50c229ddebf246d4fbeb5a5a2a80c18c2909d5c7
[openssl.git] / crypto / sha / sha512.c
1 /* crypto/sha/sha512.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
9 /*
10  * IMPLEMENTATION NOTES.
11  *
12  * As you might have noticed 32-bit hash algorithms:
13  *
14  * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
15  * - optimized versions implement two transform functions: one operating
16  *   on [aligned] data in host byte order and one - on data in input
17  *   stream byte order;
18  * - share common byte-order neutral collector and padding function
19  *   implementations, ../md32_common.h;
20  *
21  * Neither of the above applies to this SHA-512 implementations. Reasons
22  * [in reverse order] are:
23  *
24  * - it's the only 64-bit hash algorithm for the moment of this writing,
25  *   there is no need for common collector/padding implementation [yet];
26  * - by supporting only one transform function [which operates on
27  *   *aligned* data in input stream byte order, big-endian in this case]
28  *   we minimize burden of maintenance in two ways: a) collector/padding
29  *   function is simpler; b) only one transform function to stare at;
30  * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
31  *   apply a number of optimizations to mitigate potential performance
32  *   penalties caused by previous design decision;
33  *
34  * Caveat lector.
35  *
36  * Implementation relies on the fact that "long long" is 64-bit on
37  * both 32- and 64-bit platforms. If some compiler vendor comes up
38  * with 128-bit long long, adjustment to sha.h would be required.
39  * As this implementation relies on 64-bit integer type, it's totally
40  * inappropriate for platforms which don't support it, most notably
41  * 16-bit platforms.
42  *                                      <appro@fy.chalmers.se>
43  */
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <openssl/crypto.h>
48 #include <openssl/sha.h>
49 #include <openssl/opensslv.h>
50
51 #include "cryptlib.h"
52
53 const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;
54
55 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
56     defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
57     defined(__s390__) || defined(__s390x__) || \
58     defined(SHA512_ASM)
59 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
60 #endif
61
62 fips_md_init_ctx(SHA384, SHA512)
63         {
64         c->h[0]=U64(0xcbbb9d5dc1059ed8);
65         c->h[1]=U64(0x629a292a367cd507);
66         c->h[2]=U64(0x9159015a3070dd17);
67         c->h[3]=U64(0x152fecd8f70e5939);
68         c->h[4]=U64(0x67332667ffc00b31);
69         c->h[5]=U64(0x8eb44a8768581511);
70         c->h[6]=U64(0xdb0c2e0d64f98fa7);
71         c->h[7]=U64(0x47b5481dbefa4fa4);
72
73         c->Nl=0;        c->Nh=0;
74         c->num=0;       c->md_len=SHA384_DIGEST_LENGTH;
75         return 1;
76         }
77
78 fips_md_init(SHA512)
79         {
80         c->h[0]=U64(0x6a09e667f3bcc908);
81         c->h[1]=U64(0xbb67ae8584caa73b);
82         c->h[2]=U64(0x3c6ef372fe94f82b);
83         c->h[3]=U64(0xa54ff53a5f1d36f1);
84         c->h[4]=U64(0x510e527fade682d1);
85         c->h[5]=U64(0x9b05688c2b3e6c1f);
86         c->h[6]=U64(0x1f83d9abfb41bd6b);
87         c->h[7]=U64(0x5be0cd19137e2179);
88
89         c->Nl=0;        c->Nh=0;
90         c->num=0;       c->md_len=SHA512_DIGEST_LENGTH;
91         return 1;
92         }
93
94 #ifndef SHA512_ASM
95 static
96 #endif
97 void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
98
99 int SHA512_Final (unsigned char *md, SHA512_CTX *c)
100         {
101         unsigned char *p=(unsigned char *)c->u.p;
102         size_t n=c->num;
103
104         p[n]=0x80;      /* There always is a room for one */
105         n++;
106         if (n > (sizeof(c->u)-16))
107                 memset (p+n,0,sizeof(c->u)-n), n=0,
108                 sha512_block_data_order (c,p,1);
109
110         memset (p+n,0,sizeof(c->u)-16-n);
111 #ifdef  B_ENDIAN
112         c->u.d[SHA_LBLOCK-2] = c->Nh;
113         c->u.d[SHA_LBLOCK-1] = c->Nl;
114 #else
115         p[sizeof(c->u)-1]  = (unsigned char)(c->Nl);
116         p[sizeof(c->u)-2]  = (unsigned char)(c->Nl>>8);
117         p[sizeof(c->u)-3]  = (unsigned char)(c->Nl>>16);
118         p[sizeof(c->u)-4]  = (unsigned char)(c->Nl>>24);
119         p[sizeof(c->u)-5]  = (unsigned char)(c->Nl>>32);
120         p[sizeof(c->u)-6]  = (unsigned char)(c->Nl>>40);
121         p[sizeof(c->u)-7]  = (unsigned char)(c->Nl>>48);
122         p[sizeof(c->u)-8]  = (unsigned char)(c->Nl>>56);
123         p[sizeof(c->u)-9]  = (unsigned char)(c->Nh);
124         p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
125         p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
126         p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
127         p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
128         p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
129         p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
130         p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
131 #endif
132
133         sha512_block_data_order (c,p,1);
134
135         if (md==0) return 0;
136
137         switch (c->md_len)
138                 {
139                 /* Let compiler decide if it's appropriate to unroll... */
140                 case SHA384_DIGEST_LENGTH:
141                         for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
142                                 {
143                                 SHA_LONG64 t = c->h[n];
144
145                                 *(md++) = (unsigned char)(t>>56);
146                                 *(md++) = (unsigned char)(t>>48);
147                                 *(md++) = (unsigned char)(t>>40);
148                                 *(md++) = (unsigned char)(t>>32);
149                                 *(md++) = (unsigned char)(t>>24);
150                                 *(md++) = (unsigned char)(t>>16);
151                                 *(md++) = (unsigned char)(t>>8);
152                                 *(md++) = (unsigned char)(t);
153                                 }
154                         break;
155                 case SHA512_DIGEST_LENGTH:
156                         for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
157                                 {
158                                 SHA_LONG64 t = c->h[n];
159
160                                 *(md++) = (unsigned char)(t>>56);
161                                 *(md++) = (unsigned char)(t>>48);
162                                 *(md++) = (unsigned char)(t>>40);
163                                 *(md++) = (unsigned char)(t>>32);
164                                 *(md++) = (unsigned char)(t>>24);
165                                 *(md++) = (unsigned char)(t>>16);
166                                 *(md++) = (unsigned char)(t>>8);
167                                 *(md++) = (unsigned char)(t);
168                                 }
169                         break;
170                 /* ... as well as make sure md_len is not abused. */
171                 default:        return 0;
172                 }
173
174         return 1;
175         }
176
177 int SHA384_Final (unsigned char *md,SHA512_CTX *c)
178 {   return SHA512_Final (md,c);   }
179
180 int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
181         {
182         SHA_LONG64      l;
183         unsigned char  *p=c->u.p;
184         const unsigned char *data=(const unsigned char *)_data;
185
186         if (len==0) return  1;
187
188         l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
189         if (l < c->Nl)          c->Nh++;
190         if (sizeof(len)>=8)     c->Nh+=(((SHA_LONG64)len)>>61);
191         c->Nl=l;
192
193         if (c->num != 0)
194                 {
195                 size_t n = sizeof(c->u) - c->num;
196
197                 if (len < n)
198                         {
199                         memcpy (p+c->num,data,len), c->num += (unsigned int)len;
200                         return 1;
201                         }
202                 else    {
203                         memcpy (p+c->num,data,n), c->num = 0;
204                         len-=n, data+=n;
205                         sha512_block_data_order (c,p,1);
206                         }
207                 }
208
209         if (len >= sizeof(c->u))
210                 {
211 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
212                 if ((size_t)data%sizeof(c->u.d[0]) != 0)
213                         while (len >= sizeof(c->u))
214                                 memcpy (p,data,sizeof(c->u)),
215                                 sha512_block_data_order (c,p,1),
216                                 len  -= sizeof(c->u),
217                                 data += sizeof(c->u);
218                 else
219 #endif
220                         sha512_block_data_order (c,data,len/sizeof(c->u)),
221                         data += len,
222                         len  %= sizeof(c->u),
223                         data -= len;
224                 }
225
226         if (len != 0)   memcpy (p,data,len), c->num = (int)len;
227
228         return 1;
229         }
230
231 int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
232 {   return SHA512_Update (c,data,len);   }
233
234 void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
235         {
236 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
237         if ((size_t)data%sizeof(c->u.d[0]) != 0)
238                 memcpy(c->u.p,data,sizeof(c->u.p)),
239                 data = c->u.p;
240 #endif
241         sha512_block_data_order (c,data,1);
242         }
243
244 unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
245         {
246         SHA512_CTX c;
247         static unsigned char m[SHA384_DIGEST_LENGTH];
248
249         if (md == NULL) md=m;
250         SHA384_Init(&c);
251         SHA512_Update(&c,d,n);
252         SHA512_Final(md,&c);
253         OPENSSL_cleanse(&c,sizeof(c));
254         return(md);
255         }
256
257 unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
258         {
259         SHA512_CTX c;
260         static unsigned char m[SHA512_DIGEST_LENGTH];
261
262         if (md == NULL) md=m;
263         SHA512_Init(&c);
264         SHA512_Update(&c,d,n);
265         SHA512_Final(md,&c);
266         OPENSSL_cleanse(&c,sizeof(c));
267         return(md);
268         }
269
270 #ifndef SHA512_ASM
271 static const SHA_LONG64 K512[80] = {
272         U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
273         U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
274         U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
275         U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
276         U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
277         U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
278         U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
279         U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
280         U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
281         U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
282         U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
283         U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
284         U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
285         U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
286         U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
287         U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
288         U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
289         U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
290         U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
291         U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
292         U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
293         U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
294         U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
295         U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
296         U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
297         U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
298         U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
299         U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
300         U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
301         U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
302         U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
303         U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
304         U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
305         U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
306         U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
307         U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
308         U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
309         U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
310         U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
311         U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
312
313 #ifndef PEDANTIC
314 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
315 #  if defined(__x86_64) || defined(__x86_64__)
316 #   define ROTR(a,n)    ({ SHA_LONG64 ret;              \
317                                 asm ("rorq %1,%0"       \
318                                 : "=r"(ret)             \
319                                 : "J"(n),"0"(a)         \
320                                 : "cc"); ret;           })
321 #   if !defined(B_ENDIAN)
322 #    define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x)));  \
323                                 asm ("bswapq    %0"             \
324                                 : "=r"(ret)                     \
325                                 : "0"(ret)); ret;               })
326 #   endif
327 #  elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
328 #   if defined(I386_ONLY)
329 #    define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
330                          unsigned int hi=p[0],lo=p[1];          \
331                                 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
332                                     "roll $16,%%eax; roll $16,%%edx; "\
333                                     "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
334                                 : "=a"(lo),"=d"(hi)             \
335                                 : "0"(lo),"1"(hi) : "cc");      \
336                                 ((SHA_LONG64)hi)<<32|lo;        })
337 #   else
338 #    define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
339                          unsigned int hi=p[0],lo=p[1];          \
340                                 asm ("bswapl %0; bswapl %1;"    \
341                                 : "=r"(lo),"=r"(hi)             \
342                                 : "0"(lo),"1"(hi));             \
343                                 ((SHA_LONG64)hi)<<32|lo;        })
344 #   endif
345 #  elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
346 #   define ROTR(a,n)    ({ SHA_LONG64 ret;              \
347                                 asm ("rotrdi %0,%1,%2"  \
348                                 : "=r"(ret)             \
349                                 : "r"(a),"K"(n)); ret;  })
350 #  endif
351 # elif defined(_MSC_VER)
352 #  if defined(_WIN64)   /* applies to both IA-64 and AMD64 */
353 #   pragma intrinsic(_rotr64)
354 #   define ROTR(a,n)    _rotr64((a),n)
355 #  endif
356 #  if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
357 #   if defined(I386_ONLY)
358     static SHA_LONG64 __fastcall __pull64be(const void *x)
359     {   _asm    mov     edx, [ecx + 0]
360         _asm    mov     eax, [ecx + 4]
361         _asm    xchg    dh,dl
362         _asm    xchg    ah,al
363         _asm    rol     edx,16
364         _asm    rol     eax,16
365         _asm    xchg    dh,dl
366         _asm    xchg    ah,al
367     }
368 #   else
369     static SHA_LONG64 __fastcall __pull64be(const void *x)
370     {   _asm    mov     edx, [ecx + 0]
371         _asm    mov     eax, [ecx + 4]
372         _asm    bswap   edx
373         _asm    bswap   eax
374     }
375 #   endif
376 #   define PULL64(x) __pull64be(&(x))
377 #   if _MSC_VER<=1200
378 #    pragma inline_depth(0)
379 #   endif
380 #  endif
381 # endif
382 #endif
383
384 #ifndef PULL64
385 #define B(x,j)    (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
386 #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
387 #endif
388
389 #ifndef ROTR
390 #define ROTR(x,s)       (((x)>>s) | (x)<<(64-s))
391 #endif
392
393 #define Sigma0(x)       (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
394 #define Sigma1(x)       (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
395 #define sigma0(x)       (ROTR((x),1)  ^ ROTR((x),8)  ^ ((x)>>7))
396 #define sigma1(x)       (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
397
398 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
399 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
400
401
402 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
403 /*
404  * This code should give better results on 32-bit CPU with less than
405  * ~24 registers, both size and performance wise...
406  */
407 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
408         {
409         const SHA_LONG64 *W=in;
410         SHA_LONG64      A,E,T;
411         SHA_LONG64      X[9+80],*F;
412         int i;
413
414                         while (num--) {
415
416         F    = X+80;
417         A    = ctx->h[0];       F[1] = ctx->h[1];
418         F[2] = ctx->h[2];       F[3] = ctx->h[3];
419         E    = ctx->h[4];       F[5] = ctx->h[5];
420         F[6] = ctx->h[6];       F[7] = ctx->h[7];
421
422         for (i=0;i<16;i++,F--)
423                 {
424 #ifdef B_ENDIAN
425                 T = W[i];
426 #else
427                 T = PULL64(W[i]);
428 #endif
429                 F[0] = A;
430                 F[4] = E;
431                 F[8] = T;
432                 T   += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
433                 E    = F[3] + T;
434                 A    = T + Sigma0(A) + Maj(A,F[1],F[2]);
435                 }
436
437         for (;i<80;i++,F--)
438                 {
439                 T    = sigma0(F[8+16-1]);
440                 T   += sigma1(F[8+16-14]);
441                 T   += F[8+16] + F[8+16-9];
442
443                 F[0] = A;
444                 F[4] = E;
445                 F[8] = T;
446                 T   += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
447                 E    = F[3] + T;
448                 A    = T + Sigma0(A) + Maj(A,F[1],F[2]);
449                 }
450
451         ctx->h[0] += A;         ctx->h[1] += F[1];
452         ctx->h[2] += F[2];      ctx->h[3] += F[3];
453         ctx->h[4] += E;         ctx->h[5] += F[5];
454         ctx->h[6] += F[6];      ctx->h[7] += F[7];
455
456                         W+=SHA_LBLOCK;
457                         }
458         }
459
460 #elif defined(OPENSSL_SMALL_FOOTPRINT)
461
462 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
463         {
464         const SHA_LONG64 *W=in;
465         SHA_LONG64      a,b,c,d,e,f,g,h,s0,s1,T1,T2;
466         SHA_LONG64      X[16];
467         int i;
468
469                         while (num--) {
470
471         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
472         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
473
474         for (i=0;i<16;i++)
475                 {
476 #ifdef B_ENDIAN
477                 T1 = X[i] = W[i];
478 #else
479                 T1 = X[i] = PULL64(W[i]);
480 #endif
481                 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
482                 T2 = Sigma0(a) + Maj(a,b,c);
483                 h = g;  g = f;  f = e;  e = d + T1;
484                 d = c;  c = b;  b = a;  a = T1 + T2;
485                 }
486
487         for (;i<80;i++)
488                 {
489                 s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
490                 s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
491
492                 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
493                 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
494                 T2 = Sigma0(a) + Maj(a,b,c);
495                 h = g;  g = f;  f = e;  e = d + T1;
496                 d = c;  c = b;  b = a;  a = T1 + T2;
497                 }
498
499         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
500         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
501
502                         W+=SHA_LBLOCK;
503                         }
504         }
505
506 #else
507
508 #define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
509         T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];      \
510         h = Sigma0(a) + Maj(a,b,c);                     \
511         d += T1;        h += T1;                } while (0)
512
513 #define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X)      do {    \
514         s0 = X[(j+1)&0x0f];     s0 = sigma0(s0);        \
515         s1 = X[(j+14)&0x0f];    s1 = sigma1(s1);        \
516         T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f];    \
517         ROUND_00_15(i+j,a,b,c,d,e,f,g,h);               } while (0)
518
519 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
520         {
521         const SHA_LONG64 *W=in;
522         SHA_LONG64      a,b,c,d,e,f,g,h,s0,s1,T1;
523         SHA_LONG64      X[16];
524         int i;
525
526                         while (num--) {
527
528         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
529         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
530
531 #ifdef B_ENDIAN
532         T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
533         T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
534         T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
535         T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
536         T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
537         T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
538         T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
539         T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
540         T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
541         T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
542         T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
543         T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
544         T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
545         T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
546         T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
547         T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
548 #else
549         T1 = X[0]  = PULL64(W[0]);      ROUND_00_15(0,a,b,c,d,e,f,g,h);
550         T1 = X[1]  = PULL64(W[1]);      ROUND_00_15(1,h,a,b,c,d,e,f,g);
551         T1 = X[2]  = PULL64(W[2]);      ROUND_00_15(2,g,h,a,b,c,d,e,f);
552         T1 = X[3]  = PULL64(W[3]);      ROUND_00_15(3,f,g,h,a,b,c,d,e);
553         T1 = X[4]  = PULL64(W[4]);      ROUND_00_15(4,e,f,g,h,a,b,c,d);
554         T1 = X[5]  = PULL64(W[5]);      ROUND_00_15(5,d,e,f,g,h,a,b,c);
555         T1 = X[6]  = PULL64(W[6]);      ROUND_00_15(6,c,d,e,f,g,h,a,b);
556         T1 = X[7]  = PULL64(W[7]);      ROUND_00_15(7,b,c,d,e,f,g,h,a);
557         T1 = X[8]  = PULL64(W[8]);      ROUND_00_15(8,a,b,c,d,e,f,g,h);
558         T1 = X[9]  = PULL64(W[9]);      ROUND_00_15(9,h,a,b,c,d,e,f,g);
559         T1 = X[10] = PULL64(W[10]);     ROUND_00_15(10,g,h,a,b,c,d,e,f);
560         T1 = X[11] = PULL64(W[11]);     ROUND_00_15(11,f,g,h,a,b,c,d,e);
561         T1 = X[12] = PULL64(W[12]);     ROUND_00_15(12,e,f,g,h,a,b,c,d);
562         T1 = X[13] = PULL64(W[13]);     ROUND_00_15(13,d,e,f,g,h,a,b,c);
563         T1 = X[14] = PULL64(W[14]);     ROUND_00_15(14,c,d,e,f,g,h,a,b);
564         T1 = X[15] = PULL64(W[15]);     ROUND_00_15(15,b,c,d,e,f,g,h,a);
565 #endif
566
567         for (i=16;i<80;i+=16)
568                 {
569                 ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
570                 ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
571                 ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
572                 ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
573                 ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
574                 ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
575                 ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
576                 ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
577                 ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
578                 ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
579                 ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
580                 ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
581                 ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
582                 ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
583                 ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
584                 ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
585                 }
586
587         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
588         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
589
590                         W+=SHA_LBLOCK;
591                         }
592         }
593
594 #endif
595
596 #endif /* SHA512_ASM */
597
598 #else /* !OPENSSL_NO_SHA512 */
599
600 #if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX)
601 static void *dummy=&dummy;
602 #endif
603
604 #endif /* !OPENSSL_NO_SHA512 */