X-Git-Url: https://git.openssl.org/gitweb/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fsha%2Fkeccak1600.c;h=f2fffe7c48658c373c74c9197806efe09de2df38;hp=4397372ccb7ddeacce183eb8ad4adc7899546c7f;hb=c83a4db52123603fd6d2fe8535dd19ec9e5d848d;hpb=c3086f4630bee8972f7fc0829bec524bb5fd0baf;ds=sidebyside diff --git a/crypto/sha/keccak1600.c b/crypto/sha/keccak1600.c index 4397372ccb..f2fffe7c48 100644 --- a/crypto/sha/keccak1600.c +++ b/crypto/sha/keccak1600.c @@ -7,23 +7,100 @@ * https://www.openssl.org/source/license.html */ -#include +#include #include #include -#define ROL64(a, offset) ((offset) ? (((a) << offset) | ((a) >> (64-offset))) \ - : a) +#define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) +static uint64_t ROL64(uint64_t val, int offset) +{ + if (offset == 0) { + return val; + } else if (sizeof(void *) == 8) { + return (val << offset) | (val >> (64-offset)); + } else { + uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; + + if (offset & 1) { + uint32_t tmp = hi; + + offset >>= 1; + hi = ROL32(lo, offset); + lo = ROL32(tmp, offset + 1); + } else { + offset >>= 1; + lo = ROL32(lo, offset); + hi = ROL32(hi, offset); + } + + return ((uint64_t)hi << 32) | lo; + } +} + +static const unsigned char rhotates[5][5] = { + { 0, 1, 62, 28, 27 }, + { 36, 44, 6, 55, 20 }, + { 3, 10, 43, 25, 39 }, + { 41, 45, 15, 21, 8 }, + { 18, 2, 61, 56, 14 } +}; + +static const uint64_t iotas[] = { + sizeof(void *) == 8 ? 0x0000000000000001U : 0x0000000000000001U, + sizeof(void *) == 8 ? 0x0000000000008082U : 0x0000008900000000U, + sizeof(void *) == 8 ? 0x800000000000808aU : 0x8000008b00000000U, + sizeof(void *) == 8 ? 0x8000000080008000U : 0x8000808000000000U, + sizeof(void *) == 8 ? 0x000000000000808bU : 0x0000008b00000001U, + sizeof(void *) == 8 ? 0x0000000080000001U : 0x0000800000000001U, + sizeof(void *) == 8 ? 0x8000000080008081U : 0x8000808800000001U, + sizeof(void *) == 8 ? 0x8000000000008009U : 0x8000008200000001U, + sizeof(void *) == 8 ? 0x000000000000008aU : 0x0000000b00000000U, + sizeof(void *) == 8 ? 0x0000000000000088U : 0x0000000a00000000U, + sizeof(void *) == 8 ? 0x0000000080008009U : 0x0000808200000001U, + sizeof(void *) == 8 ? 0x000000008000000aU : 0x0000800300000000U, + sizeof(void *) == 8 ? 0x000000008000808bU : 0x0000808b00000001U, + sizeof(void *) == 8 ? 0x800000000000008bU : 0x8000000b00000001U, + sizeof(void *) == 8 ? 0x8000000000008089U : 0x8000008a00000001U, + sizeof(void *) == 8 ? 0x8000000000008003U : 0x8000008100000001U, + sizeof(void *) == 8 ? 0x8000000000008002U : 0x8000008100000000U, + sizeof(void *) == 8 ? 0x8000000000000080U : 0x8000000800000000U, + sizeof(void *) == 8 ? 0x000000000000800aU : 0x0000008300000000U, + sizeof(void *) == 8 ? 0x800000008000000aU : 0x8000800300000000U, + sizeof(void *) == 8 ? 0x8000000080008081U : 0x8000808800000001U, + sizeof(void *) == 8 ? 0x8000000000008080U : 0x8000008800000000U, + sizeof(void *) == 8 ? 0x0000000080000001U : 0x0000800000000001U, + sizeof(void *) == 8 ? 0x8000000080008008U : 0x8000808200000000U +}; + +#if defined(KECCAK_REF) +/* + * This is straightforward or "maximum clarity" implementation aiming + * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: + * Permutation-Based Hash and Extendible-Output Functions" as much as + * possible. With one caveat. Because of the way C stores matrices, + * references to A[x,y] in the specification are presented as A[y][x]. + * Implementation unrolls inner x-loops so that modulo 5 operations are + * explicitly pre-computed. + */ static void Theta(uint64_t A[5][5]) { uint64_t C[5], D[5]; size_t y; - C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; - C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; - C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; - C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; - C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + C[0] = A[0][0]; + C[1] = A[0][1]; + C[2] = A[0][2]; + C[3] = A[0][3]; + C[4] = A[0][4]; + + for (y = 1; y < 5; y++) { + C[0] ^= A[y][0]; + C[1] ^= A[y][1]; + C[2] ^= A[y][2]; + C[3] ^= A[y][3]; + C[4] ^= A[y][4]; + } D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; @@ -42,13 +119,6 @@ static void Theta(uint64_t A[5][5]) static void Rho(uint64_t A[5][5]) { - static const unsigned char rhotates[5][5] = { - { 0, 1, 62, 28, 27 }, - { 36, 44, 6, 55, 20 }, - { 3, 10, 43, 25, 39 }, - { 41, 45, 15, 21, 8 }, - { 18, 2, 61, 56, 14 } - }; size_t y; for (y = 0; y < 5; y++) { @@ -123,17 +193,6 @@ static void Chi(uint64_t A[5][5]) static void Iota(uint64_t A[5][5], size_t i) { - static const uint64_t iotas[] = { - 0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU, - 0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U, - 0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU, - 0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU, - 0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U, - 0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U, - 0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U, - 0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U - }; - assert(i < (sizeof(iotas) / sizeof(iotas[0]))); A[0][0] ^= iotas[i]; } @@ -151,13 +210,635 @@ void KeccakF1600(uint64_t A[5][5]) } } +#elif defined(KECCAK_1X) +/* + * This implementation is optimization of above code featuring unroll + * of even y-loops, their fusion and code motion. It also minimizes + * temporary storage. Compiler would normally do all these things for + * you, purpose of manual optimization is to provide "unobscured" + * reference for assembly implementation [in case this approach is + * chosen for implementation on some platform]. In the nutshell it's + * equivalent of "plane-per-plane processing" approach discussed in + * section 2.4 of "Keccak implementation overview". + */ +static void Round(uint64_t A[5][5], size_t i) +{ + uint64_t C[5], E[2]; /* registers */ + uint64_t D[5], T[2][5]; /* memory */ + + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + +#if defined(__arm__) + D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; + D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; + D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; + D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; + D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; + + T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ + T[0][1] = A[0][1] ^ E[0]; /* D[1] */ + T[0][2] = A[0][2] ^ C[1]; /* D[2] */ + T[0][3] = A[0][3] ^ C[2]; /* D[3] */ + T[0][4] = A[0][4] ^ E[1]; /* D[4] */ + + C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ + C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ + C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ + C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ + C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ +#else + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ + T[0][1] = A[0][1] ^ D[1]; + T[0][2] = A[0][2] ^ D[2]; + T[0][3] = A[0][3] ^ D[3]; + T[0][4] = A[0][4] ^ D[4]; + + C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); + C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); + C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); + C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); +#endif + A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; + A[0][1] = C[1] ^ (~C[2] & C[3]); + A[0][2] = C[2] ^ (~C[3] & C[4]); + A[0][3] = C[3] ^ (~C[4] & C[0]); + A[0][4] = C[4] ^ (~C[0] & C[1]); + + T[1][0] = A[1][0] ^ (C[3] = D[0]); + T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ + T[1][2] = A[1][2] ^ (E[0] = D[2]); + T[1][3] = A[1][3] ^ (E[1] = D[3]); + T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ + + C[0] = ROL64(T[0][3], rhotates[0][3]); + C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ + C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ + C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ + C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ + + A[1][0] = C[0] ^ (~C[1] & C[2]); + A[1][1] = C[1] ^ (~C[2] & C[3]); + A[1][2] = C[2] ^ (~C[3] & C[4]); + A[1][3] = C[3] ^ (~C[4] & C[0]); + A[1][4] = C[4] ^ (~C[0] & C[1]); + + C[0] = ROL64(T[0][1], rhotates[0][1]); + C[1] = ROL64(T[1][2], rhotates[1][2]); + C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); + C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); + + A[2][0] = C[0] ^ (~C[1] & C[2]); + A[2][1] = C[1] ^ (~C[2] & C[3]); + A[2][2] = C[2] ^ (~C[3] & C[4]); + A[2][3] = C[3] ^ (~C[4] & C[0]); + A[2][4] = C[4] ^ (~C[0] & C[1]); + + C[0] = ROL64(T[0][4], rhotates[0][4]); + C[1] = ROL64(T[1][0], rhotates[1][0]); + C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ + C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); + + A[3][0] = C[0] ^ (~C[1] & C[2]); + A[3][1] = C[1] ^ (~C[2] & C[3]); + A[3][2] = C[2] ^ (~C[3] & C[4]); + A[3][3] = C[3] ^ (~C[4] & C[0]); + A[3][4] = C[4] ^ (~C[0] & C[1]); + + C[0] = ROL64(T[0][2], rhotates[0][2]); + C[1] = ROL64(T[1][3], rhotates[1][3]); + C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ + C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ + C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + A[4][0] = C[0] ^ (~C[1] & C[2]); + A[4][1] = C[1] ^ (~C[2] & C[3]); + A[4][2] = C[2] ^ (~C[3] & C[4]); + A[4][3] = C[3] ^ (~C[4] & C[0]); + A[4][4] = C[4] ^ (~C[0] & C[1]); +} + +void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i++) { + Round(A, i); + } +} + +#elif defined(KECCAK_2X) +/* + * This implementation is variant of KECCAK_1X above with outer-most + * round loop unrolled twice. This allows to take temporary storage + * out of round procedure and simplify references to it by alternating + * it with actual data (see round loop below). Just like original, it's + * rather meant as reference for an assembly implementation. It's likely + * to provide best instruction per processed byte ratio at minimal + * round unroll factor... + */ +static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) +{ + uint64_t C[5], D[5]; + + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); + C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); + C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); + C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; + R[0][1] = C[1] ^ (~C[2] | C[3]); + R[0][2] = C[2] ^ ( C[3] & C[4]); + R[0][3] = C[3] ^ ( C[4] | C[0]); + R[0][4] = C[4] ^ ( C[0] & C[1]); +#else + R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; + R[0][1] = C[1] ^ (~C[2] & C[3]); + R[0][2] = C[2] ^ (~C[3] & C[4]); + R[0][3] = C[3] ^ (~C[4] & C[0]); + R[0][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); + C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); + C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); + C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[1][0] = C[0] ^ (C[1] | C[2]); + R[1][1] = C[1] ^ (C[2] & C[3]); + R[1][2] = C[2] ^ (C[3] | ~C[4]); + R[1][3] = C[3] ^ (C[4] | C[0]); + R[1][4] = C[4] ^ (C[0] & C[1]); +#else + R[1][0] = C[0] ^ (~C[1] & C[2]); + R[1][1] = C[1] ^ (~C[2] & C[3]); + R[1][2] = C[2] ^ (~C[3] & C[4]); + R[1][3] = C[3] ^ (~C[4] & C[0]); + R[1][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); + C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); + C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); + C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[2][0] = C[0] ^ ( C[1] | C[2]); + R[2][1] = C[1] ^ ( C[2] & C[3]); + R[2][2] = C[2] ^ (~C[3] & C[4]); + R[2][3] = ~C[3] ^ ( C[4] | C[0]); + R[2][4] = C[4] ^ ( C[0] & C[1]); +#else + R[2][0] = C[0] ^ (~C[1] & C[2]); + R[2][1] = C[1] ^ (~C[2] & C[3]); + R[2][2] = C[2] ^ (~C[3] & C[4]); + R[2][3] = C[3] ^ (~C[4] & C[0]); + R[2][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); + C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); + C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); + C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[3][0] = C[0] ^ ( C[1] & C[2]); + R[3][1] = C[1] ^ ( C[2] | C[3]); + R[3][2] = C[2] ^ (~C[3] | C[4]); + R[3][3] = ~C[3] ^ ( C[4] & C[0]); + R[3][4] = C[4] ^ ( C[0] | C[1]); +#else + R[3][0] = C[0] ^ (~C[1] & C[2]); + R[3][1] = C[1] ^ (~C[2] & C[3]); + R[3][2] = C[2] ^ (~C[3] & C[4]); + R[3][3] = C[3] ^ (~C[4] & C[0]); + R[3][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); + C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); + C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); + C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); + C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[4][0] = C[0] ^ (~C[1] & C[2]); + R[4][1] = ~C[1] ^ ( C[2] | C[3]); + R[4][2] = C[2] ^ ( C[3] & C[4]); + R[4][3] = C[3] ^ ( C[4] | C[0]); + R[4][4] = C[4] ^ ( C[0] & C[1]); +#else + R[4][0] = C[0] ^ (~C[1] & C[2]); + R[4][1] = C[1] ^ (~C[2] & C[3]); + R[4][2] = C[2] ^ (~C[3] & C[4]); + R[4][3] = C[3] ^ (~C[4] & C[0]); + R[4][4] = C[4] ^ (~C[0] & C[1]); +#endif +} + +void KeccakF1600(uint64_t A[5][5]) +{ + uint64_t T[5][5]; + size_t i; + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + A[0][1] = ~A[0][1]; + A[0][2] = ~A[0][2]; + A[1][3] = ~A[1][3]; + A[2][2] = ~A[2][2]; + A[3][2] = ~A[3][2]; + A[4][0] = ~A[4][0]; +#endif + + for (i = 0; i < 24; i += 2) { + Round(T, A, i); + Round(A, T, i + 1); + } + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + A[0][1] = ~A[0][1]; + A[0][2] = ~A[0][2]; + A[1][3] = ~A[1][3]; + A[2][2] = ~A[2][2]; + A[3][2] = ~A[3][2]; + A[4][0] = ~A[4][0]; +#endif +} + +#else +/* + * This implementation is KECCAK_1X from above combined 4 times with + * a twist that allows to omit temporary storage and perform in-place + * processing. It's discussed in section 2.5 of "Keccak implementation + * overview". It's likely to be best suited for processors with large + * register bank... + */ +static void FourRounds(uint64_t A[5][5], size_t i) +{ + uint64_t B[5], C[5], D[5]; + + assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); + + /* Round 4*n */ + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); + + C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; + C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); + C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); + C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); + C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); + + C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); + + C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); + + C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); + + /* Round 4*n+1 */ + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); + + C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; + C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); + C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); + C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); + C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); + + C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); + + C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); + + C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); + + /* Round 4*n+2 */ + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); + + C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; + C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); + C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); + C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); + C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); + + C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); + + C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); + + C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); + + /* Round 4*n+3 */ + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); + + /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; + /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); + + /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); + + /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); + + /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); +} + +void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i += 4) { + FourRounds(A, i); + } +} + +#endif + +static uint64_t BitInterleave(uint64_t Ai) +{ + if (sizeof(void *) < 8) { + uint32_t hi = 0, lo = 0; + int j; + + for (j = 0; j < 32; j++) { + lo |= ((uint32_t)(Ai >> (2 * j)) & 1) << j; + hi |= ((uint32_t)(Ai >> (2 * j + 1)) & 1) << j; + } + + Ai = ((uint64_t)hi << 32) | lo; + } + + return Ai; +} + +static uint64_t BitDeinterleave(uint64_t Ai) +{ + if (sizeof(void *) < 8) { + uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; + int j; + + Ai = 0; + for (j = 0; j < 32; j++) { + Ai |= (uint64_t)((lo >> j) & 1) << (2 * j); + Ai |= (uint64_t)((hi >> j) & 1) << (2 * j + 1); + } + } + + return Ai; +} + /* * SHA3_absorb can be called multiple times, but at each invocation * largest multiple of |r| out of |len| bytes are processed. Then - * remaining amount of bytes are returned. This is done to spare caller - * trouble of calculating the largest multiple of |r|, effectively the - * blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, 72, - * but can also be (1600 - 448)/8 = 144. All this means that message + * remaining amount of bytes is returned. This is done to spare caller + * trouble of calculating the largest multiple of |r|. |r| can be viewed + * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, + * 72, but can also be (1600 - 448)/8 = 144. All this means that message * padding and intermediate sub-block buffering, byte- or bitwise, is * caller's reponsibility. */ @@ -167,13 +848,17 @@ size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, uint64_t *A_flat = (uint64_t *)A; size_t i, w = r / 8; + assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); + while (len >= r) { for (i = 0; i < w; i++) { - A_flat[i] ^= (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | - (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | - (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | - (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; + uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | + (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | + (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | + (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; inp += 8; + + A_flat[i] ^= BitInterleave(Ai); } KeccakF1600(A); len -= r; @@ -191,9 +876,11 @@ void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) uint64_t *A_flat = (uint64_t *)A; size_t i, rem, w = r / 8; + assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); + while (len >= r) { for (i = 0; i < w; i++) { - uint64_t Ai = A_flat[i]; + uint64_t Ai = BitDeinterleave(A_flat[i]); out[0] = (unsigned char)(Ai); out[1] = (unsigned char)(Ai >> 8); @@ -214,7 +901,7 @@ void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) len /= 8; for (i = 0; i < len; i++) { - uint64_t Ai = A_flat[i]; + uint64_t Ai = BitDeinterleave(A_flat[i]); out[0] = (unsigned char)(Ai); out[1] = (unsigned char)(Ai >> 8); @@ -228,7 +915,7 @@ void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) } if (rem) { - uint64_t Ai = A_flat[i]; + uint64_t Ai = BitDeinterleave(A_flat[i]); for (i = 0; i < rem; i++) { *out++ = (unsigned char)Ai;