Make sure memcpy() is properly declared by including string.h.
[openssl.git] / crypto / ec / ec_mult.c
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer. 
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63
64 #include <string.h>
65
66 #include <openssl/err.h>
67
68 #include "ec_lcl.h"
69
70
71 /*
72  * This file implements the wNAF-based interleaving multi-exponentation method
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74  * for multiplication with precomputation, we use wNAF splitting
75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76  */
77
78
79
80
81 /* structure for precomputed multiples of the generator */
82 typedef struct ec_pre_comp_st {
83         const EC_GROUP *group; /* parent EC_GROUP object */
84         size_t blocksize;      /* block size for wNAF splitting */
85         size_t numblocks;      /* max. number of blocks for which we have precomputation */
86         size_t w;              /* window size */
87         EC_POINT **points;     /* array with pre-calculated multiples of generator:
88                                 * 'num' pointers to EC_POINT objects followed by a NULL */
89         size_t num;            /* numblocks * 2^(w-1) */
90 } EC_PRE_COMP;
91  
92 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
93 static void *ec_pre_comp_dup(void *);
94 static void ec_pre_comp_free(void *);
95 static void ec_pre_comp_clear_free(void *);
96
97 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
98         {
99         EC_PRE_COMP *ret = NULL;
100
101         if (!group)
102                 return NULL;
103
104         ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
105         if (!ret)
106                 return ret;
107         ret->group = group;
108         ret->blocksize = 8; /* default */
109         ret->numblocks = 0;
110         ret->w = 4; /* default */
111         ret->points = NULL;
112         ret->num = 0;
113         return ret;
114         }
115
116 static void *ec_pre_comp_dup(void *src_)
117         {
118         const EC_PRE_COMP *src = src_;
119         EC_PRE_COMP *ret = NULL;
120
121         ret = ec_pre_comp_new(src->group);
122         if (!ret)
123                 return ret;
124         ret->blocksize = src->blocksize;
125         ret->numblocks = src->numblocks;
126         ret->w = src->w;
127         ret->num = 0;
128
129         if (src->points)
130                 {
131                 EC_POINT **src_var, **dest_var;
132
133                 ret->points = (EC_POINT **)OPENSSL_malloc((src->num + 1) * sizeof(EC_POINT *));
134                 if (!ret->points)
135                         {
136                         ec_pre_comp_free(ret);
137                         return NULL;
138                         }
139
140                 for (dest_var = ret->points, src_var = src->points; *src_var != NULL; src_var++, dest_var++)
141                         {
142                         *dest_var = EC_POINT_dup(*src_var, src->group);
143                         if (*dest_var == NULL)
144                                 {
145                                 ec_pre_comp_free(ret);
146                                 return NULL;
147                                 }
148                         ret->num++;
149                         }
150
151                 ret->points[ret->num] = NULL;
152                 if (ret->num != src->num)
153                         {
154                         ec_pre_comp_free(ret);
155                         ECerr(EC_F_EC_PRE_COMP_DUP, ERR_R_INTERNAL_ERROR);
156                         return NULL;
157                         }
158                 }
159
160         return ret;
161         }
162
163 static void ec_pre_comp_free(void *pre_)
164         {
165         EC_PRE_COMP *pre = pre_;
166
167         if (!pre)
168                 return;
169         if (pre->points)
170                 {
171                 EC_POINT **var;
172
173                 for (var = pre->points; *var != NULL; var++)
174                         EC_POINT_free(*var);
175                 OPENSSL_free(pre->points);
176                 }
177         OPENSSL_free(pre);
178         }
179
180 static void ec_pre_comp_clear_free(void *pre_)
181         {
182         EC_PRE_COMP *pre = pre_;
183
184         if (!pre)
185                 return;
186         if (pre->points)
187                 {
188                 EC_POINT **p;
189
190                 for (p = pre->points; *p != NULL; p++)
191                         EC_POINT_clear_free(*p);
192                 OPENSSL_cleanse(pre->points, sizeof pre->points);
193                 OPENSSL_free(pre->points);
194                 }
195         OPENSSL_cleanse(pre, sizeof pre);
196         OPENSSL_free(pre);
197         }
198
199
200
201
202 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
203  * This is an array  r[]  of values that are either zero or odd with an
204  * absolute value less than  2^w  satisfying
205  *     scalar = \sum_j r[j]*2^j
206  * where at most one of any  w+1  consecutive digits is non-zero
207  * with the exception that the most significant digit may be only
208  * w-1 zeros away from that next non-zero digit.
209  */
210 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
211         {
212         int window_val;
213         int ok = 0;
214         signed char *r = NULL;
215         int sign = 1;
216         int bit, next_bit, mask;
217         size_t len = 0, j;
218         
219         if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
220                 {
221                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
222                 goto err;
223                 }
224         bit = 1 << w; /* at most 128 */
225         next_bit = bit << 1; /* at most 256 */
226         mask = next_bit - 1; /* at most 255 */
227
228         if (BN_get_sign(scalar))
229                 {
230                 sign = -1;
231                 }
232
233         len = BN_num_bits(scalar);
234         r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
235                                       * (*ret_len will be set to the actual length, i.e. at most
236                                       * BN_num_bits(scalar) + 1) */
237         if (r == NULL) goto err;
238
239         if (scalar->d == NULL || scalar->top == 0)
240                 {
241                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
242                 goto err;
243                 }
244         window_val = scalar->d[0] & mask;
245         j = 0;
246         while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
247                 {
248                 int digit = 0;
249
250                 /* 0 <= window_val <= 2^(w+1) */
251
252                 if (window_val & 1)
253                         {
254                         /* 0 < window_val < 2^(w+1) */
255
256                         if (window_val & bit)
257                                 {
258                                 digit = window_val - next_bit; /* -2^w < digit < 0 */
259
260 #if 1 /* modified wNAF */
261                                 if (j + w + 1 >= len)
262                                         {
263                                         /* special case for generating modified wNAFs:
264                                          * no new bits will be added into window_val,
265                                          * so using a positive digit here will decrease
266                                          * the total length of the representation */
267                                         
268                                         digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
269                                         }
270 #endif
271                                 }
272                         else
273                                 {
274                                 digit = window_val; /* 0 < digit < 2^w */
275                                 }
276                         
277                         if (digit <= -bit || digit >= bit || !(digit & 1))
278                                 {
279                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
280                                 goto err;
281                                 }
282
283                         window_val -= digit;
284
285                         /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
286                          * for modified window NAFs, it may also be 2^w
287                          */
288                         if (window_val != 0 && window_val != next_bit && window_val != bit)
289                                 {
290                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
291                                 goto err;
292                                 }
293                         }
294
295                 r[j++] = sign * digit;
296
297                 window_val >>= 1;
298                 window_val += bit * BN_is_bit_set(scalar, j + w);
299
300                 if (window_val > next_bit)
301                         {
302                         ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
303                         goto err;
304                         }
305                 }
306
307         if (j > len + 1)
308                 {
309                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
310                 goto err;
311                 }
312         len = j;
313         ok = 1;
314
315  err:
316         if (!ok)
317                 {
318                 OPENSSL_free(r);
319                 r = NULL;
320                 }
321         if (ok)
322                 *ret_len = len;
323         return r;
324         }
325
326
327 /* TODO: table should be optimised for the wNAF-based implementation,
328  *       sometimes smaller windows will give better performance
329  *       (thus the boundaries should be increased)
330  */
331 #define EC_window_bits_for_scalar_size(b) \
332                 ((b) >= 2000 ? 6 : \
333                  (b) >=  800 ? 5 : \
334                  (b) >=  300 ? 4 : \
335                  (b) >=   70 ? 3 : \
336                  (b) >=   20 ? 2 : \
337                   1)
338
339 /* Compute
340  *      \sum scalars[i]*points[i],
341  * also including
342  *      scalar*generator
343  * in the addition if scalar != NULL
344  */
345 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
346         size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
347         {
348         BN_CTX *new_ctx = NULL;
349         EC_POINT *generator = NULL;
350         EC_POINT *tmp = NULL;
351         size_t totalnum;
352         size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
353         size_t pre_points_per_block = 0;
354         size_t i, j;
355         int k;
356         int r_is_inverted = 0;
357         int r_is_at_infinity = 1;
358         size_t *wsize = NULL; /* individual window sizes */
359         signed char **wNAF = NULL; /* individual wNAFs */
360         size_t *wNAF_len = NULL;
361         size_t max_len = 0;
362         size_t num_val;
363         EC_POINT **val = NULL; /* precomputation */
364         EC_POINT **v;
365         EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
366         EC_PRE_COMP *pre_comp = NULL;
367         int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
368                              * i.e. precomputation is not available */
369         int ret = 0;
370         
371         if (group->meth != r->meth)
372                 {
373                 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
374                 return 0;
375                 }
376
377         if ((scalar == NULL) && (num == 0))
378                 {
379                 return EC_POINT_set_to_infinity(group, r);
380                 }
381
382         for (i = 0; i < num; i++)
383                 {
384                 if (group->meth != points[i]->meth)
385                         {
386                         ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
387                         return 0;
388                         }
389                 }
390
391         if (ctx == NULL)
392                 {
393                 ctx = new_ctx = BN_CTX_new();
394                 if (ctx == NULL)
395                         goto err;
396                 }
397
398         if (scalar != NULL)
399                 {
400                 generator = EC_GROUP_get0_generator(group);
401                 if (generator == NULL)
402                         {
403                         ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
404                         goto err;
405                         }
406                 
407                 /* look if we can use precomputed multiples of generator */
408
409                 pre_comp = EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
410
411                 if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
412                         {
413                         blocksize = pre_comp->blocksize;
414
415                         /* determine maximum number of blocks that wNAF splitting may yield
416                          * (NB: maximum wNAF length is bit length plus one) */
417                         numblocks = (BN_num_bits(scalar) / blocksize) + 1;
418
419                         /* we cannot use more blocks than we have precomputation for */
420                         if (numblocks > pre_comp->numblocks)
421                                 numblocks = pre_comp->numblocks;
422
423                         pre_points_per_block = 1u << (pre_comp->w - 1);
424
425                         /* check that pre_comp looks sane */
426                         if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
427                                 {
428                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
429                                 goto err;
430                                 }
431                         }
432                 else
433                         {
434                         /* can't use precomputation */
435                         pre_comp = NULL;
436                         numblocks = 1;
437                         num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
438                         }
439                 }
440         
441         totalnum = num + numblocks;
442
443         wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
444         wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
445         wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
446         val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
447                  
448         if (!wsize || !wNAF_len || !wNAF || !val_sub)
449                 goto err;
450
451         wNAF[0] = NULL; /* preliminary pivot */
452
453         /* num_val will be the total number of temporarily precomputed points */
454         num_val = 0;
455
456         for (i = 0; i < num + num_scalar; i++)
457                 {
458                 size_t bits;
459
460                 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
461                 wsize[i] = EC_window_bits_for_scalar_size(bits);
462                 num_val += 1u << (wsize[i] - 1);
463                 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
464                 wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
465                 if (wNAF[i] == NULL)
466                         goto err;
467                 if (wNAF_len[i] > max_len)
468                         max_len = wNAF_len[i];
469                 }
470
471         if (numblocks)
472                 {
473                 /* we go here iff scalar != NULL */
474                 
475                 if (pre_comp == NULL)
476                         {
477                         if (num_scalar != 1)
478                                 {
479                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
480                                 goto err;
481                                 }
482                         /* we have already generated a wNAF for 'scalar' */
483                         }
484                 else
485                         {
486                         signed char *tmp_wNAF = NULL;
487                         size_t tmp_len = 0;
488                         
489                         if (num_scalar != 0)
490                                 {
491                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
492                                 goto err;
493                                 }
494
495                         /* use the window size for which we have precomputation */
496                         wsize[num] = pre_comp->w;
497                         tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
498                         if (!tmp_wNAF)
499                                 goto err;
500
501                         if (tmp_len <= max_len)
502                                 {
503                                 /* One of the other wNAFs is at least as long
504                                  * as the wNAF belonging to the generator,
505                                  * so wNAF splitting will not buy us anything. */
506
507                                 numblocks = 1;
508                                 totalnum = num + 1; /* don't use wNAF splitting */
509                                 wNAF[num] = tmp_wNAF;
510                                 wNAF[num + 1] = NULL;
511                                 wNAF_len[num] = tmp_len;
512                                 if (tmp_len > max_len)
513                                         max_len = tmp_len;
514                                 /* pre_comp->points starts with the points that we need here: */
515                                 val_sub[num] = pre_comp->points;
516                                 }
517                         else
518                                 {
519                                 /* don't include tmp_wNAF directly into wNAF array
520                                  * - use wNAF splitting and include the blocks */
521
522                                 signed char *pp;
523                                 EC_POINT **tmp_points;
524                                 
525                                 if (tmp_len < numblocks * blocksize)
526                                         {
527                                         /* possibly we can do with fewer blocks than estimated */
528                                         numblocks = (tmp_len + blocksize - 1) / blocksize;
529                                         if (numblocks > pre_comp->numblocks)
530                                                 {
531                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
532                                                 goto err;
533                                                 }
534                                         totalnum = num + numblocks;
535                                         }
536                                 
537                                 /* split wNAF in 'numblocks' parts */
538                                 pp = tmp_wNAF;
539                                 tmp_points = pre_comp->points;
540
541                                 for (i = num; i < totalnum; i++)
542                                         {
543                                         if (i < totalnum - 1)
544                                                 {
545                                                 wNAF_len[i] = blocksize;
546                                                 if (tmp_len < blocksize)
547                                                         {
548                                                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
549                                                         goto err;
550                                                         }
551                                                 tmp_len -= blocksize;
552                                                 }
553                                         else
554                                                 /* last block gets whatever is left
555                                                  * (this could be more or less than 'blocksize'!) */
556                                                 wNAF_len[i] = tmp_len;
557                                         
558                                         wNAF[i + 1] = NULL;
559                                         wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
560                                         if (wNAF[i] == NULL)
561                                                 {
562                                                 OPENSSL_free(tmp_wNAF);
563                                                 goto err;
564                                                 }
565                                         memcpy(wNAF[i], pp, wNAF_len[i]);
566                                         if (wNAF_len[i] > max_len)
567                                                 max_len = wNAF_len[i];
568
569                                         if (*tmp_points == NULL)
570                                                 {
571                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
572                                                 OPENSSL_free(tmp_wNAF);
573                                                 goto err;
574                                                 }
575                                         val_sub[i] = tmp_points;
576                                         tmp_points += pre_points_per_block;
577                                         pp += blocksize;
578                                         }
579                                 OPENSSL_free(tmp_wNAF);
580                                 }
581                         }
582                 }
583
584         /* All points we precompute now go into a single array 'val'.
585          * 'val_sub[i]' is a pointer to the subarray for the i-th point,
586          * or to a subarray of 'pre_comp->points' if we already have precomputation. */
587         val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
588         if (val == NULL) goto err;
589         val[num_val] = NULL; /* pivot element */
590
591         /* allocate points for precomputation */
592         v = val;
593         for (i = 0; i < num + num_scalar; i++)
594                 {
595                 val_sub[i] = v;
596                 for (j = 0; j < (1u << (wsize[i] - 1)); j++)
597                         {
598                         *v = EC_POINT_new(group);
599                         if (*v == NULL) goto err;
600                         v++;
601                         }
602                 }
603         if (!(v == val + num_val))
604                 {
605                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
606                 goto err;
607                 }
608
609         if (!(tmp = EC_POINT_new(group)))
610                 goto err;
611
612         /* prepare precomputed values:
613          *    val_sub[i][0] :=     points[i]
614          *    val_sub[i][1] := 3 * points[i]
615          *    val_sub[i][2] := 5 * points[i]
616          *    ...
617          */
618         for (i = 0; i < num + num_scalar; i++)
619                 {
620                 if (i < num)
621                         {
622                         if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
623                         }
624                 else
625                         {
626                         if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
627                         }
628
629                 if (wsize[i] > 1)
630                         {
631                         if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
632                         for (j = 1; j < (1u << (wsize[i] - 1)); j++)
633                                 {
634                                 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
635                                 }
636                         }
637                 }
638
639 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
640         if (!EC_POINTs_make_affine(group, num_val, val, ctx))
641                 goto err;
642 #endif
643
644         r_is_at_infinity = 1;
645
646         for (k = max_len - 1; k >= 0; k--)
647                 {
648                 if (!r_is_at_infinity)
649                         {
650                         if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
651                         }
652                 
653                 for (i = 0; i < totalnum; i++)
654                         {
655                         if (wNAF_len[i] > (size_t)k)
656                                 {
657                                 int digit = wNAF[i][k];
658                                 int is_neg;
659
660                                 if (digit) 
661                                         {
662                                         is_neg = digit < 0;
663
664                                         if (is_neg)
665                                                 digit = -digit;
666
667                                         if (is_neg != r_is_inverted)
668                                                 {
669                                                 if (!r_is_at_infinity)
670                                                         {
671                                                         if (!EC_POINT_invert(group, r, ctx)) goto err;
672                                                         }
673                                                 r_is_inverted = !r_is_inverted;
674                                                 }
675
676                                         /* digit > 0 */
677
678                                         if (r_is_at_infinity)
679                                                 {
680                                                 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
681                                                 r_is_at_infinity = 0;
682                                                 }
683                                         else
684                                                 {
685                                                 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
686                                                 }
687                                         }
688                                 }
689                         }
690                 }
691
692         if (r_is_at_infinity)
693                 {
694                 if (!EC_POINT_set_to_infinity(group, r)) goto err;
695                 }
696         else
697                 {
698                 if (r_is_inverted)
699                         if (!EC_POINT_invert(group, r, ctx)) goto err;
700                 }
701         
702         ret = 1;
703
704  err:
705         if (new_ctx != NULL)
706                 BN_CTX_free(new_ctx);
707         if (tmp != NULL)
708                 EC_POINT_free(tmp);
709         if (wsize != NULL)
710                 OPENSSL_free(wsize);
711         if (wNAF_len != NULL)
712                 OPENSSL_free(wNAF_len);
713         if (wNAF != NULL)
714                 {
715                 signed char **w;
716                 
717                 for (w = wNAF; *w != NULL; w++)
718                         OPENSSL_free(*w);
719                 
720                 OPENSSL_free(wNAF);
721                 }
722         if (val != NULL)
723                 {
724                 for (v = val; *v != NULL; v++)
725                         EC_POINT_clear_free(*v);
726
727                 OPENSSL_free(val);
728                 }
729         if (val_sub != NULL)
730                 {
731                 OPENSSL_free(val_sub);
732                 }
733         return ret;
734         }
735
736
737 /* ec_wNAF_precompute_mult()
738  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
739  * for use with wNAF splitting as implemented in ec_wNAF_mul().
740  * 
741  * 'pre_comp->points' is an array of multiples of the generator
742  * of the following form:
743  * points[0] =     generator;
744  * points[1] = 3 * generator;
745  * ...
746  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
747  * points[2^(w-1)]   =     2^blocksize * generator;
748  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
749  * ...
750  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
751  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
752  * ...
753  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
754  * points[2^(w-1)*numblocks]       = NULL
755  */
756 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
757         {
758         const EC_POINT *generator;
759         EC_POINT *tmp_point = NULL, *base = NULL, **var;
760         BN_CTX *new_ctx = NULL;
761         BIGNUM *order;
762         size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
763         EC_POINT **points = NULL;
764         EC_PRE_COMP *pre_comp, *new_pre_comp = NULL;
765         int ret = 0;
766
767         pre_comp = EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
768         if (pre_comp == NULL)
769                 if ((pre_comp = new_pre_comp = ec_pre_comp_new(group)) == NULL)
770                         return 0;
771
772         generator = EC_GROUP_get0_generator(group);
773         if (generator == NULL)
774                 {
775                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
776                 goto err;
777                 }
778
779         if (ctx == NULL)
780                 {
781                 ctx = new_ctx = BN_CTX_new();
782                 if (ctx == NULL)
783                         goto err;
784                 }
785         
786         BN_CTX_start(ctx);
787         order = BN_CTX_get(ctx);
788         if (order == NULL) goto err;
789         
790         if (!EC_GROUP_get_order(group, order, ctx)) goto err;           
791         if (BN_is_zero(order))
792                 {
793                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
794                 goto err;
795                 }
796
797         bits = BN_num_bits(order);
798         /* The following parameters mean we precompute (approximately)
799          * one point per bit.
800          *
801          * TBD: The combination  8, 4  is perfect for 160 bits; for other
802          * bit lengths, other parameter combinations might provide better
803          * efficiency.
804          */
805         blocksize = 8;
806         w = 4;
807         if (EC_window_bits_for_scalar_size(bits) > w)
808                 {
809                 /* let's not make the window too small ... */
810                 w = EC_window_bits_for_scalar_size(bits);
811                 }
812
813         numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
814         
815         pre_points_per_block = 1u << (w - 1);
816         num = pre_points_per_block * numblocks; /* number of points to compute and store */
817
818         points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
819         if (!points)
820                 {
821                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
822                 goto err;
823                 }
824
825         var = points;
826         var[num] = NULL; /* pivot */
827         for (i = 0; i < num; i++)
828                 {
829                 if ((var[i] = EC_POINT_new(group)) == NULL)
830                         {
831                         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
832                         goto err;
833                         }
834                 }
835
836         if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
837                 {
838                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
839                 goto err;
840                 }       
841         
842         if (!EC_POINT_copy(base, generator))
843                 goto err;
844         
845         /* do the precomputation */
846         for (i = 0; i < numblocks; i++)
847                 {
848                 size_t j;
849
850                 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
851                         goto err;
852
853                 if (!EC_POINT_copy(*var++, base))
854                         goto err;
855
856                 for (j = 1; j < pre_points_per_block; j++, var++)
857                         {
858                         /* calculate odd multiples of the current base point */
859                         if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
860                                 goto err;
861                         }
862
863                 if (i < numblocks - 1)
864                         {
865                         /* get the next base (multiply current one by 2^blocksize) */
866                         size_t k;
867
868                         if (blocksize <= 2)
869                                 {
870                                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
871                                 goto err;
872                                 }                               
873
874                         if (!EC_POINT_dbl(group, base, tmp_point, ctx))
875                                 goto err;
876                         for (k = 2; k < blocksize; k++)
877                                 {
878                                 if (!EC_POINT_dbl(group,base,base,ctx))
879                                         goto err;
880                                 }
881                         }
882                 }
883
884         if (!EC_POINTs_make_affine(group, num, points, ctx))
885                 goto err;
886         
887         pre_comp->group = group;
888         pre_comp->blocksize = blocksize;
889         pre_comp->numblocks = numblocks;
890         pre_comp->w = w;
891         if (pre_comp->points)
892                 {
893                 EC_POINT **p;
894
895                 for (p = pre_comp->points; *p != NULL; p++)
896                         EC_POINT_free(*p);
897                 OPENSSL_free(pre_comp->points);
898                 }
899         pre_comp->points = points;
900         points = NULL;
901         pre_comp->num = num;
902
903         if (new_pre_comp)
904                 {
905                 if (!EC_GROUP_set_extra_data(group, new_pre_comp, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
906                         goto err;
907                 new_pre_comp = NULL;
908                 }
909
910         ret = 1;
911  err:
912         BN_CTX_end(ctx);
913         if (new_ctx != NULL)
914                 BN_CTX_free(new_ctx);
915         if (new_pre_comp)
916                 ec_pre_comp_free(new_pre_comp);
917         if (points)
918                 {
919                 EC_POINT **p;
920
921                 for (p = points; *p != NULL; p++)
922                         EC_POINT_free(*p);
923                 OPENSSL_free(points);
924                 }
925         if (tmp_point)
926                 EC_POINT_free(tmp_point);
927         if (base)
928                 EC_POINT_free(base);
929         return ret;
930         }
931
932
933 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
934         {
935         if (EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
936                 return 1;
937         else
938                 return 0;
939         }