Update copyright year
[openssl.git] / providers / implementations / kem / rsa_kem.c
1 /*
2  * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /*
11  * RSA low level APIs are deprecated for public use, but still ok for
12  * internal use.
13  */
14 #include "internal/deprecated.h"
15 #include "internal/nelem.h"
16
17 #include <openssl/crypto.h>
18 #include <openssl/evp.h>
19 #include <openssl/core_dispatch.h>
20 #include <openssl/core_names.h>
21 #include <openssl/rsa.h>
22 #include <openssl/params.h>
23 #include <openssl/err.h>
24 #include "crypto/rsa.h"
25 #include <openssl/proverr.h>
26 #include "prov/provider_ctx.h"
27 #include "prov/implementations.h"
28 #include "prov/securitycheck.h"
29
30 static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
31 static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
32 static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
33 static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
34 static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
35 static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
36 static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
37 static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
38 static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
39 static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
40 static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
41
42 /*
43  * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
44  * currently.
45  */
46 #define KEM_OP_UNDEFINED   -1
47 #define KEM_OP_RSASVE       0
48
49 /*
50  * What's passed as an actual key is defined by the KEYMGMT interface.
51  * We happen to know that our KEYMGMT simply passes RSA structures, so
52  * we use that here too.
53  */
54 typedef struct {
55     OSSL_LIB_CTX *libctx;
56     RSA *rsa;
57     int op;
58 } PROV_RSA_CTX;
59
60 static const OSSL_ITEM rsakem_opname_id_map[] = {
61     { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
62 };
63
64 static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
65 {
66     size_t i;
67
68     if (name == NULL)
69         return -1;
70
71     for (i = 0; i < sz; ++i) {
72         if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)
73             return map[i].id;
74     }
75     return -1;
76 }
77
78 static int rsakem_opname2id(const char *name)
79 {
80     return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
81 }
82
83 static void *rsakem_newctx(void *provctx)
84 {
85     PROV_RSA_CTX *prsactx =  OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
86
87     if (prsactx == NULL)
88         return NULL;
89     prsactx->libctx = PROV_LIBCTX_OF(provctx);
90     prsactx->op = KEM_OP_UNDEFINED;
91
92     return prsactx;
93 }
94
95 static void rsakem_freectx(void *vprsactx)
96 {
97     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
98
99     RSA_free(prsactx->rsa);
100     OPENSSL_free(prsactx);
101 }
102
103 static void *rsakem_dupctx(void *vprsactx)
104 {
105     PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
106     PROV_RSA_CTX *dstctx;
107
108     dstctx = OPENSSL_zalloc(sizeof(*srcctx));
109     if (dstctx == NULL)
110         return NULL;
111
112     *dstctx = *srcctx;
113     if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
114         OPENSSL_free(dstctx);
115         return NULL;
116     }
117     return dstctx;
118 }
119
120 static int rsakem_init(void *vprsactx, void *vrsa,
121                        const OSSL_PARAM params[], int operation)
122 {
123     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
124
125     if (prsactx == NULL || vrsa == NULL)
126         return 0;
127
128     if (!ossl_rsa_check_key(prsactx->libctx, vrsa, operation))
129         return 0;
130
131     if (!RSA_up_ref(vrsa))
132         return 0;
133     RSA_free(prsactx->rsa);
134     prsactx->rsa = vrsa;
135
136     return rsakem_set_ctx_params(prsactx, params);
137 }
138
139 static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,
140                                    const OSSL_PARAM params[])
141 {
142     return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE);
143 }
144
145 static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,
146                                    const OSSL_PARAM params[])
147 {
148     return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE);
149 }
150
151 static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
152 {
153     PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
154
155     return ctx != NULL;
156 }
157
158 static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
159     OSSL_PARAM_END
160 };
161
162 static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,
163                                                     ossl_unused void *provctx)
164 {
165     return known_gettable_rsakem_ctx_params;
166 }
167
168 static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
169 {
170     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
171     const OSSL_PARAM *p;
172     int op;
173
174     if (prsactx == NULL)
175         return 0;
176     if (params == NULL)
177         return 1;
178
179
180     p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
181     if (p != NULL) {
182         if (p->data_type != OSSL_PARAM_UTF8_STRING)
183             return 0;
184         op = rsakem_opname2id(p->data);
185         if (op < 0)
186             return 0;
187         prsactx->op = op;
188     }
189     return 1;
190 }
191
192 static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
193     OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
194     OSSL_PARAM_END
195 };
196
197 static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,
198                                                     ossl_unused void *provctx)
199 {
200     return known_settable_rsakem_ctx_params;
201 }
202
203 /*
204  * NIST.SP.800-56Br2
205  * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
206  *
207  * Generate a random in the range 1 < z < (n – 1)
208  */
209 static int rsasve_gen_rand_bytes(RSA *rsa_pub,
210                                  unsigned char *out, int outlen)
211 {
212     int ret = 0;
213     BN_CTX *bnctx;
214     BIGNUM *z, *nminus3;
215
216     bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
217     if (bnctx == NULL)
218         return 0;
219
220     /*
221      * Generate a random in the range 1 < z < (n – 1).
222      * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
223      * We can achieve this by adding 2.. but then we need to subtract 3 from
224      * the upper bound i.e: 2 + (0 <= r < (n - 3))
225      */
226     BN_CTX_start(bnctx);
227     nminus3 = BN_CTX_get(bnctx);
228     z = BN_CTX_get(bnctx);
229     ret = (z != NULL
230            && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
231            && BN_sub_word(nminus3, 3)
232            && BN_priv_rand_range_ex(z, nminus3, 0, bnctx)
233            && BN_add_word(z, 2)
234            && (BN_bn2binpad(z, out, outlen) == outlen));
235     BN_CTX_end(bnctx);
236     BN_CTX_free(bnctx);
237     return ret;
238 }
239
240 /*
241  * NIST.SP.800-56Br2
242  * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
243  */
244 static int rsasve_generate(PROV_RSA_CTX *prsactx,
245                            unsigned char *out, size_t *outlen,
246                            unsigned char *secret, size_t *secretlen)
247 {
248     int ret;
249     size_t nlen;
250
251     /* Step (1): nlen = Ceil(len(n)/8) */
252     nlen = RSA_size(prsactx->rsa);
253
254     if (out == NULL) {
255         if (nlen == 0) {
256             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
257             return 0;
258         }
259         if (outlen == NULL && secretlen == NULL)
260             return 0;
261         if (outlen != NULL)
262             *outlen = nlen;
263         if (secretlen != NULL)
264             *secretlen = nlen;
265         return 1;
266     }
267     /*
268      * Step (2): Generate a random byte string z of nlen bytes where
269      *            1 < z < n - 1
270      */
271     if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
272         return 0;
273
274     /* Step(3): out = RSAEP((n,e), z) */
275     ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
276     if (ret) {
277         ret = 1;
278         if (outlen != NULL)
279             *outlen = nlen;
280         if (secretlen != NULL)
281             *secretlen = nlen;
282     } else {
283         OPENSSL_cleanse(secret, nlen);
284     }
285     return ret;
286 }
287
288 /*
289  * NIST.SP.800-56Br2
290  * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
291  */
292 static int rsasve_recover(PROV_RSA_CTX *prsactx,
293                           unsigned char *out, size_t *outlen,
294                           const unsigned char *in, size_t inlen)
295 {
296     size_t nlen;
297
298     /* Step (1): get the byte length of n */
299     nlen = RSA_size(prsactx->rsa);
300
301     if (out == NULL) {
302         if (nlen == 0) {
303             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
304             return 0;
305         }
306         *outlen = nlen;
307         return 1;
308     }
309
310     /* Step (2): check the input ciphertext 'inlen' matches the nlen */
311     if (inlen != nlen) {
312         ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
313         return 0;
314     }
315     /* Step (3): out = RSADP((n,d), in) */
316     return (RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING) > 0);
317 }
318
319 static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
320                            unsigned char *secret, size_t *secretlen)
321 {
322     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
323
324     switch (prsactx->op) {
325         case KEM_OP_RSASVE:
326             return rsasve_generate(prsactx, out, outlen, secret, secretlen);
327         default:
328             return -2;
329     }
330 }
331
332 static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
333                           const unsigned char *in, size_t inlen)
334 {
335     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
336
337     switch (prsactx->op) {
338         case KEM_OP_RSASVE:
339             return rsasve_recover(prsactx, out, outlen, in, inlen);
340         default:
341             return -2;
342     }
343 }
344
345 const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
346     { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
347     { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
348       (void (*)(void))rsakem_encapsulate_init },
349     { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
350     { OSSL_FUNC_KEM_DECAPSULATE_INIT,
351       (void (*)(void))rsakem_decapsulate_init },
352     { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
353     { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
354     { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
355     { OSSL_FUNC_KEM_GET_CTX_PARAMS,
356       (void (*)(void))rsakem_get_ctx_params },
357     { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
358       (void (*)(void))rsakem_gettable_ctx_params },
359     { OSSL_FUNC_KEM_SET_CTX_PARAMS,
360       (void (*)(void))rsakem_set_ctx_params },
361     { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
362       (void (*)(void))rsakem_settable_ctx_params },
363     { 0, NULL }
364 };