+static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r,
+ BIGNUM *x, BN_CTX *ctx)
+{
+ BIGNUM *exp = NULL;
+ BN_CTX *new_ctx = NULL;
+ int ret = 0;
+
+ if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+ exp = BN_CTX_get(ctx);
+ if (exp == NULL)
+ goto err;
+
+ /* Check if optimized inverse is implemented */
+ if (group->mont_data != NULL) {
+ /*-
+ * We want inverse in constant time, therefore we utilize the fact
+ * order must be prime and use Fermats Little Theorem instead.
+ */
+ if (!BN_set_word(exp, 2))
+ goto err;
+ if (!BN_sub(exp, group->order, exp))
+ goto err;
+ /*-
+ * Exponent X is public.
+ * No need for scatter-gather or BN_FLG_CONSTTIME.
+ */
+ if (!BN_mod_exp_mont(r, x, exp, group->order, ctx, group->mont_data))
+ goto err;
+ /* Inverse of zero doesn't exist. Let the fallback catch it. */
+ if (BN_is_zero(r))
+ ret = 0;
+ else
+ ret = 1;
+ }
+
+ /*-
+ * Fallback to classic inverse, blinded.
+ * BN_FLG_CONSTTIME is a don't care here.
+ */
+ if (ret == 0) {
+ do {
+ if (!BN_priv_rand_range(exp, group->order))
+ goto err;
+ } while (BN_is_zero(exp));
+
+ /* r := x * exp */
+ if (!BN_mod_mul(r, x, exp, group->order, ctx))
+ goto err;
+ /* r := 1/(x * exp) */
+ if (!BN_mod_inverse(r, r, group->order, ctx))
+ goto err;
+ /* r := exp/(x * exp) = 1/x */
+ if (!BN_mod_mul(r, r, exp, group->order, ctx))
+ goto err;
+
+ ret = 1;
+ }
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+