d9be1a4f98c7ba0f70bcbb3946368b64b067b0f0
[openssl.git] / crypto / rsa / rsa_oaep.c
1 /*
2  * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
11
12 /*
13  * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
14  * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
15  * proof for the original OAEP scheme, which EME-OAEP is based on. A new
16  * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
17  * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
18  * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
19  * for the underlying permutation: "partial-one-wayness" instead of
20  * one-wayness.  For the RSA function, this is an equivalent notion.
21  */
22
23 /*
24  * RSA low level APIs are deprecated for public use, but still ok for
25  * internal use.
26  */
27 #include "internal/deprecated.h"
28
29 #include "internal/constant_time.h"
30
31 #include <stdio.h>
32 #include "internal/cryptlib.h"
33 #include <openssl/bn.h>
34 #include <openssl/evp.h>
35 #include <openssl/rand.h>
36 #include <openssl/sha.h>
37 #include "rsa_local.h"
38
39 int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
40                                const unsigned char *from, int flen,
41                                const unsigned char *param, int plen)
42 {
43     return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
44                                                    param, plen, NULL, NULL);
45 }
46
47 /*
48  * Perform the padding as per NIST 800-56B 7.2.2.3
49  *      from (K) is the key material.
50  *      param (A) is the additional input.
51  * Step numbers are included here but not in the constant time inverse below
52  * to avoid complicating an already difficult enough function.
53  */
54 int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
55                                             unsigned char *to, int tlen,
56                                             const unsigned char *from, int flen,
57                                             const unsigned char *param,
58                                             int plen, const EVP_MD *md,
59                                             const EVP_MD *mgf1md)
60 {
61     int rv = 0;
62     int i, emlen = tlen - 1;
63     unsigned char *db, *seed;
64     unsigned char *dbmask = NULL;
65     unsigned char seedmask[EVP_MAX_MD_SIZE];
66     int mdlen, dbmask_len = 0;
67
68     if (md == NULL) {
69 #ifndef FIPS_MODULE
70         md = EVP_sha1();
71 #else
72         ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
73         return 0;
74 #endif
75     }
76     if (mgf1md == NULL)
77         mgf1md = md;
78
79     mdlen = EVP_MD_get_size(md);
80     if (mdlen <= 0) {
81         ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
82         return 0;
83     }
84
85     /* step 2b: check KLen > nLen - 2 HLen - 2 */
86     if (flen > emlen - 2 * mdlen - 1) {
87         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
88         return 0;
89     }
90
91     if (emlen < 2 * mdlen + 1) {
92         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
93         return 0;
94     }
95
96     /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
97     to[0] = 0;
98     seed = to + 1;
99     db = to + mdlen + 1;
100
101     /* step 3a: hash the additional input */
102     if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
103         goto err;
104     /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
105     memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
106     /* step 3c: DB = HA || PS || 00000001 || K */
107     db[emlen - flen - mdlen - 1] = 0x01;
108     memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
109     /* step 3d: generate random byte string */
110     if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
111         goto err;
112
113     dbmask_len = emlen - mdlen;
114     dbmask = OPENSSL_malloc(dbmask_len);
115     if (dbmask == NULL) {
116         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
117         goto err;
118     }
119
120     /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
121     if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
122         goto err;
123     /* step 3f: maskedDB = DB XOR dbMask */
124     for (i = 0; i < dbmask_len; i++)
125         db[i] ^= dbmask[i];
126
127     /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
128     if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
129         goto err;
130     /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
131     for (i = 0; i < mdlen; i++)
132         seed[i] ^= seedmask[i];
133     rv = 1;
134
135  err:
136     OPENSSL_cleanse(seedmask, sizeof(seedmask));
137     OPENSSL_clear_free(dbmask, dbmask_len);
138     return rv;
139 }
140
141 int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
142                                     const unsigned char *from, int flen,
143                                     const unsigned char *param, int plen,
144                                     const EVP_MD *md, const EVP_MD *mgf1md)
145 {
146     return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
147                                                    param, plen, md, mgf1md);
148 }
149
150 int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
151                                  const unsigned char *from, int flen, int num,
152                                  const unsigned char *param, int plen)
153 {
154     return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
155                                              param, plen, NULL, NULL);
156 }
157
158 int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
159                                       const unsigned char *from, int flen,
160                                       int num, const unsigned char *param,
161                                       int plen, const EVP_MD *md,
162                                       const EVP_MD *mgf1md)
163 {
164     int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
165     unsigned int good = 0, found_one_byte, mask;
166     const unsigned char *maskedseed, *maskeddb;
167     /*
168      * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
169      * Y || maskedSeed || maskedDB
170      */
171     unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
172         phash[EVP_MAX_MD_SIZE];
173     int mdlen;
174
175     if (md == NULL) {
176 #ifndef FIPS_MODULE
177         md = EVP_sha1();
178 #else
179         ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
180         return -1;
181 #endif
182     }
183
184     if (mgf1md == NULL)
185         mgf1md = md;
186
187     mdlen = EVP_MD_get_size(md);
188
189     if (tlen <= 0 || flen <= 0)
190         return -1;
191     /*
192      * |num| is the length of the modulus; |flen| is the length of the
193      * encoded message. Therefore, for any |from| that was obtained by
194      * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
195      * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
196      * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
197      * This does not leak any side-channel information.
198      */
199     if (num < flen || num < 2 * mdlen + 2) {
200         ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
201         return -1;
202     }
203
204     dblen = num - mdlen - 1;
205     db = OPENSSL_malloc(dblen);
206     if (db == NULL) {
207         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
208         goto cleanup;
209     }
210
211     em = OPENSSL_malloc(num);
212     if (em == NULL) {
213         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
214         goto cleanup;
215     }
216
217     /*
218      * Caller is encouraged to pass zero-padded message created with
219      * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
220      * bounds, it's impossible to have an invariant memory access pattern
221      * in case |from| was not zero-padded in advance.
222      */
223     for (from += flen, em += num, i = 0; i < num; i++) {
224         mask = ~constant_time_is_zero(flen);
225         flen -= 1 & mask;
226         from -= 1 & mask;
227         *--em = *from & mask;
228     }
229
230     /*
231      * The first byte must be zero, however we must not leak if this is
232      * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
233      * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
234      */
235     good = constant_time_is_zero(em[0]);
236
237     maskedseed = em + 1;
238     maskeddb = em + 1 + mdlen;
239
240     if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
241         goto cleanup;
242     for (i = 0; i < mdlen; i++)
243         seed[i] ^= maskedseed[i];
244
245     if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
246         goto cleanup;
247     for (i = 0; i < dblen; i++)
248         db[i] ^= maskeddb[i];
249
250     if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
251         goto cleanup;
252
253     good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
254
255     found_one_byte = 0;
256     for (i = mdlen; i < dblen; i++) {
257         /*
258          * Padding consists of a number of 0-bytes, followed by a 1.
259          */
260         unsigned int equals1 = constant_time_eq(db[i], 1);
261         unsigned int equals0 = constant_time_is_zero(db[i]);
262         one_index = constant_time_select_int(~found_one_byte & equals1,
263                                              i, one_index);
264         found_one_byte |= equals1;
265         good &= (found_one_byte | equals0);
266     }
267
268     good &= found_one_byte;
269
270     /*
271      * At this point |good| is zero unless the plaintext was valid,
272      * so plaintext-awareness ensures timing side-channels are no longer a
273      * concern.
274      */
275     msg_index = one_index + 1;
276     mlen = dblen - msg_index;
277
278     /*
279      * For good measure, do this check in constant time as well.
280      */
281     good &= constant_time_ge(tlen, mlen);
282
283     /*
284      * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
285      * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
286      * Otherwise leave |to| unchanged.
287      * Copy the memory back in a way that does not reveal the size of
288      * the data being copied via a timing side channel. This requires copying
289      * parts of the buffer multiple times based on the bits set in the real
290      * length. Clear bits do a non-copy with identical access pattern.
291      * The loop below has overall complexity of O(N*log(N)).
292      */
293     tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
294                                     dblen - mdlen - 1, tlen);
295     for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
296         mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
297         for (i = mdlen + 1; i < dblen - msg_index; i++)
298             db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
299     }
300     for (i = 0; i < tlen; i++) {
301         mask = good & constant_time_lt(i, mlen);
302         to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
303     }
304
305 #ifndef FIPS_MODULE
306     /*
307      * To avoid chosen ciphertext attacks, the error message should not
308      * reveal which kind of decoding error happened.
309      *
310      * This trick doesn't work in the FIPS provider because libcrypto manages
311      * the error stack. Instead we opt not to put an error on the stack at all
312      * in case of padding failure in the FIPS provider.
313      */
314     ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
315     err_clear_last_constant_time(1 & good);
316 #endif
317  cleanup:
318     OPENSSL_cleanse(seed, sizeof(seed));
319     OPENSSL_clear_free(db, dblen);
320     OPENSSL_clear_free(em, num);
321
322     return constant_time_select_int(good, mlen, -1);
323 }
324
325 /*
326  * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
327  * The variables are named differently to NIST:
328  *      mask (T) and len (maskLen)are the returned mask.
329  *      seed (mgfSeed).
330  * The range checking steps inm the process are performed outside.
331  */
332 int PKCS1_MGF1(unsigned char *mask, long len,
333                const unsigned char *seed, long seedlen, const EVP_MD *dgst)
334 {
335     long i, outlen = 0;
336     unsigned char cnt[4];
337     EVP_MD_CTX *c = EVP_MD_CTX_new();
338     unsigned char md[EVP_MAX_MD_SIZE];
339     int mdlen;
340     int rv = -1;
341
342     if (c == NULL)
343         goto err;
344     mdlen = EVP_MD_get_size(dgst);
345     if (mdlen < 0)
346         goto err;
347     /* step 4 */
348     for (i = 0; outlen < len; i++) {
349         /* step 4a: D = I2BS(counter, 4) */
350         cnt[0] = (unsigned char)((i >> 24) & 255);
351         cnt[1] = (unsigned char)((i >> 16) & 255);
352         cnt[2] = (unsigned char)((i >> 8)) & 255;
353         cnt[3] = (unsigned char)(i & 255);
354         /* step 4b: T =T || hash(mgfSeed || D) */
355         if (!EVP_DigestInit_ex(c, dgst, NULL)
356             || !EVP_DigestUpdate(c, seed, seedlen)
357             || !EVP_DigestUpdate(c, cnt, 4))
358             goto err;
359         if (outlen + mdlen <= len) {
360             if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
361                 goto err;
362             outlen += mdlen;
363         } else {
364             if (!EVP_DigestFinal_ex(c, md, NULL))
365                 goto err;
366             memcpy(mask + outlen, md, len - outlen);
367             outlen = len;
368         }
369     }
370     rv = 0;
371  err:
372     OPENSSL_cleanse(md, sizeof(md));
373     EVP_MD_CTX_free(c);
374     return rv;
375 }