author Kurt Roeckx Sun, 6 Oct 2019 11:48:10 +0000 (13:48 +0200) committer Kurt Roeckx Mon, 14 Oct 2019 20:53:34 +0000 (22:53 +0200)
When using Miller-Rabin to test for primes, it's can be faster to first
do trial divisions, but when doing too many trial divisions it gets
slower again. We reduce the number of trial divisions to a point that
gives better performance.

Based on research by Jake Massimo and Kenneth Paterson

Reviewed-by: Paul Dale <paul.dale@oracle.com>
GH: #9272

index 99b3199..7d89d32 100644 (file)
@@ -65,6 +65,23 @@ const BIGNUM *bn_get0_small_factors(void)
return &_bignum_small_prime_factors;
}

+/*
+ * Calculate the number of trial divisions that gives the best speed in
+ * combination with Miller-Rabin prime test, based on the sized of the prime.
+ */
+static int calc_trial_divisions(int bits)
+{
+    if (bits <= 512)
+        return 64;
+    else if (bits <= 1024)
+        return 128;
+    else if (bits <= 2048)
+        return 384;
+    else if (bits <= 4096)
+        return 1024;
+    return NUMPRIMES;
+}
+
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
{
/* No callback means continue */
@@ -226,7 +243,9 @@ int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,

/* first look for small factors */
if (do_trial_division) {
-        for (i = 1; i < NUMPRIMES; i++) {
+        int trial_divisions = calc_trial_divisions(BN_num_bits(w));
+
+        for (i = 1; i < trial_divisions; i++) {
BN_ULONG mod = BN_mod_word(w, primes[i]);
if (mod == (BN_ULONG)-1)
return -1;
@@ -398,12 +417,22 @@ err:
return ret;
}

+/*
+ * Generate a random number of |bits| bits that is probably prime by sieving.
+ * If |safe| != 0, it generates a safe prime.
+ * |mods| is a preallocated array that gets reused when called again.
+ *
+ * The probably prime is saved in |rnd|.
+ *
+ * Returns 1 on success and 0 on error.
+ */
static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
BN_CTX *ctx)
{
int i;
BN_ULONG delta;
-    BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
+    int trial_divisions = calc_trial_divisions(bits);
+    BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];

again:
/* TODO: Not all primes are private */
@@ -412,7 +441,7 @@ static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
if (safe && !BN_set_bit(rnd, 1))
return 0;
/* we now have a random number 'rnd' to test. */
-    for (i = 1; i < NUMPRIMES; i++) {
+    for (i = 1; i < trial_divisions; i++) {
BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
if (mod == (BN_ULONG)-1)
return 0;
@@ -420,7 +449,7 @@ static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
}
delta = 0;
loop:
-    for (i = 1; i < NUMPRIMES; i++) {
+    for (i = 1; i < trial_divisions; i++) {
/*
* check that rnd is a prime and also that
* gcd(rnd-1,primes) == 1 (except for 2)
@@ -447,6 +476,14 @@ static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
return 1;
}

+/*
+ * Generate a random number |rnd| of |bits| bits that is probably prime
+ * and satisfies |rnd| % |add| == |rem| by sieving.
+ * If |safe| != 0, it generates a safe prime.
+ * |mods| is a preallocated array that gets reused when called again.
+ *
+ * Returns 1 on success and 0 on error.
+ */
static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
const BIGNUM *add, const BIGNUM *rem,
BN_CTX *ctx)
@@ -454,7 +491,8 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
int i, ret = 0;
BIGNUM *t1;
BN_ULONG delta;
-    BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
+    int trial_divisions = calc_trial_divisions(bits);
+    BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];

BN_CTX_start(ctx);
if ((t1 = BN_CTX_get(ctx)) == NULL)
@@ -488,7 +526,7 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
}

/* we now have a random number 'rnd' to test. */
-    for (i = 1; i < NUMPRIMES; i++) {
+    for (i = 1; i < trial_divisions; i++) {
BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
if (mod == (BN_ULONG)-1)
goto err;
@@ -496,7 +534,7 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
}
delta = 0;
loop:
-    for (i = 1; i < NUMPRIMES; i++) {
+    for (i = 1; i < trial_divisions; i++) {
/* check that rnd is a prime */
if (bits <= 31 && delta <= 0x7fffffff
&& square(primes[i]) > BN_get_word(rnd) + delta)