWP(160-128,$td));
1644                         &mov    ($tmp,&DWP(192-128,$td));
1645                         &mov    ($acc,&DWP(224-128,$td));
1646                         &lea    ($td,&DWP(-128,$td));           }
1647         if($i==3)   {   &mov    ($key,$__key);                  }
1648         else        {   &mov    ($out,$s[0]);                   }
1649                         &and    ($out,0xFF);
1650                         &movz   ($out,&BP(0,$td,$out,1));
1651
1652         if ($i==3)  {   $tmp=$s[1];                             }
1653                         &movz   ($tmp,&HB($s[1]));
1654                         &movz   ($tmp,&BP(0,$td,$tmp,1));
1655                         &shl    ($tmp,8);
1656                         &xor    ($out,$tmp);
1657
1658         if ($i==3)  {   $tmp=$s[2]; &mov ($s[1],$acc);          }
1659         else        {   mov     ($tmp,$s[2]);                   }
1660                         &shr    ($tmp,16);
1661                         &and    ($tmp,0xFF);
1662                         &movz   ($tmp,&BP(0,$td,$tmp,1));
1663                         &shl    ($tmp,16);
1664                         &xor    ($out,$tmp);
1665
1666         if ($i==3)  {   $tmp=$s[3]; &mov ($s[2],$__s1);         }
1667         else        {   &mov    ($tmp,$s[3]);                   }
1668                         &shr    ($tmp,24);
1669                         &movz   ($tmp,&BP(0,$td,$tmp,1));
1670                         &shl    ($tmp,24);
1671                         &xor    ($out,$tmp);
1672         if ($i<2)   {   &mov    (&DWP(4+4*$i,"esp"),$out);      }
1673         if ($i==3)  {   &mov    ($s[3],$__s0);
1674                         &lea    ($td,&DWP(-2048,$td));          }
1675 }
1676
1677 &function_begin_B("_x86_AES_decrypt");
1678         # note that caller is expected to allocate stack frame for me!
1679         &mov    ($__key,$key);                  # save key
1680
1681         &xor    ($s0,&DWP(0,$key));             # xor with key
1682         &xor    ($s1,&DWP(4,$key));
1683         &xor    ($s2,&DWP(8,$key));
1684         &xor    ($s3,&DWP(12,$key));
1685
1686         &mov    ($acc,&DWP(240,$key));          # load key->rounds
1687
1688         if ($small_footprint) {
1689             &lea        ($acc,&DWP(-2,$acc,$acc));
1690             &lea        ($acc,&DWP(0,$key,$acc,8));
1691             &mov        ($__end,$acc);          # end of key schedule
1692             &set_label("loop",16);
1693                 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1694                 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1695                 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1696                 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1697                 &add    ($key,16);              # advance rd_key
1698                 &xor    ($s0,&DWP(0,$key));
1699                 &xor    ($s1,&DWP(4,$key));
1700                 &xor    ($s2,&DWP(8,$key));
1701                 &xor    ($s3,&DWP(12,$key));
1702             &cmp        ($key,$__end);
1703             &mov        ($__key,$key);
1704             &jb         (&label("loop"));
1705         }
1706         else {
1707             &cmp        ($acc,10);
1708             &jle        (&label("10rounds"));
1709             &cmp        ($acc,12);
1710             &jle        (&label("12rounds"));
1711
1712         &set_label("14rounds",4);
1713             for ($i=1;$i<3;$i++) {
1714                 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1715                 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1716                 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1717                 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1718                 &xor    ($s0,&DWP(16*$i+0,$key));
1719                 &xor    ($s1,&DWP(16*$i+4,$key));
1720                 &xor    ($s2,&DWP(16*$i+8,$key));
1721                 &xor    ($s3,&DWP(16*$i+12,$key));
1722             }
1723             &add        ($key,32);
1724             &mov        ($__key,$key);          # advance rd_key
1725         &set_label("12rounds",4);
1726             for ($i=1;$i<3;$i++) {
1727                 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1728                 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1729                 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1730                 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1731                 &xor    ($s0,&DWP(16*$i+0,$key));
1732                 &xor    ($s1,&DWP(16*$i+4,$key));
1733                 &xor    ($s2,&DWP(16*$i+8,$key));
1734                 &xor    ($s3,&DWP(16*$i+12,$key));
1735             }
1736             &add        ($key,32);
1737             &mov        ($__key,$key);          # advance rd_key
1738         &set_label("10rounds",4);
1739             for ($i=1;$i<10;$i++) {
1740                 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1741                 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1742                 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1743                 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1744                 &xor    ($s0,&DWP(16*$i+0,$key));
1745                 &xor    ($s1,&DWP(16*$i+4,$key));
1746                 &xor    ($s2,&DWP(16*$i+8,$key));
1747                 &xor    ($s3,&DWP(16*$i+12,$key));
1748             }
1749         }
1750
1751         &declast(0,$tbl,$s0,$s3,$s2,$s1);
1752         &declast(1,$tbl,$s1,$s0,$s3,$s2);
1753         &declast(2,$tbl,$s2,$s1,$s0,$s3);
1754         &declast(3,$tbl,$s3,$s2,$s1,$s0);
1755
1756         &add    ($key,$small_footprint?16:160);
1757         &xor    ($s0,&DWP(0,$key));
1758         &xor    ($s1,&DWP(4,$key));
1759         &xor    ($s2,&DWP(8,$key));
1760         &xor    ($s3,&DWP(12,$key));
1761
1762         &ret    ();
1763
1764 &set_label("AES_Td",64);        # Yes! I keep it in the code segment!
1765         &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1766         &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1767         &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1768         &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1769         &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1770         &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1771         &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1772         &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1773         &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1774         &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1775         &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1776         &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1777         &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1778         &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1779         &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1780         &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1781         &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1782         &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1783         &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1784         &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1785         &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1786         &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1787         &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1788         &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1789         &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1790         &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1791         &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1792         &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1793         &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1794         &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1795         &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1796         &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1797         &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1798         &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1799         &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1800         &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1801         &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1802         &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1803         &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1804         &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1805         &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1806         &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1807         &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1808         &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1809         &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1810         &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1811         &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1812         &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1813         &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1814         &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1815         &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1816         &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1817         &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1818         &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1819         &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1820         &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1821         &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1822         &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1823         &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1824         &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1825         &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1826         &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1827         &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1828         &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1829
1830 #Td4:   # four copies of Td4 to choose from to avoid L1 aliasing
1831         &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1832         &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1833         &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1834         &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1835         &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1836         &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1837         &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1838         &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1839         &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1840         &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1841         &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1842         &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1843         &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1844         &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1845         &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1846         &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1847         &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1848         &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1849         &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1850         &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1851         &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1852         &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1853         &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1854         &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1855         &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1856         &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1857         &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1858         &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1859         &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1860         &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1861         &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1862         &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1863
1864         &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1865         &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1866         &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1867         &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1868         &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1869         &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1870         &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1871         &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1872         &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1873         &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1874         &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1875         &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1876         &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1877         &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1878         &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1879         &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1880         &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1881         &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1882         &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1883         &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1884         &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1885         &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1886         &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1887         &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1888         &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1889         &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1890         &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1891         &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1892         &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1893         &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1894         &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1895         &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1896
1897         &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1898         &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1899         &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1900         &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1901         &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1902         &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1903         &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1904         &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1905         &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1906         &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1907         &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1908         &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1909         &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1910         &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1911         &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1912         &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1913         &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1914         &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1915         &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1916         &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1917         &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1918         &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1919         &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1920         &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1921         &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1922         &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1923         &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1924         &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1925         &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1926         &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1927         &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1928         &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1929
1930         &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1931         &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1932         &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1933         &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1934         &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1935         &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1936         &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1937         &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1938         &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1939         &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1940         &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1941         &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1942         &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1943         &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1944         &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1945         &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1946         &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1947         &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1948         &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1949         &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1950         &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1951         &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1952         &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1953         &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1954         &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1955         &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1956         &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1957         &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1958         &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1959         &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1960         &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1961         &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1962 &function_end_B("_x86_AES_decrypt");
1963
1964 # void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1965 &function_begin("AES_decrypt");
1966         &mov    ($acc,&wparam(0));              # load inp
1967         &mov    ($key,&wparam(2));              # load key
1968
1969         &mov    ($s0,"esp");
1970         &sub    ("esp",36);
1971         &and    ("esp",-64);                    # align to cache-line
1972
1973         # place stack frame just "above" the key schedule
1974         &lea    ($s1,&DWP(-64-63,$key));
1975         &sub    ($s1,"esp");
1976         &neg    ($s1);
1977         &and    ($s1,0x3C0);    # modulo 1024, but aligned to cache-line
1978         &sub    ("esp",$s1);
1979         &add    ("esp",4);      # 4 is reserved for caller's return address
1980         &mov    ($_esp,$s0);    # save stack pointer
1981
1982         &call   (&label("pic_point"));          # make it PIC!
1983         &set_label("pic_point");
1984         &blindpop($tbl);
1985         &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
1986         &lea    ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1987
1988         # pick Td4 copy which can't "overlap" with stack frame or key schedule
1989         &lea    ($s1,&DWP(768-4,"esp"));
1990         &sub    ($s1,$tbl);
1991         &and    ($s1,0x300);
1992         &lea    ($tbl,&DWP(2048+128,$tbl,$s1));
1993
1994                                         if (!$x86only) {
1995         &bt     (&DWP(0,$s0),25);       # check for SSE bit
1996         &jnc    (&label("x86"));
1997
1998         &movq   ("mm0",&QWP(0,$acc));
1999         &movq   ("mm4",&QWP(8,$acc));
2000         &call   ("_sse_AES_decrypt_compact");
2001         &mov    ("esp",$_esp);                  # restore stack pointer
2002         &mov    ($acc,&wparam(1));              # load out
2003         &movq   (&QWP(0,$acc),"mm0");           # write output data
2004         &movq   (&QWP(8,$acc),"mm4");
2005         &emms   ();
2006         &function_end_A();
2007                                         }
2008         &set_label("x86",16);
2009         &mov    ($_tbl,$tbl);
2010         &mov    ($s0,&DWP(0,$acc));             # load input data
2011         &mov    ($s1,&DWP(4,$acc));
2012         &mov    ($s2,&DWP(8,$acc));
2013         &mov    ($s3,&DWP(12,$acc));
2014         &call   ("_x86_AES_decrypt_compact");
2015         &mov    ("esp",$_esp);                  # restore stack pointer
2016         &mov    ($acc,&wparam(1));              # load out
2017         &mov    (&DWP(0,$acc),$s0);             # write output data
2018         &mov    (&DWP(4,$acc),$s1);
2019         &mov    (&DWP(8,$acc),$s2);
2020         &mov    (&DWP(12,$acc),$s3);
2021 &function_end("AES_decrypt");
2022
2023 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2024 #                       size_t length, const AES_KEY *key,
2025 #                       unsigned char *ivp,const int enc);
2026 {
2027 # stack frame layout
2028 #             -4(%esp)          # return address         0(%esp)
2029 #              0(%esp)          # s0 backing store       4(%esp)
2030 #              4(%esp)          # s1 backing store       8(%esp)
2031 #              8(%esp)          # s2 backing store      12(%esp)
2032 #             12(%esp)          # s3 backing store      16(%esp)
2033 #             16(%esp)          # key backup            20(%esp)
2034 #             20(%esp)          # end of key schedule   24(%esp)
2035 #             24(%esp)          # %ebp backup           28(%esp)
2036 #             28(%esp)          # %esp backup
2037 my $_inp=&DWP(32,"esp");        # copy of wparam(0)
2038 my $_out=&DWP(36,"esp");        # copy of wparam(1)
2039 my $_len=&DWP(40,"esp");        # copy of wparam(2)
2040 my $_key=&DWP(44,"esp");        # copy of wparam(3)
2041 my $_ivp=&DWP(48,"esp");        # copy of wparam(4)
2042 my $_tmp=&DWP(52,"esp");        # volatile variable
2043 #
2044 my $ivec=&DWP(60,"esp");        # ivec[16]
2045 my $aes_key=&DWP(76,"esp");     # copy of aes_key
2046 my $mark=&DWP(76+240,"esp");    # copy of aes_key->rounds
2047
2048 &function_begin("AES_cbc_encrypt");
2049         &mov    ($s2 eq "ecx"? $s2 : "",&wparam(2));    # load len
2050         &cmp    ($s2,0);
2051         &je     (&label("drop_out"));
2052
2053         &call   (&label("pic_point"));          # make it PIC!
2054         &set_label("pic_point");
2055         &blindpop($tbl);
2056         &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
2057
2058         &cmp    (&wparam(5),0);
2059         &lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2060         &jne    (&label("picked_te"));
2061         &lea    ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2062         &set_label("picked_te");
2063
2064         # one can argue if this is required
2065         &pushf  ();
2066         &cld    ();
2067
2068         &cmp    ($s2,$speed_limit);
2069         &jb     (&label("slow_way"));
2070         &test   ($s2,15);
2071         &jnz    (&label("slow_way"));
2072                                         if (!$x86only) {
2073         &bt     (&DWP(0,$s0),28);       # check for hyper-threading bit
2074         &jc     (&label("slow_way"));
2075                                         }
2076         # pre-allocate aligned stack frame...
2077         &lea    ($acc,&DWP(-80-244,"esp"));
2078         &and    ($acc,-64);
2079
2080         # ... and make sure it doesn't alias with $tbl modulo 4096
2081         &mov    ($s0,$tbl);
2082         &lea    ($s1,&DWP(2048+256,$tbl));
2083         &mov    ($s3,$acc);
2084         &and    ($s0,0xfff);            # s = %ebp&0xfff
2085         &and    ($s1,0xfff);            # e = (%ebp+2048+256)&0xfff
2086         &and    ($s3,0xfff);            # p = %esp&0xfff
2087
2088         &cmp    ($s3,$s1);              # if (p>=e) %esp =- (p-e);
2089         &jb     (&label("tbl_break_out"));
2090         &sub    ($s3,$s1);
2091         &sub    ($acc,$s3);
2092         &jmp    (&label("tbl_ok"));
2093         &set_label("tbl_break_out",4);  # else %esp -= (p-s)&0xfff + framesz;
2094         &sub    ($s3,$s0);
2095         &and    ($s3,0xfff);
2096         &add    ($s3,384);
2097         &sub    ($acc,$s3);
2098         &set_label("tbl_ok",4);
2099
2100         &lea    ($s3,&wparam(0));       # obtain pointer to parameter block
2101         &exch   ("esp",$acc);           # allocate stack frame
2102         &add    ("esp",4);              # reserve for return address!
2103         &mov    ($_tbl,$tbl);           # save %ebp
2104         &mov    ($_esp,$acc);           # save %esp
2105
2106         &mov    ($s0,&DWP(0,$s3));      # load inp
2107         &mov    ($s1,&DWP(4,$s3));      # load out
2108         #&mov   ($s2,&DWP(8,$s3));      # load len
2109         &mov    ($key,&DWP(12,$s3));    # load key
2110         &mov    ($acc,&DWP(16,$s3));    # load ivp
2111         &mov    ($s3,&DWP(20,$s3));     # load enc flag
2112
2113         &mov    ($_inp,$s0);            # save copy of inp
2114         &mov    ($_out,$s1);            # save copy of out
2115         &mov    ($_len,$s2);            # save copy of len
2116         &mov    ($_key,$key);           # save copy of key
2117         &mov    ($_ivp,$acc);           # save copy of ivp
2118
2119         &mov    ($mark,0);              # copy of aes_key->rounds = 0;
2120         # do we copy key schedule to stack?
2121         &mov    ($s1 eq "ebx" ? $s1 : "",$key);
2122         &mov    ($s2 eq "ecx" ? $s2 : "",244/4);
2123         &sub    ($s1,$tbl);
2124         &mov    ("esi",$key);
2125         &and    ($s1,0xfff);
2126         &lea    ("edi",$aes_key);
2127         &cmp    ($s1,2048+256);
2128         &jb     (&label("do_copy"));
2129         &cmp    ($s1,4096-244);
2130         &jb     (&label("skip_copy"));
2131         &set_label("do_copy",4);
2132                 &mov    ($_key,"edi");
2133                 &data_word(0xA5F3F689); # rep movsd
2134         &set_label("skip_copy");
2135
2136         &mov    ($key,16);
2137         &set_label("prefetch_tbl",4);
2138                 &mov    ($s0,&DWP(0,$tbl));
2139                 &mov    ($s1,&DWP(32,$tbl));
2140                 &mov    ($s2,&DWP(64,$tbl));
2141                 &mov    ($acc,&DWP(96,$tbl));
2142                 &lea    ($tbl,&DWP(128,$tbl));
2143                 &sub    ($key,1);
2144         &jnz    (&label("prefetch_tbl"));
2145         &sub    ($tbl,2048);
2146
2147         &mov    ($acc,$_inp);
2148         &mov    ($key,$_ivp);
2149
2150         &cmp    ($s3,0);
2151         &je     (&label("fast_decrypt"));
2152
2153 #----------------------------- ENCRYPT -----------------------------#
2154         &mov    ($s0,&DWP(0,$key));             # load iv
2155         &mov    ($s1,&DWP(4,$key));
2156
2157         &set_label("fast_enc_loop",16);
2158                 &mov    ($s2,&DWP(8,$key));
2159                 &mov    ($s3,&DWP(12,$key));
2160
2161                 &xor    ($s0,&DWP(0,$acc));     # xor input data
2162                 &xor    ($s1,&DWP(4,$acc));
2163                 &xor    ($s2,&DWP(8,$acc));
2164                 &xor    ($s3,&DWP(12,$acc));
2165
2166                 &mov    ($key,$_key);           # load key
2167                 &call   ("_x86_AES_encrypt");
2168
2169                 &mov    ($acc,$_inp);           # load inp
2170                 &mov    ($key,$_out);           # load out
2171
2172                 &mov    (&DWP(0,$key),$s0);     # save output data
2173                 &mov    (&DWP(4,$key),$s1);
2174                 &mov    (&DWP(8,$key),$s2);
2175                 &mov    (&DWP(12,$key),$s3);
2176
2177                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2178                 &mov    ($s2,$_len);            # load len
2179                 &mov    ($_inp,$acc);           # save inp
2180                 &lea    ($s3,&DWP(16,$key));    # advance out
2181                 &mov    ($_out,$s3);            # save out
2182                 &sub    ($s2,16);               # decrease len
2183                 &mov    ($_len,$s2);            # save len
2184         &jnz    (&label("fast_enc_loop"));
2185         &mov    ($acc,$_ivp);           # load ivp
2186         &mov    ($s2,&DWP(8,$key));     # restore last 2 dwords
2187         &mov    ($s3,&DWP(12,$key));
2188         &mov    (&DWP(0,$acc),$s0);     # save ivec
2189         &mov    (&DWP(4,$acc),$s1);
2190         &mov    (&DWP(8,$acc),$s2);
2191         &mov    (&DWP(12,$acc),$s3);
2192
2193         &cmp    ($mark,0);              # was the key schedule copied?
2194         &mov    ("edi",$_key);
2195         &je     (&label("skip_ezero"));
2196         # zero copy of key schedule
2197         &mov    ("ecx",240/4);
2198         &xor    ("eax","eax");
2199         &align  (4);
2200         &data_word(0xABF3F689);         # rep stosd
2201         &set_label("skip_ezero");
2202         &mov    ("esp",$_esp);
2203         &popf   ();
2204     &set_label("drop_out");
2205         &function_end_A();
2206         &pushf  ();                     # kludge, never executed
2207
2208 #----------------------------- DECRYPT -----------------------------#
2209 &set_label("fast_decrypt",16);
2210
2211         &cmp    ($acc,$_out);
2212         &je     (&label("fast_dec_in_place"));  # in-place processing...
2213
2214         &mov    ($_tmp,$key);
2215
2216         &align  (4);
2217         &set_label("fast_dec_loop",16);
2218                 &mov    ($s0,&DWP(0,$acc));     # read input
2219                 &mov    ($s1,&DWP(4,$acc));
2220                 &mov    ($s2,&DWP(8,$acc));
2221                 &mov    ($s3,&DWP(12,$acc));
2222
2223                 &mov    ($key,$_key);           # load key
2224                 &call   ("_x86_AES_decrypt");
2225
2226                 &mov    ($key,$_tmp);           # load ivp
2227                 &mov    ($acc,$_len);           # load len
2228                 &xor    ($s0,&DWP(0,$key));     # xor iv
2229                 &xor    ($s1,&DWP(4,$key));
2230                 &xor    ($s2,&DWP(8,$key));
2231                 &xor    ($s3,&DWP(12,$key));
2232
2233                 &mov    ($key,$_out);           # load out
2234                 &mov    ($acc,$_inp);           # load inp
2235
2236                 &mov    (&DWP(0,$key),$s0);     # write output
2237                 &mov    (&DWP(4,$key),$s1);
2238                 &mov    (&DWP(8,$key),$s2);
2239                 &mov    (&DWP(12,$key),$s3);
2240
2241                 &mov    ($s2,$_len);            # load len
2242                 &mov    ($_tmp,$acc);           # save ivp
2243                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2244                 &mov    ($_inp,$acc);           # save inp
2245                 &lea    ($key,&DWP(16,$key));   # advance out
2246                 &mov    ($_out,$key);           # save out
2247                 &sub    ($s2,16);               # decrease len
2248                 &mov    ($_len,$s2);            # save len
2249         &jnz    (&label("fast_dec_loop"));
2250         &mov    ($key,$_tmp);           # load temp ivp
2251         &mov    ($acc,$_ivp);           # load user ivp
2252         &mov    ($s0,&DWP(0,$key));     # load iv
2253         &mov    ($s1,&DWP(4,$key));
2254         &mov    ($s2,&DWP(8,$key));
2255         &mov    ($s3,&DWP(12,$key));
2256         &mov    (&DWP(0,$acc),$s0);     # copy back to user
2257         &mov    (&DWP(4,$acc),$s1);
2258         &mov    (&DWP(8,$acc),$s2);
2259         &mov    (&DWP(12,$acc),$s3);
2260         &jmp    (&label("fast_dec_out"));
2261
2262     &set_label("fast_dec_in_place",16);
2263         &set_label("fast_dec_in_place_loop");
2264                 &mov    ($s0,&DWP(0,$acc));     # read input
2265                 &mov    ($s1,&DWP(4,$acc));
2266                 &mov    ($s2,&DWP(8,$acc));
2267                 &mov    ($s3,&DWP(12,$acc));
2268
2269                 &lea    ($key,$ivec);
2270                 &mov    (&DWP(0,$key),$s0);     # copy to temp
2271                 &mov    (&DWP(4,$key),$s1);
2272                 &mov    (&DWP(8,$key),$s2);
2273                 &mov    (&DWP(12,$key),$s3);
2274
2275                 &mov    ($key,$_key);           # load key
2276                 &call   ("_x86_AES_decrypt");
2277
2278                 &mov    ($key,$_ivp);           # load ivp
2279                 &mov    ($acc,$_out);           # load out
2280                 &xor    ($s0,&DWP(0,$key));     # xor iv
2281                 &xor    ($s1,&DWP(4,$key));
2282                 &xor    ($s2,&DWP(8,$key));
2283                 &xor    ($s3,&DWP(12,$key));
2284
2285                 &mov    (&DWP(0,$acc),$s0);     # write output
2286                 &mov    (&DWP(4,$acc),$s1);
2287                 &mov    (&DWP(8,$acc),$s2);
2288                 &mov    (&DWP(12,$acc),$s3);
2289
2290                 &lea    ($acc,&DWP(16,$acc));   # advance out
2291                 &mov    ($_out,$acc);           # save out
2292
2293                 &lea    ($acc,$ivec);
2294                 &mov    ($s0,&DWP(0,$acc));     # read temp
2295                 &mov    ($s1,&DWP(4,$acc));
2296                 &mov    ($s2,&DWP(8,$acc));
2297                 &mov    ($s3,&DWP(12,$acc));
2298
2299                 &mov    (&DWP(0,$key),$s0);     # copy iv
2300                 &mov    (&DWP(4,$key),$s1);
2301                 &mov    (&DWP(8,$key),$s2);
2302                 &mov    (&DWP(12,$key),$s3);
2303
2304                 &mov    ($acc,$_inp);           # load inp
2305                 &mov    ($s2,$_len);            # load len
2306                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2307                 &mov    ($_inp,$acc);           # save inp
2308                 &sub    ($s2,16);               # decrease len
2309                 &mov    ($_len,$s2);            # save len
2310         &jnz    (&label("fast_dec_in_place_loop"));
2311
2312     &set_label("fast_dec_out",4);
2313         &cmp    ($mark,0);              # was the key schedule copied?
2314         &mov    ("edi",$_key);
2315         &je     (&label("skip_dzero"));
2316         # zero copy of key schedule
2317         &mov    ("ecx",240/4);
2318         &xor    ("eax","eax");
2319         &align  (4);
2320         &data_word(0xABF3F689);         # rep stosd
2321         &set_label("skip_dzero");
2322         &mov    ("esp",$_esp);
2323         &popf   ();
2324         &function_end_A();
2325         &pushf  ();                     # kludge, never executed
2326
2327 #--------------------------- SLOW ROUTINE ---------------------------#
2328 &set_label("slow_way",16);
2329
2330         &mov    ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2331         &mov    ($key,&wparam(3));      # load key
2332
2333         # pre-allocate aligned stack frame...
2334         &lea    ($acc,&DWP(-80,"esp"));
2335         &and    ($acc,-64);
2336
2337         # ... and make sure it doesn't alias with $key modulo 1024
2338         &lea    ($s1,&DWP(-80-63,$key));
2339         &sub    ($s1,$acc);
2340         &neg    ($s1);
2341         &and    ($s1,0x3C0);    # modulo 1024, but aligned to cache-line
2342         &sub    ($acc,$s1);
2343
2344         # pick S-box copy which can't overlap with stack frame or $key
2345         &lea    ($s1,&DWP(768,$acc));
2346         &sub    ($s1,$tbl);
2347         &and    ($s1,0x300);
2348         &lea    ($tbl,&DWP(2048+128,$tbl,$s1));
2349
2350         &lea    ($s3,&wparam(0));       # pointer to parameter block
2351
2352         &exch   ("esp",$acc);
2353         &add    ("esp",4);              # reserve for return address!
2354         &mov    ($_tbl,$tbl);           # save %ebp
2355         &mov    ($_esp,$acc);           # save %esp
2356         &mov    ($_tmp,$s0);            # save OPENSSL_ia32cap
2357
2358         &mov    ($s0,&DWP(0,$s3));      # load inp
2359         &mov    ($s1,&DWP(4,$s3));      # load out
2360         #&mov   ($s2,&DWP(8,$s3));      # load len
2361         #&mov   ($key,&DWP(12,$s3));    # load key
2362         &mov    ($acc,&DWP(16,$s3));    # load ivp
2363         &mov    ($s3,&DWP(20,$s3));     # load enc flag
2364
2365         &mov    ($_inp,$s0);            # save copy of inp
2366         &mov    ($_out,$s1);            # save copy of out
2367         &mov    ($_len,$s2);            # save copy of len
2368         &mov    ($_key,$key);           # save copy of key
2369         &mov    ($_ivp,$acc);           # save copy of ivp
2370
2371         &mov    ($key,$acc);
2372         &mov    ($acc,$s0);
2373
2374         &cmp    ($s3,0);
2375         &je     (&label("slow_decrypt"));
2376
2377 #--------------------------- SLOW ENCRYPT ---------------------------#
2378         &cmp    ($s2,16);
2379         &mov    ($s3,$s1);
2380         &jb     (&label("slow_enc_tail"));
2381
2382                                         if (!$x86only) {
2383         &bt     ($_tmp,25);             # check for SSE bit
2384         &jnc    (&label("slow_enc_x86"));
2385
2386         &movq   ("mm0",&QWP(0,$key));   # load iv
2387         &movq   ("mm4",&QWP(8,$key));
2388
2389         &set_label("slow_enc_loop_sse",16);
2390                 &pxor   ("mm0",&QWP(0,$acc));   # xor input data
2391                 &pxor   ("mm4",&QWP(8,$acc));
2392
2393                 &mov    ($key,$_key);
2394                 &call   ("_sse_AES_encrypt_compact");
2395
2396                 &mov    ($acc,$_inp);           # load inp
2397                 &mov    ($key,$_out);           # load out
2398                 &mov    ($s2,$_len);            # load len
2399
2400                 &movq   (&QWP(0,$key),"mm0");   # save output data
2401                 &movq   (&QWP(8,$key),"mm4");
2402
2403                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2404                 &mov    ($_inp,$acc);           # save inp
2405                 &lea    ($s3,&DWP(16,$key));    # advance out
2406                 &mov    ($_out,$s3);            # save out
2407                 &sub    ($s2,16);               # decrease len
2408                 &cmp    ($s2,16);
2409                 &mov    ($_len,$s2);            # save len
2410         &jae    (&label("slow_enc_loop_sse"));
2411         &test   ($s2,15);
2412         &jnz    (&label("slow_enc_tail"));
2413         &mov    ($acc,$_ivp);           # load ivp
2414         &movq   (&QWP(0,$acc),"mm0");   # save ivec
2415         &movq   (&QWP(8,$acc),"mm4");
2416         &emms   ();
2417         &mov    ("esp",$_esp);
2418         &popf   ();
2419         &function_end_A();
2420         &pushf  ();                     # kludge, never executed
2421                                         }
2422     &set_label("slow_enc_x86",16);
2423         &mov    ($s0,&DWP(0,$key));     # load iv
2424         &mov    ($s1,&DWP(4,$key));
2425
2426         &set_label("slow_enc_loop_x86",4);
2427                 &mov    ($s2,&DWP(8,$key));
2428                 &mov    ($s3,&DWP(12,$key));
2429
2430                 &xor    ($s0,&DWP(0,$acc));     # xor input data
2431                 &xor    ($s1,&DWP(4,$acc));
2432                 &xor    ($s2,&DWP(8,$acc));
2433                 &xor    ($s3,&DWP(12,$acc));
2434
2435                 &mov    ($key,$_key);           # load key
2436                 &call   ("_x86_AES_encrypt_compact");
2437
2438                 &mov    ($acc,$_inp);           # load inp
2439                 &mov    ($key,$_out);           # load out
2440
2441                 &mov    (&DWP(0,$key),$s0);     # save output data
2442                 &mov    (&DWP(4,$key),$s1);
2443                 &mov    (&DWP(8,$key),$s2);
2444                 &mov    (&DWP(12,$key),$s3);
2445
2446                 &mov    ($s2,$_len);            # load len
2447                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2448                 &mov    ($_inp,$acc);           # save inp
2449                 &lea    ($s3,&DWP(16,$key));    # advance out
2450                 &mov    ($_out,$s3);            # save out
2451                 &sub    ($s2,16);               # decrease len
2452                 &cmp    ($s2,16);
2453                 &mov    ($_len,$s2);            # save len
2454         &jae    (&label("slow_enc_loop_x86"));
2455         &test   ($s2,15);
2456         &jnz    (&label("slow_enc_tail"));
2457         &mov    ($acc,$_ivp);           # load ivp
2458         &mov    ($s2,&DWP(8,$key));     # restore last dwords
2459         &mov    ($s3,&DWP(12,$key));
2460         &mov    (&DWP(0,$acc),$s0);     # save ivec
2461         &mov    (&DWP(4,$acc),$s1);
2462         &mov    (&DWP(8,$acc),$s2);
2463         &mov    (&DWP(12,$acc),$s3);
2464
2465         &mov    ("esp",$_esp);
2466         &popf   ();
2467         &function_end_A();
2468         &pushf  ();                     # kludge, never executed
2469
2470     &set_label("slow_enc_tail",16);
2471         &emms   ()      if (!$x86only);
2472         &mov    ($key eq "edi"? $key:"",$s3);   # load out to edi
2473         &mov    ($s1,16);
2474         &sub    ($s1,$s2);
2475         &cmp    ($key,$acc eq "esi"? $acc:"");  # compare with inp
2476         &je     (&label("enc_in_place"));
2477         &align  (4);
2478         &data_word(0xA4F3F689); # rep movsb     # copy input
2479         &jmp    (&label("enc_skip_in_place"));
2480     &set_label("enc_in_place");
2481         &lea    ($key,&DWP(0,$key,$s2));
2482     &set_label("enc_skip_in_place");
2483         &mov    ($s2,$s1);
2484         &xor    ($s0,$s0);
2485         &align  (4);
2486         &data_word(0xAAF3F689); # rep stosb     # zero tail
2487
2488         &mov    ($key,$_ivp);                   # restore ivp
2489         &mov    ($acc,$s3);                     # output as input
2490         &mov    ($s0,&DWP(0,$key));
2491         &mov    ($s1,&DWP(4,$key));
2492         &mov    ($_len,16);                     # len=16
2493         &jmp    (&label("slow_enc_loop_x86"));  # one more spin...
2494
2495 #--------------------------- SLOW DECRYPT ---------------------------#
2496 &set_label("slow_decrypt",16);
2497                                         if (!$x86only) {
2498         &bt     ($_tmp,25);             # check for SSE bit
2499         &jnc    (&label("slow_dec_loop_x86"));
2500
2501         &set_label("slow_dec_loop_sse",4);
2502                 &movq   ("mm0",&QWP(0,$acc));   # read input
2503                 &movq   ("mm4",&QWP(8,$acc));
2504
2505                 &mov    ($key,$_key);
2506                 &call   ("_sse_AES_decrypt_compact");
2507
2508                 &mov    ($acc,$_inp);           # load inp
2509                 &lea    ($s0,$ivec);
2510                 &mov    ($s1,$_out);            # load out
2511                 &mov    ($s2,$_len);            # load len
2512                 &mov    ($key,$_ivp);           # load ivp
2513
2514                 &movq   ("mm1",&QWP(0,$acc));   # re-read input
2515                 &movq   ("mm5",&QWP(8,$acc));
2516
2517                 &pxor   ("mm0",&QWP(0,$key));   # xor iv
2518                 &pxor   ("mm4",&QWP(8,$key));
2519
2520                 &movq   (&QWP(0,$key),"mm1");   # copy input to iv
2521                 &movq   (&QWP(8,$key),"mm5");
2522
2523                 &sub    ($s2,16);               # decrease len
2524                 &jc     (&label("slow_dec_partial_sse"));
2525
2526                 &movq   (&QWP(0,$s1),"mm0");    # write output
2527                 &movq   (&QWP(8,$s1),"mm4");
2528
2529                 &lea    ($s1,&DWP(16,$s1));     # advance out
2530                 &mov    ($_out,$s1);            # save out
2531                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2532                 &mov    ($_inp,$acc);           # save inp
2533                 &mov    ($_len,$s2);            # save len
2534         &jnz    (&label("slow_dec_loop_sse"));
2535         &emms   ();
2536         &mov    ("esp",$_esp);
2537         &popf   ();
2538         &function_end_A();
2539         &pushf  ();                     # kludge, never executed
2540
2541     &set_label("slow_dec_partial_sse",16);
2542         &movq   (&QWP(0,$s0),"mm0");    # save output to temp
2543         &movq   (&QWP(8,$s0),"mm4");
2544         &emms   ();
2545
2546         &add    ($s2 eq "ecx" ? "ecx":"",16);
2547         &mov    ("edi",$s1);            # out
2548         &mov    ("esi",$s0);            # temp
2549         &align  (4);
2550         &data_word(0xA4F3F689);         # rep movsb # copy partial output
2551
2552         &mov    ("esp",$_esp);
2553         &popf   ();
2554         &function_end_A();
2555         &pushf  ();                     # kludge, never executed
2556                                         }
2557         &set_label("slow_dec_loop_x86",16);
2558                 &mov    ($s0,&DWP(0,$acc));     # read input
2559                 &mov    ($s1,&DWP(4,$acc));
2560                 &mov    ($s2,&DWP(8,$acc));
2561                 &mov    ($s3,&DWP(12,$acc));
2562
2563                 &lea    ($key,$ivec);
2564                 &mov    (&DWP(0,$key),$s0);     # copy to temp
2565                 &mov    (&DWP(4,$key),$s1);
2566                 &mov    (&DWP(8,$key),$s2);
2567                 &mov    (&DWP(12,$key),$s3);
2568
2569                 &mov    ($key,$_key);           # load key
2570                 &call   ("_x86_AES_decrypt_compact");
2571
2572                 &mov    ($key,$_ivp);           # load ivp
2573                 &mov    ($acc,$_len);           # load len
2574                 &xor    ($s0,&DWP(0,$key));     # xor iv
2575                 &xor    ($s1,&DWP(4,$key));
2576                 &xor    ($s2,&DWP(8,$key));
2577                 &xor    ($s3,&DWP(12,$key));
2578
2579                 &sub    ($acc,16);
2580                 &jc     (&label("slow_dec_partial_x86"));
2581
2582                 &mov    ($_len,$acc);           # save len
2583                 &mov    ($acc,$_out);           # load out
2584
2585                 &mov    (&DWP(0,$acc),$s0);     # write output
2586                 &mov    (&DWP(4,$acc),$s1);
2587                 &mov    (&DWP(8,$acc),$s2);
2588                 &mov    (&DWP(12,$acc),$s3);
2589
2590                 &lea    ($acc,&DWP(16,$acc));   # advance out
2591                 &mov    ($_out,$acc);           # save out
2592
2593                 &lea    ($acc,$ivec);
2594                 &mov    ($s0,&DWP(0,$acc));     # read temp
2595                 &mov    ($s1,&DWP(4,$acc));
2596                 &mov    ($s2,&DWP(8,$acc));
2597                 &mov    ($s3,&DWP(12,$acc));
2598
2599                 &mov    (&DWP(0,$key),$s0);     # copy it to iv
2600                 &mov    (&DWP(4,$key),$s1);
2601                 &mov    (&DWP(8,$key),$s2);
2602                 &mov    (&DWP(12,$key),$s3);
2603
2604                 &mov    ($acc,$_inp);           # load inp
2605                 &lea    ($acc,&DWP(16,$acc));   # advance inp
2606                 &mov    ($_inp,$acc);           # save inp
2607         &jnz    (&label("slow_dec_loop_x86"));
2608         &mov    ("esp",$_esp);
2609         &popf   ();
2610         &function_end_A();
2611         &pushf  ();                     # kludge, never executed
2612
2613     &set_label("slow_dec_partial_x86",16);
2614         &lea    ($acc,$ivec);
2615         &mov    (&DWP(0,$acc),$s0);     # save output to temp
2616         &mov    (&DWP(4,$acc),$s1);
2617         &mov    (&DWP(8,$acc),$s2);
2618         &mov    (&DWP(12,$acc),$s3);
2619
2620         &mov    ($acc,$_inp);
2621         &mov    ($s0,&DWP(0,$acc));     # re-read input
2622         &mov    ($s1,&DWP(4,$acc));
2623         &mov    ($s2,&DWP(8,$acc));
2624         &mov    ($s3,&DWP(12,$acc));
2625
2626         &mov    (&DWP(0,$key),$s0);     # copy it to iv
2627         &mov    (&DWP(4,$key),$s1);
2628         &mov    (&DWP(8,$key),$s2);
2629         &mov    (&DWP(12,$key),$s3);
2630
2631         &mov    ("ecx",$_len);
2632         &mov    ("edi",$_out);
2633         &lea    ("esi",$ivec);
2634         &align  (4);
2635         &data_word(0xA4F3F689);         # rep movsb # copy partial output
2636
2637         &mov    ("esp",$_esp);
2638         &popf   ();
2639 &function_end("AES_cbc_encrypt");
2640 }
2641
2642 #------------------------------------------------------------------#
2643
2644 sub enckey()
2645 {
2646         &movz   ("esi",&LB("edx"));             # rk[i]>>0
2647         &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2648         &movz   ("esi",&HB("edx"));             # rk[i]>>8
2649         &shl    ("ebx",24);
2650         &xor    ("eax","ebx");
2651
2652         &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2653         &shr    ("edx",16);
2654         &movz   ("esi",&LB("edx"));             # rk[i]>>16
2655         &xor    ("eax","ebx");
2656
2657         &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2658         &movz   ("esi",&HB("edx"));             # rk[i]>>24
2659         &shl    ("ebx",8);
2660         &xor    ("eax","ebx");
2661
2662         &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2663         &shl    ("ebx",16);
2664         &xor    ("eax","ebx");
2665
2666         &xor    ("eax",&DWP(1024-128,$tbl,"ecx",4));    # rcon
2667 }
2668
2669 &function_begin("_x86_AES_set_encrypt_key");
2670         &mov    ("esi",&wparam(1));             # user supplied key
2671         &mov    ("edi",&wparam(3));             # private key schedule
2672
2673         &test   ("esi",-1);
2674         &jz     (&label("badpointer"));
2675         &test   ("edi",-1);
2676         &jz     (&label("badpointer"));
2677
2678         &call   (&label("pic_point"));
2679         &set_label("pic_point");
2680         &blindpop($tbl);
2681         &lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2682         &lea    ($tbl,&DWP(2048+128,$tbl));
2683
2684         # prefetch Te4
2685         &mov    ("eax",&DWP(0-128,$tbl));
2686         &mov    ("ebx",&DWP(32-128,$tbl));
2687         &mov    ("ecx",&DWP(64-128,$tbl));
2688         &mov    ("edx",&DWP(96-128,$tbl));
2689         &mov    ("eax",&DWP(128-128,$tbl));
2690         &mov    ("ebx",&DWP(160-128,$tbl));
2691         &mov    ("ecx",&DWP(192-128,$tbl));
2692         &mov    ("edx",&DWP(224-128,$tbl));
2693
2694         &mov    ("ecx",&wparam(2));             # number of bits in key
2695         &cmp    ("ecx",128);
2696         &je     (&label("10rounds"));
2697         &cmp    ("ecx",192);
2698         &je     (&label("12rounds"));
2699         &cmp    ("ecx",256);
2700         &je     (&label("14rounds"));
2701         &mov    ("eax",-2);                     # invalid number of bits
2702         &jmp    (&label("exit"));
2703
2704     &set_label("10rounds");
2705         &mov    ("eax",&DWP(0,"esi"));          # copy first 4 dwords
2706         &mov    ("ebx",&DWP(4,"esi"));
2707         &mov    ("ecx",&DWP(8,"esi"));
2708         &mov    ("edx",&DWP(12,"esi"));
2709         &mov    (&DWP(0,"edi"),"eax");
2710         &mov    (&DWP(4,"edi"),"ebx");
2711         &mov    (&DWP(8,"edi"),"ecx");
2712         &mov    (&DWP(12,"edi"),"edx");
2713
2714         &xor    ("ecx","ecx");
2715         &jmp    (&label("10shortcut"));
2716
2717         &align  (4);
2718         &set_label("10loop");
2719                 &mov    ("eax",&DWP(0,"edi"));          # rk[0]
2720                 &mov    ("edx",&DWP(12,"edi"));         # rk[3]
2721         &set_label("10shortcut");
2722                 &enckey ();
2723
2724                 &mov    (&DWP(16,"edi"),"eax");         # rk[4]
2725                 &xor    ("eax",&DWP(4,"edi"));
2726                 &mov    (&DWP(20,"edi"),"eax");         # rk[5]
2727                 &xor    ("eax",&DWP(8,"edi"));
2728                 &mov    (&DWP(24,"edi"),"eax");         # rk[6]
2729                 &xor    ("eax",&DWP(12,"edi"));
2730                 &mov    (&DWP(28,"edi"),"eax");         # rk[7]
2731                 &inc    ("ecx");
2732                 &add    ("edi",16);
2733                 &cmp    ("ecx",10);
2734         &jl     (&label("10loop"));
2735
2736         &mov    (&DWP(80,"edi"),10);            # setup number of rounds
2737         &xor    ("eax","eax");
2738         &jmp    (&label("exit"));
2739
2740     &set_label("12rounds");
2741         &mov    ("eax",&DWP(0,"esi"));          # copy first 6 dwords
2742         &mov    ("ebx",&DWP(4,"esi"));
2743         &mov    ("ecx",&DWP(8,"esi"));
2744         &mov    ("edx",&DWP(12,"esi"));
2745         &mov    (&DWP(0,"edi"),"eax");
2746         &mov    (&DWP(4,"edi"),"ebx");
2747         &mov    (&DWP(8,"edi"),"ecx");
2748         &mov    (&DWP(12,"edi"),"edx");
2749         &mov    ("ecx",&DWP(16,"esi"));
2750         &mov    ("edx",&DWP(20,"esi"));
2751         &mov    (&DWP(16,"edi"),"ecx");
2752         &mov    (&DWP(20,"edi"),"edx");
2753
2754         &xor    ("ecx","ecx");
2755         &jmp    (&label("12shortcut"));
2756
2757         &align  (4);
2758         &set_label("12loop");
2759                 &mov    ("eax",&DWP(0,"edi"));          # rk[0]
2760                 &mov    ("edx",&DWP(20,"edi"));         # rk[5]
2761         &set_label("12shortcut");
2762                 &enckey ();
2763
2764                 &mov    (&DWP(24,"edi"),"eax");         # rk[6]
2765                 &xor    ("eax",&DWP(4,"edi"));
2766                 &mov    (&DWP(28,"edi"),"eax");         # rk[7]
2767                 &xor    ("eax",&DWP(8,"edi"));
2768                 &mov    (&DWP(32,"edi"),"eax");         # rk[8]
2769                 &xor    ("eax",&DWP(12,"edi"));
2770                 &mov    (&DWP(36,"edi"),"eax");         # rk[9]
2771
2772                 &cmp    ("ecx",7);
2773                 &je     (&label("12break"));
2774                 &inc    ("ecx");
2775
2776                 &xor    ("eax",&DWP(16,"edi"));
2777                 &mov    (&DWP(40,"edi"),"eax");         # rk[10]
2778                 &xor    ("eax",&DWP(20,"edi"));
2779                 &mov    (&DWP(44,"edi"),"eax");         # rk[11]
2780
2781                 &add    ("edi",24);
2782         &jmp    (&label("12loop"));
2783
2784         &set_label("12break");
2785         &mov    (&DWP(72,"edi"),12);            # setup number of rounds
2786         &xor    ("eax","eax");
2787         &jmp    (&label("exit"));
2788
2789     &set_label("14rounds");
2790         &mov    ("eax",&DWP(0,"esi"));          # copy first 8 dwords
2791         &mov    ("ebx",&DWP(4,"esi"));
2792         &mov    ("ecx",&DWP(8,"esi"));
2793         &mov    ("edx",&DWP(12,"esi"));
2794         &mov    (&DWP(0,"edi"),"eax");
2795         &mov    (&DWP(4,"edi"),"ebx");
2796         &mov    (&DWP(8,"edi"),"ecx");
2797         &mov    (&DWP(12,"edi"),"edx");
2798         &mov    ("eax",&DWP(16,"esi"));
2799         &mov    ("ebx",&DWP(20,"esi"));
2800         &mov    ("ecx",&DWP(24,"esi"));
2801         &mov    ("edx",&DWP(28,"esi"));
2802         &mov    (&DWP(16,"edi"),"eax");
2803         &mov    (&DWP(20,"edi"),"ebx");
2804         &mov    (&DWP(24,"edi"),"ecx");
2805         &mov    (&DWP(28,"edi"),"edx");
2806
2807         &xor    ("ecx","ecx");
2808         &jmp    (&label("14shortcut"));
2809
2810         &align  (4);
2811         &set_label("14loop");
2812                 &mov    ("edx",&DWP(28,"edi"));         # rk[7]
2813         &set_label("14shortcut");
2814                 &mov    ("eax",&DWP(0,"edi"));          # rk[0]
2815
2816                 &enckey ();
2817
2818                 &mov    (&DWP(32,"edi"),"eax");         # rk[8]
2819                 &xor    ("eax",&DWP(4,"edi"));
2820                 &mov    (&DWP(36,"edi"),"eax");         # rk[9]
2821                 &xor    ("eax",&DWP(8,"edi"));
2822                 &mov    (&DWP(40,"edi"),"eax");         # rk[10]
2823                 &xor    ("eax",&DWP(12,"edi"));
2824                 &mov    (&DWP(44,"edi"),"eax");         # rk[11]
2825
2826                 &cmp    ("ecx",6);
2827                 &je     (&label("14break"));
2828                 &inc    ("ecx");
2829
2830                 &mov    ("edx","eax");
2831                 &mov    ("eax",&DWP(16,"edi"));         # rk[4]
2832                 &movz   ("esi",&LB("edx"));             # rk[11]>>0
2833                 &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2834                 &movz   ("esi",&HB("edx"));             # rk[11]>>8
2835                 &xor    ("eax","ebx");
2836
2837                 &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2838                 &shr    ("edx",16);
2839                 &shl    ("ebx",8);
2840                 &movz   ("esi",&LB("edx"));             # rk[11]>>16
2841                 &xor    ("eax","ebx");
2842
2843                 &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2844                 &movz   ("esi",&HB("edx"));             # rk[11]>>24
2845                 &shl    ("ebx",16);
2846                 &xor    ("eax","ebx");
2847
2848                 &movz   ("ebx",&BP(-128,$tbl,"esi",1));
2849                 &shl    ("ebx",24);
2850                 &xor    ("eax","ebx");
2851
2852                 &mov    (&DWP(48,"edi"),"eax");         # rk[12]
2853                 &xor    ("eax",&DWP(20,"edi"));
2854                 &mov    (&DWP(52,"edi"),"eax");         # rk[13]
2855                 &xor    ("eax",&DWP(24,"edi"));
2856                 &mov    (&DWP(56,"edi"),"eax");         # rk[14]
2857                 &xor    ("eax",&DWP(28,"edi"));
2858                 &mov    (&DWP(60,"edi"),"eax");         # rk[15]
2859
2860                 &add    ("edi",32);
2861         &jmp    (&label("14loop"));
2862
2863         &set_label("14break");
2864         &mov    (&DWP(48,"edi"),14);            # setup number of rounds
2865         &xor    ("eax","eax");
2866         &jmp    (&label("exit"));
2867
2868     &set_label("badpointer");
2869         &mov    ("eax",-1);
2870     &set_label("exit");
2871 &function_end("_x86_AES_set_encrypt_key");
2872
2873 # int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2874 #                        AES_KEY *key)
2875 &function_begin_B("AES_set_encrypt_key");
2876         &call   ("_x86_AES_set_encrypt_key");
2877         &ret    ();
2878 &function_end_B("AES_set_encrypt_key");
2879
2880 sub deckey()
2881 { my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2882   my $tmp = $tbl;
2883
2884         &mov    ($tmp,0x80808080);
2885         &and    ($tmp,$tp1);
2886         &lea    ($tp2,&DWP(0,$tp1,$tp1));
2887         &mov    ($acc,$tmp);
2888         &shr    ($tmp,7);
2889         &sub    ($acc,$tmp);
2890         &and    ($tp2,0xfefefefe);
2891         &and    ($acc,0x1b1b1b1b);
2892         &xor    ($tp2,$acc);
2893         &mov    ($tmp,0x80808080);
2894
2895         &and    ($tmp,$tp2);
2896         &lea    ($tp4,&DWP(0,$tp2,$tp2));
2897         &mov    ($acc,$tmp);
2898         &shr    ($tmp,7);
2899         &sub    ($acc,$tmp);
2900         &and    ($tp4,0xfefefefe);
2901         &and    ($acc,0x1b1b1b1b);
2902          &xor   ($tp2,$tp1);    # tp2^tp1
2903         &xor    ($tp4,$acc);
2904         &mov    ($tmp,0x80808080);
2905
2906         &and    ($tmp,$tp4);
2907         &lea    ($tp8,&DWP(0,$tp4,$tp4));
2908         &mov    ($acc,$tmp);
2909         &shr    ($tmp,7);
2910          &xor   ($tp4,$tp1);    # tp4^tp1
2911         &sub    ($acc,$tmp);
2912         &and    ($tp8,0xfefefefe);
2913         &and    ($acc,0x1b1b1b1b);
2914          &rotl  ($tp1,8);       # = ROTATE(tp1,8)
2915         &xor    ($tp8,$acc);
2916
2917         &mov    ($tmp,&DWP(4*($i+1),$key));     # modulo-scheduled load
2918
2919         &xor    ($tp1,$tp2);
2920         &xor    ($tp2,$tp8);
2921         &xor    ($tp1,$tp4);
2922         &rotl   ($tp2,24);
2923         &xor    ($tp4,$tp8);
2924         &xor    ($tp1,$tp8);    # ^= tp8^(tp4^tp1)^(tp2^tp1)
2925         &rotl   ($tp4,16);
2926         &xor    ($tp1,$tp2);    # ^= ROTATE(tp8^tp2^tp1,24)
2927         &rotl   ($tp8,8);
2928         &xor    ($tp1,$tp4);    # ^= ROTATE(tp8^tp4^tp1,16)
2929         &mov    ($tp2,$tmp);
2930         &xor    ($tp1,$tp8);    # ^= ROTATE(tp8,8)
2931
2932         &mov    (&DWP(4*$i,$key),$tp1);
2933 }
2934
2935 # int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2936 #                        AES_KEY *key)
2937 &function_begin_B("AES_set_decrypt_key");
2938         &call   ("_x86_AES_set_encrypt_key");
2939         &cmp    ("eax",0);
2940         &je     (&label("proceed"));
2941         &ret    ();
2942
2943     &set_label("proceed");
2944         &push   ("ebp");
2945         &push   ("ebx");
2946         &push   ("esi");
2947         &push   ("edi");
2948
2949         &mov    ("esi",&wparam(2));
2950         &mov    ("ecx",&DWP(240,"esi"));        # pull number of rounds
2951         &lea    ("ecx",&DWP(0,"","ecx",4));
2952         &lea    ("edi",&DWP(0,"esi","ecx",4));  # pointer to last chunk
2953
2954         &set_label("invert",4);                 # invert order of chunks
2955                 &mov    ("eax",&DWP(0,"esi"));
2956                 &mov    ("ebx",&DWP(4,"esi"));
2957                 &mov    ("ecx",&DWP(0,"edi"));
2958                 &mov    ("edx",&DWP(4,"edi"));
2959                 &mov    (&DWP(0,"edi"),"eax");
2960                 &mov    (&DWP(4,"edi"),"ebx");
2961                 &mov    (&DWP(0,"esi"),"ecx");
2962                 &mov    (&DWP(4,"esi"),"edx");
2963                 &mov    ("eax",&DWP(8,"esi"));
2964                 &mov    ("ebx",&DWP(12,"esi"));
2965                 &mov    ("ecx",&DWP(8,"edi"));
2966                 &mov    ("edx",&DWP(12,"edi"));
2967                 &mov    (&DWP(8,"edi"),"eax");
2968                 &mov    (&DWP(12,"edi"),"ebx");
2969                 &mov    (&DWP(8,"esi"),"ecx");
2970                 &mov    (&DWP(12,"esi"),"edx");
2971                 &add    ("esi",16);
2972                 &sub    ("edi",16);
2973                 &cmp    ("esi","edi");
2974         &jne    (&label("invert"));
2975
2976         &mov    ($key,&wparam(2));
2977         &mov    ($acc,&DWP(240,$key));          # pull number of rounds
2978         &lea    ($acc,&DWP(-2,$acc,$acc));
2979         &lea    ($acc,&DWP(0,$key,$acc,8));
2980         &mov    (&wparam(2),$acc);
2981
2982         &mov    ($s0,&DWP(16,$key));            # modulo-scheduled load
2983         &set_label("permute",4);                # permute the key schedule
2984                 &add    ($key,16);
2985                 &deckey (0,$key,$s0,$s1,$s2,$s3);
2986                 &deckey (1,$key,$s1,$s2,$s3,$s0);
2987                 &deckey (2,$key,$s2,$s3,$s0,$s1);
2988                 &deckey (3,$key,$s3,$s0,$s1,$s2);
2989                 &cmp    ($key,&wparam(2));
2990         &jb     (&label("permute"));
2991
2992         &xor    ("eax","eax");                  # return success
2993 &function_end("AES_set_decrypt_key");
2994 &asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2995
2996 &asm_finish();
2997
2998 close STDOUT or die "error closing STDOUT: $!";