From: Andy Polyakov Date: Fri, 28 Sep 2012 09:35:39 +0000 (+0000) Subject: sha[1|512]-sparcv9.pl: add hardware SPARC T4 support. X-Git-Tag: master-post-reformat~1676 X-Git-Url: https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff_plain;h=3ed6e2277158868a5bbd438ef0aa7b9d86cf6393 sha[1|512]-sparcv9.pl: add hardware SPARC T4 support. Submitted by: David Miller --- diff --git a/crypto/sha/Makefile b/crypto/sha/Makefile index 79be651d92..24a8c9bae0 100644 --- a/crypto/sha/Makefile +++ b/crypto/sha/Makefile @@ -66,9 +66,9 @@ sha1-alpha.s: asm/sha1-alpha.pl sha1-x86_64.s: asm/sha1-x86_64.pl; $(PERL) asm/sha1-x86_64.pl $(PERLASM_SCHEME) > $@ sha256-x86_64.s:asm/sha512-x86_64.pl; $(PERL) asm/sha512-x86_64.pl $(PERLASM_SCHEME) $@ sha512-x86_64.s:asm/sha512-x86_64.pl; $(PERL) asm/sha512-x86_64.pl $(PERLASM_SCHEME) $@ -sha1-sparcv9.s: asm/sha1-sparcv9.pl; $(PERL) asm/sha1-sparcv9.pl $@ $(CFLAGS) -sha256-sparcv9.s:asm/sha512-sparcv9.pl; $(PERL) asm/sha512-sparcv9.pl $@ $(CFLAGS) -sha512-sparcv9.s:asm/sha512-sparcv9.pl; $(PERL) asm/sha512-sparcv9.pl $@ $(CFLAGS) +sha1-sparcv9.S: asm/sha1-sparcv9.pl; $(PERL) asm/sha1-sparcv9.pl $@ $(CFLAGS) +sha256-sparcv9.S:asm/sha512-sparcv9.pl; $(PERL) asm/sha512-sparcv9.pl $@ $(CFLAGS) +sha512-sparcv9.S:asm/sha512-sparcv9.pl; $(PERL) asm/sha512-sparcv9.pl $@ $(CFLAGS) sha1-ppc.s: asm/sha1-ppc.pl; $(PERL) asm/sha1-ppc.pl $(PERLASM_SCHEME) $@ sha256-ppc.s: asm/sha512-ppc.pl; $(PERL) asm/sha512-ppc.pl $(PERLASM_SCHEME) $@ diff --git a/crypto/sha/asm/sha1-sparcv9.pl b/crypto/sha/asm/sha1-sparcv9.pl index 5c161cecd6..f661e96524 100644 --- a/crypto/sha/asm/sha1-sparcv9.pl +++ b/crypto/sha/asm/sha1-sparcv9.pl @@ -5,6 +5,8 @@ # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. +# +# Hardware SPARC T4 support by David S. Miller . # ==================================================================== # Performance improvement is not really impressive on pre-T1 CPU: +8% @@ -18,6 +20,11 @@ # ensure scalability on UltraSPARC T1, or rather to avoid decay when # amount of active threads exceeds the number of physical cores. +# SPARC T4 SHA1 hardware achieves 3.72 cycles per byte, which is 3.1x +# faster than software. Multi-process benchmark saturates at 11x +# single-process result on 8-core processor, or ~9GBps per 2.85GHz +# socket. + $bits=32; for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } if ($bits==64) { $bias=2047; $frame=192; } @@ -183,11 +190,93 @@ $code.=<<___ if ($bits==64); .register %g3,#scratch ___ $code.=<<___; +#include "sparc_arch.h" + .section ".text",#alloc,#execinstr +#ifdef __PIC__ +SPARC_PIC_THUNK(%g1) +#endif + .align 32 .globl sha1_block_data_order sha1_block_data_order: + SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) + ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1] + + andcc %g1, CFR_SHA1, %g0 + be .Lsoftware + nop + + ld [%o0 + 0x00], %f0 ! load context + ld [%o0 + 0x04], %f1 + ld [%o0 + 0x08], %f2 + andcc %o1, 0x7, %g0 + ld [%o0 + 0x0c], %f3 + bne,pn %icc, .Lhwunaligned + ld [%o0 + 0x10], %f4 + +.Lhw_loop: + ldd [%o1 + 0x00], %f8 + ldd [%o1 + 0x08], %f10 + ldd [%o1 + 0x10], %f12 + ldd [%o1 + 0x18], %f14 + ldd [%o1 + 0x20], %f16 + ldd [%o1 + 0x28], %f18 + ldd [%o1 + 0x30], %f20 + subcc %o2, 1, %o2 ! done yet? + ldd [%o1 + 0x38], %f22 + add %o1, 0x40, %o1 + + .word 0x81b02820 ! SHA1 + + bne,pt `$bits==64?"%xcc":"%icc"`, .Lhw_loop + nop + +.Lhwfinish: + st %f0, [%o0 + 0x00] ! store context + st %f1, [%o0 + 0x04] + st %f2, [%o0 + 0x08] + st %f3, [%o0 + 0x0c] + retl + st %f4, [%o0 + 0x10] + +.align 8 +.Lhwunaligned: + alignaddr %o1, %g0, %o1 + + ldd [%o1 + 0x00], %f10 +.Lhwunaligned_loop: + ldd [%o1 + 0x08], %f12 + ldd [%o1 + 0x10], %f14 + ldd [%o1 + 0x18], %f16 + ldd [%o1 + 0x20], %f18 + ldd [%o1 + 0x28], %f20 + ldd [%o1 + 0x30], %f22 + ldd [%o1 + 0x38], %f24 + subcc %o2, 1, %o2 ! done yet? + ldd [%o1 + 0x40], %f26 + add %o1, 0x40, %o1 + + faligndata %f10, %f12, %f8 + faligndata %f12, %f14, %f10 + faligndata %f14, %f16, %f12 + faligndata %f16, %f18, %f14 + faligndata %f18, %f20, %f16 + faligndata %f20, %f22, %f18 + faligndata %f22, %f24, %f20 + faligndata %f24, %f26, %f22 + + .word 0x81b02820 ! SHA1 + + bne,pt `$bits==64?"%xcc":"%icc"`, .Lhwunaligned_loop + for %f26, %f26, %f10 ! %f10=%f26 + + ba .Lhwfinish + nop + +.align 16 +.Lsoftware: save %sp,-$frame,%sp sllx $len,6,$len add $inp,$len,$len @@ -279,6 +368,62 @@ $code.=<<___; .align 4 ___ -$code =~ s/\`([^\`]*)\`/eval $1/gem; -print $code; +# Purpose of these subroutines is to explicitly encode VIS instructions, +# so that one can compile the module without having to specify VIS +# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. +# Idea is to reserve for option to produce "universal" binary and let +# programmer detect if current CPU is VIS capable at run-time. +sub unvis { +my ($mnemonic,$rs1,$rs2,$rd)=@_; +my $ref,$opf; +my %visopf = ( "faligndata" => 0x048, + "for" => 0x07c ); + + $ref = "$mnemonic\t$rs1,$rs2,$rd"; + + if ($opf=$visopf{$mnemonic}) { + foreach ($rs1,$rs2,$rd) { + return $ref if (!/%f([0-9]{1,2})/); + $_=$1; + if ($1>=32) { + return $ref if ($1&1); + # re-encode for upper double register addressing + $_=($1|$1>>5)&31; + } + } + + return sprintf ".word\t0x%08x !%s", + 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, + $ref; + } else { + return $ref; + } +} +sub unalignaddr { +my ($mnemonic,$rs1,$rs2,$rd)=@_; +my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); +my $ref="$mnemonic\t$rs1,$rs2,$rd"; + + foreach ($rs1,$rs2,$rd) { + if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } + else { return $ref; } + } + return sprintf ".word\t0x%08x !%s", + 0x81b00300|$rd<<25|$rs1<<14|$rs2, + $ref; +} + +foreach (split("\n",$code)) { + s/\`([^\`]*)\`/eval $1/ge; + + s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ + &unvis($1,$2,$3,$4) + /ge; + s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ + &unalignaddr($1,$2,$3,$4) + /ge; + + print $_,"\n"; +} + close STDOUT; diff --git a/crypto/sha/asm/sha512-sparcv9.pl b/crypto/sha/asm/sha512-sparcv9.pl index e728d6ec57..011b534f82 100644 --- a/crypto/sha/asm/sha512-sparcv9.pl +++ b/crypto/sha/asm/sha512-sparcv9.pl @@ -5,6 +5,8 @@ # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. +# +# Hardware SPARC T4 support by David S. Miller . # ==================================================================== # SHA256 performance improvement over compiler generated code varies @@ -41,6 +43,12 @@ # loads are always slower than one 64-bit load. Once again this # is unlike pre-T1 UltraSPARC, where, if scheduled appropriately, # 2x32-bit loads can be as fast as 1x64-bit ones. +# +# SPARC T4 SHA256/512 hardware achieves 3.17/2.01 cycles per byte, +# which is 9.3x/11.1x faster than software. Multi-process benchmark +# saturates at 11.5x single-process result on 8-core processor, or +# ~11/16GBps per 2.85GHz socket. + $bits=32; for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } @@ -387,6 +395,8 @@ $code.=<<___ if ($bits==64); .register %g3,#scratch ___ $code.=<<___; +#include "sparc_arch.h" + .section ".text",#alloc,#execinstr .align 64 @@ -458,8 +468,196 @@ ___ } $code.=<<___; .size K${label},.-K${label} + +#ifdef __PIC__ +SPARC_PIC_THUNK(%g1) +#endif + .globl sha${label}_block_data_order +.align 32 sha${label}_block_data_order: + SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) + ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1] + + andcc %g1, CFR_SHA${label}, %g0 + be .Lsoftware + nop +___ +$code.=<<___ if ($SZ==8); # SHA512 + ldd [%o0 + 0x00], %f0 ! load context + ldd [%o0 + 0x08], %f2 + ldd [%o0 + 0x10], %f4 + ldd [%o0 + 0x18], %f6 + ldd [%o0 + 0x20], %f8 + ldd [%o0 + 0x28], %f10 + andcc %o1, 0x7, %g0 + ldd [%o0 + 0x30], %f12 + bne,pn %icc, .Lhwunaligned + ldd [%o0 + 0x38], %f14 + +.Lhwaligned_loop: + ldd [%o1 + 0x00], %f16 + ldd [%o1 + 0x08], %f18 + ldd [%o1 + 0x10], %f20 + ldd [%o1 + 0x18], %f22 + ldd [%o1 + 0x20], %f24 + ldd [%o1 + 0x28], %f26 + ldd [%o1 + 0x30], %f28 + ldd [%o1 + 0x38], %f30 + ldd [%o1 + 0x40], %f32 + ldd [%o1 + 0x48], %f34 + ldd [%o1 + 0x50], %f36 + ldd [%o1 + 0x58], %f38 + ldd [%o1 + 0x60], %f40 + ldd [%o1 + 0x68], %f42 + ldd [%o1 + 0x70], %f44 + subcc %o2, 1, %o2 ! done yet? + ldd [%o1 + 0x78], %f46 + add %o1, 0x80, %o1 + + .word 0x81b02860 ! SHA512 + + bne,pt `$bits==64?"%xcc":"%icc"`, .Lhwaligned_loop + nop + +.Lhwfinish: + std %f0, [%o0 + 0x00] ! store context + std %f2, [%o0 + 0x08] + std %f4, [%o0 + 0x10] + std %f6, [%o0 + 0x18] + std %f8, [%o0 + 0x20] + std %f10, [%o0 + 0x28] + std %f12, [%o0 + 0x30] + retl + std %f14, [%o0 + 0x38] + +.align 16 +.Lhwunaligned: + alignaddr %o1, %g0, %o1 + + ldd [%o1 + 0x00], %f18 +.Lhwunaligned_loop: + ldd [%o1 + 0x08], %f20 + ldd [%o1 + 0x10], %f22 + ldd [%o1 + 0x18], %f24 + ldd [%o1 + 0x20], %f26 + ldd [%o1 + 0x28], %f28 + ldd [%o1 + 0x30], %f30 + ldd [%o1 + 0x38], %f32 + ldd [%o1 + 0x40], %f34 + ldd [%o1 + 0x48], %f36 + ldd [%o1 + 0x50], %f38 + ldd [%o1 + 0x58], %f40 + ldd [%o1 + 0x60], %f42 + ldd [%o1 + 0x68], %f44 + ldd [%o1 + 0x70], %f46 + ldd [%o1 + 0x78], %f48 + subcc %o2, 1, %o2 ! done yet? + ldd [%o1 + 0x80], %f50 + add %o1, 0x80, %o1 + + faligndata %f18, %f20, %f16 + faligndata %f20, %f22, %f18 + faligndata %f22, %f24, %f20 + faligndata %f24, %f26, %f22 + faligndata %f26, %f28, %f24 + faligndata %f28, %f30, %f26 + faligndata %f30, %f32, %f28 + faligndata %f32, %f34, %f30 + faligndata %f34, %f36, %f32 + faligndata %f36, %f38, %f34 + faligndata %f38, %f40, %f36 + faligndata %f40, %f42, %f38 + faligndata %f42, %f44, %f40 + faligndata %f44, %f46, %f42 + faligndata %f46, %f48, %f44 + faligndata %f48, %f50, %f46 + + .word 0x81b02860 ! SHA512 + + bne,pt `$bits==64?"%xcc":"%icc"`, .Lhwunaligned_loop + for %f50, %f50, %f18 ! %f18=%f50 + + ba .Lhwfinish + nop +___ +$code.=<<___ if ($SZ==4); # SHA256 + ld [%o0 + 0x00], %f0 + ld [%o0 + 0x04], %f1 + ld [%o0 + 0x08], %f2 + ld [%o0 + 0x0c], %f3 + ld [%o0 + 0x10], %f4 + ld [%o0 + 0x14], %f5 + andcc %o1, 0x7, %g0 + ld [%o0 + 0x18], %f6 + bne,pn %icc, .Lhwunaligned + ld [%o0 + 0x1c], %f7 + +.Lhwloop: + ldd [%o1 + 0x00], %f8 + ldd [%o1 + 0x08], %f10 + ldd [%o1 + 0x10], %f12 + ldd [%o1 + 0x18], %f14 + ldd [%o1 + 0x20], %f16 + ldd [%o1 + 0x28], %f18 + ldd [%o1 + 0x30], %f20 + subcc %o2, 1, %o2 ! done yet? + ldd [%o1 + 0x38], %f22 + add %o1, 0x40, %o1 + + .word 0x81b02840 ! SHA256 + + bne,pt `$bits==64?"%xcc":"%icc"`, .Lhwloop + nop + +.Lhwfinish: + st %f0, [%o0 + 0x00] ! store context + st %f1, [%o0 + 0x04] + st %f2, [%o0 + 0x08] + st %f3, [%o0 + 0x0c] + st %f4, [%o0 + 0x10] + st %f5, [%o0 + 0x14] + st %f6, [%o0 + 0x18] + retl + st %f7, [%o0 + 0x1c] + +.align 8 +.Lhwunaligned: + alignaddr %o1, %g0, %o1 + + ldd [%o1 + 0x00], %f10 +.Lhwunaligned_loop: + ldd [%o1 + 0x08], %f12 + ldd [%o1 + 0x10], %f14 + ldd [%o1 + 0x18], %f16 + ldd [%o1 + 0x20], %f18 + ldd [%o1 + 0x28], %f20 + ldd [%o1 + 0x30], %f22 + ldd [%o1 + 0x38], %f24 + subcc %o2, 1, %o2 ! done yet? + ldd [%o1 + 0x40], %f26 + add %o1, 0x40, %o1 + + faligndata %f10, %f12, %f8 + faligndata %f12, %f14, %f10 + faligndata %f14, %f16, %f12 + faligndata %f16, %f18, %f14 + faligndata %f18, %f20, %f16 + faligndata %f20, %f22, %f18 + faligndata %f22, %f24, %f20 + faligndata %f24, %f26, %f22 + + .word 0x81b02840 ! SHA256 + + bne,pt `$bits==64?"%xcc":"%icc"`, .Lhwunaligned_loop + for %f26, %f26, %f10 ! %f10=%f26 + + ba .Lhwfinish + nop +___ +$code.=<<___; +.align 16 +.Lsoftware: save %sp,`-$frame-$locals`,%sp and $inp,`$align-1`,$tmp31 sllx $len,`log(16*$SZ)/log(2)`,$len @@ -590,6 +788,62 @@ $code.=<<___; .align 4 ___ -$code =~ s/\`([^\`]*)\`/eval $1/gem; -print $code; +# Purpose of these subroutines is to explicitly encode VIS instructions, +# so that one can compile the module without having to specify VIS +# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. +# Idea is to reserve for option to produce "universal" binary and let +# programmer detect if current CPU is VIS capable at run-time. +sub unvis { +my ($mnemonic,$rs1,$rs2,$rd)=@_; +my $ref,$opf; +my %visopf = ( "faligndata" => 0x048, + "for" => 0x07c ); + + $ref = "$mnemonic\t$rs1,$rs2,$rd"; + + if ($opf=$visopf{$mnemonic}) { + foreach ($rs1,$rs2,$rd) { + return $ref if (!/%f([0-9]{1,2})/); + $_=$1; + if ($1>=32) { + return $ref if ($1&1); + # re-encode for upper double register addressing + $_=($1|$1>>5)&31; + } + } + + return sprintf ".word\t0x%08x !%s", + 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, + $ref; + } else { + return $ref; + } +} +sub unalignaddr { +my ($mnemonic,$rs1,$rs2,$rd)=@_; +my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); +my $ref="$mnemonic\t$rs1,$rs2,$rd"; + + foreach ($rs1,$rs2,$rd) { + if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } + else { return $ref; } + } + return sprintf ".word\t0x%08x !%s", + 0x81b00300|$rd<<25|$rs1<<14|$rs2, + $ref; +} + +foreach (split("\n",$code)) { + s/\`([^\`]*)\`/eval $1/ge; + + s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ + &unvis($1,$2,$3,$4) + /ge; + s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ + &unalignaddr($1,$2,$3,$4) + /ge; + + print $_,"\n"; +} + close STDOUT;