X-Git-Url: https://git.openssl.org/gitweb/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fec%2Fec2_mult.c;h=68cc8771d5ebfe1154c077f6316f52965e80b527;hp=a0effa95ad8ba93b95ba3d94afb8a95536bb8576;hb=4d2207f097ebd50d3f23568b013539930bbdf910;hpb=37c660ff9b22d6f0eb19a9881d3b663ca4f63449 diff --git a/crypto/ec/ec2_mult.c b/crypto/ec/ec2_mult.c index a0effa95ad..68cc8771d5 100644 --- a/crypto/ec/ec2_mult.c +++ b/crypto/ec/ec2_mult.c @@ -21,7 +21,7 @@ * are met: * * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. + * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in @@ -71,309 +71,393 @@ #include "ec_lcl.h" +#ifndef OPENSSL_NO_EC2M -/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective +/*- + * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective * coordinates. - * Uses algorithm Mdouble in appendix of - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * Uses algorithm Mdouble in appendix of + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). * modified to not require precomputation of c=b^{2^{m-1}}. */ -static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) - { - BIGNUM *t1; - int ret = 0; - - /* Since Mdouble is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - t1 = BN_CTX_get(ctx); - if (t1 == NULL) goto err; - - if (!group->meth->field_sqr(group, x, x, ctx)) goto err; - if (!group->meth->field_sqr(group, t1, z, ctx)) goto err; - if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err; - if (!group->meth->field_sqr(group, x, x, ctx)) goto err; - if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err; - if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err; - if (!BN_GF2m_add(x, x, t1)) goto err; - - ret = 1; +static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, + BN_CTX *ctx) +{ + BIGNUM *t1; + int ret = 0; + + /* Since Mdouble is static we can guarantee that ctx != NULL. */ + BN_CTX_start(ctx); + t1 = BN_CTX_get(ctx); + if (t1 == NULL) + goto err; + + if (!group->meth->field_sqr(group, x, x, ctx)) + goto err; + if (!group->meth->field_sqr(group, t1, z, ctx)) + goto err; + if (!group->meth->field_mul(group, z, x, t1, ctx)) + goto err; + if (!group->meth->field_sqr(group, x, x, ctx)) + goto err; + if (!group->meth->field_sqr(group, t1, t1, ctx)) + goto err; + if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) + goto err; + if (!BN_GF2m_add(x, x, t1)) + goto err; + + ret = 1; err: - BN_CTX_end(ctx); - return ret; - } + BN_CTX_end(ctx); + return ret; +} -/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery +/*- + * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery * projective coordinates. - * Uses algorithm Madd in appendix of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * Uses algorithm Madd in appendix of + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). */ -static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, - const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) - { - BIGNUM *t1, *t2; - int ret = 0; - - /* Since Madd is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - t1 = BN_CTX_get(ctx); - t2 = BN_CTX_get(ctx); - if (t2 == NULL) goto err; - - if (!BN_copy(t1, x)) goto err; - if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err; - if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err; - if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err; - if (!BN_GF2m_add(z1, z1, x1)) goto err; - if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err; - if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err; - if (!BN_GF2m_add(x1, x1, t2)) goto err; - - ret = 1; +static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, + BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2, + BN_CTX *ctx) +{ + BIGNUM *t1, *t2; + int ret = 0; + + /* Since Madd is static we can guarantee that ctx != NULL. */ + BN_CTX_start(ctx); + t1 = BN_CTX_get(ctx); + t2 = BN_CTX_get(ctx); + if (t2 == NULL) + goto err; + + if (!BN_copy(t1, x)) + goto err; + if (!group->meth->field_mul(group, x1, x1, z2, ctx)) + goto err; + if (!group->meth->field_mul(group, z1, z1, x2, ctx)) + goto err; + if (!group->meth->field_mul(group, t2, x1, z1, ctx)) + goto err; + if (!BN_GF2m_add(z1, z1, x1)) + goto err; + if (!group->meth->field_sqr(group, z1, z1, ctx)) + goto err; + if (!group->meth->field_mul(group, x1, z1, t1, ctx)) + goto err; + if (!BN_GF2m_add(x1, x1, t2)) + goto err; + + ret = 1; err: - BN_CTX_end(ctx); - return ret; - } - -/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) - * using Montgomery point multiplication algorithm Mxy() in appendix of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + BN_CTX_end(ctx); + return ret; +} + +/*- + * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) + * using Montgomery point multiplication algorithm Mxy() in appendix of + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). * Returns: * 0 on error * 1 if return value should be the point at infinity * 2 otherwise */ -static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, - BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) - { - BIGNUM *t3, *t4, *t5; - int ret = 0; - - if (BN_is_zero(z1)) - { - if (!BN_zero(x2)) return 0; - if (!BN_zero(z2)) return 0; - return 1; - } - - if (BN_is_zero(z2)) - { - if (!BN_copy(x2, x)) return 0; - if (!BN_GF2m_add(z2, x, y)) return 0; - return 2; - } - - /* Since Mxy is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - t3 = BN_CTX_get(ctx); - t4 = BN_CTX_get(ctx); - t5 = BN_CTX_get(ctx); - if (t5 == NULL) goto err; - - if (!BN_one(t5)) goto err; - - if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err; - - if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err; - if (!BN_GF2m_add(z1, z1, x1)) goto err; - if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err; - if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err; - if (!BN_GF2m_add(z2, z2, x2)) goto err; - - if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err; - if (!group->meth->field_sqr(group, t4, x, ctx)) goto err; - if (!BN_GF2m_add(t4, t4, y)) goto err; - if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err; - if (!BN_GF2m_add(t4, t4, z2)) goto err; - - if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err; - if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err; - if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err; - if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err; - if (!BN_GF2m_add(z2, x2, x)) goto err; - - if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err; - if (!BN_GF2m_add(z2, z2, y)) goto err; - - ret = 2; +static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, + BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, + BN_CTX *ctx) +{ + BIGNUM *t3, *t4, *t5; + int ret = 0; + + if (BN_is_zero(z1)) { + BN_zero(x2); + BN_zero(z2); + return 1; + } + + if (BN_is_zero(z2)) { + if (!BN_copy(x2, x)) + return 0; + if (!BN_GF2m_add(z2, x, y)) + return 0; + return 2; + } + + /* Since Mxy is static we can guarantee that ctx != NULL. */ + BN_CTX_start(ctx); + t3 = BN_CTX_get(ctx); + t4 = BN_CTX_get(ctx); + t5 = BN_CTX_get(ctx); + if (t5 == NULL) + goto err; + + if (!BN_one(t5)) + goto err; + + if (!group->meth->field_mul(group, t3, z1, z2, ctx)) + goto err; + + if (!group->meth->field_mul(group, z1, z1, x, ctx)) + goto err; + if (!BN_GF2m_add(z1, z1, x1)) + goto err; + if (!group->meth->field_mul(group, z2, z2, x, ctx)) + goto err; + if (!group->meth->field_mul(group, x1, z2, x1, ctx)) + goto err; + if (!BN_GF2m_add(z2, z2, x2)) + goto err; + + if (!group->meth->field_mul(group, z2, z2, z1, ctx)) + goto err; + if (!group->meth->field_sqr(group, t4, x, ctx)) + goto err; + if (!BN_GF2m_add(t4, t4, y)) + goto err; + if (!group->meth->field_mul(group, t4, t4, t3, ctx)) + goto err; + if (!BN_GF2m_add(t4, t4, z2)) + goto err; + + if (!group->meth->field_mul(group, t3, t3, x, ctx)) + goto err; + if (!group->meth->field_div(group, t3, t5, t3, ctx)) + goto err; + if (!group->meth->field_mul(group, t4, t3, t4, ctx)) + goto err; + if (!group->meth->field_mul(group, x2, x1, t3, ctx)) + goto err; + if (!BN_GF2m_add(z2, x2, x)) + goto err; + + if (!group->meth->field_mul(group, z2, z2, t4, ctx)) + goto err; + if (!BN_GF2m_add(z2, z2, y)) + goto err; + + ret = 2; err: - BN_CTX_end(ctx); - return ret; - } + BN_CTX_end(ctx); + return ret; +} -/* Computes scalar*point and stores the result in r. +/*- + * Computes scalar*point and stores the result in r. * point can not equal r. - * Uses algorithm 2P of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * Uses a modified algorithm 2P of + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). + * + * To protect against side-channel attack the function uses constant time swap, + * avoiding conditional branches. */ -static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, - const EC_POINT *point, BN_CTX *ctx) - { - BIGNUM *x1, *x2, *z1, *z2; - int ret = 0, i, j; - BN_ULONG mask; - - if (r == point) - { - ECerr(EC_F_EC_POINT_MUL, EC_R_INVALID_ARGUMENT); - return 0; - } - - /* if result should be point at infinity */ - if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || - EC_POINT_is_at_infinity(group, point)) - { - return EC_POINT_set_to_infinity(group, r); - } - - /* only support affine coordinates */ - if (!point->Z_is_one) return 0; - - /* Since point_multiply is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - x1 = BN_CTX_get(ctx); - z1 = BN_CTX_get(ctx); - if (z1 == NULL) goto err; - - x2 = &r->X; - z2 = &r->Y; - - if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ - if (!BN_one(z1)) goto err; /* z1 = 1 */ - if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ - if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; - if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ - - /* find top most bit and go one past it */ - i = scalar->top - 1; j = BN_BITS2 - 1; - mask = BN_TBIT; - while (!(scalar->d[i] & mask)) { mask >>= 1; j--; } - mask >>= 1; j--; - /* if top most bit was at word break, go to next word */ - if (!mask) - { - i--; j = BN_BITS2 - 1; - mask = BN_TBIT; - } - - for (; i >= 0; i--) - { - for (; j >= 0; j--) - { - if (scalar->d[i] & mask) - { - if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err; - if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err; - } - else - { - if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; - if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; - } - mask >>= 1; - } - j = BN_BITS2 - 1; - mask = BN_TBIT; - } - - /* convert out of "projective" coordinates */ - i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); - if (i == 0) goto err; - else if (i == 1) - { - if (!EC_POINT_set_to_infinity(group, r)) goto err; - } - else - { - if (!BN_one(&r->Z)) goto err; - r->Z_is_one = 1; - } - - /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ - BN_set_sign(&r->X, 0); - BN_set_sign(&r->Y, 0); - - ret = 1; +static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, + EC_POINT *r, + const BIGNUM *scalar, + const EC_POINT *point, + BN_CTX *ctx) +{ + BIGNUM *x1, *x2, *z1, *z2; + int ret = 0, i; + BN_ULONG mask, word; + + if (r == point) { + ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); + return 0; + } + + /* if result should be point at infinity */ + if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || + EC_POINT_is_at_infinity(group, point)) { + return EC_POINT_set_to_infinity(group, r); + } + + /* only support affine coordinates */ + if (!point->Z_is_one) + return 0; + + /* + * Since point_multiply is static we can guarantee that ctx != NULL. + */ + BN_CTX_start(ctx); + x1 = BN_CTX_get(ctx); + z1 = BN_CTX_get(ctx); + if (z1 == NULL) + goto err; + + x2 = &r->X; + z2 = &r->Y; + + bn_wexpand(x1, group->field.top); + bn_wexpand(z1, group->field.top); + bn_wexpand(x2, group->field.top); + bn_wexpand(z2, group->field.top); + + if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) + goto err; /* x1 = x */ + if (!BN_one(z1)) + goto err; /* z1 = 1 */ + if (!group->meth->field_sqr(group, z2, x1, ctx)) + goto err; /* z2 = x1^2 = x^2 */ + if (!group->meth->field_sqr(group, x2, z2, ctx)) + goto err; + if (!BN_GF2m_add(x2, x2, &group->b)) + goto err; /* x2 = x^4 + b */ + + /* find top most bit and go one past it */ + i = scalar->top - 1; + mask = BN_TBIT; + word = scalar->d[i]; + while (!(word & mask)) + mask >>= 1; + mask >>= 1; + /* if top most bit was at word break, go to next word */ + if (!mask) { + i--; + mask = BN_TBIT; + } + + for (; i >= 0; i--) { + word = scalar->d[i]; + while (mask) { + BN_consttime_swap(word & mask, x1, x2, group->field.top); + BN_consttime_swap(word & mask, z1, z2, group->field.top); + if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) + goto err; + if (!gf2m_Mdouble(group, x1, z1, ctx)) + goto err; + BN_consttime_swap(word & mask, x1, x2, group->field.top); + BN_consttime_swap(word & mask, z1, z2, group->field.top); + mask >>= 1; + } + mask = BN_TBIT; + } + + /* convert out of "projective" coordinates */ + i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); + if (i == 0) + goto err; + else if (i == 1) { + if (!EC_POINT_set_to_infinity(group, r)) + goto err; + } else { + if (!BN_one(&r->Z)) + goto err; + r->Z_is_one = 1; + } + + /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ + BN_set_negative(&r->X, 0); + BN_set_negative(&r->Y, 0); + + ret = 1; err: - BN_CTX_end(ctx); - return ret; - } - + BN_CTX_end(ctx); + return ret; +} -/* Computes the sum +/*- + * Computes the sum * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] * gracefully ignoring NULL scalar values. */ -int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, - size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - int ret = 0, i; - EC_POINT *p=NULL; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - /* This implementation is more efficient than the wNAF implementation for 2 - * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points, - * or if we can perform a fast multiplication based on precomputation. - */ - if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group))) - { - ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); - goto err; - } - - if ((p = EC_POINT_new(group)) == NULL) goto err; - - if (!EC_POINT_set_to_infinity(group, r)) goto err; - - if (scalar) - { - if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err; - if (BN_get_sign(scalar)) - if (!group->meth->invert(group, p, ctx)) goto err; - if (!group->meth->add(group, r, r, p, ctx)) goto err; - } - - for (i = 0; i < num; i++) - { - if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err; - if (BN_get_sign(scalars[i])) - if (!group->meth->invert(group, p, ctx)) goto err; - if (!group->meth->add(group, r, r, p, ctx)) goto err; - } - - ret = 1; - - err: - if (p) EC_POINT_free(p); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -/* Precomputation for point multiplication: fall back to wNAF methods - * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ +int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *scalar, size_t num, + const EC_POINT *points[], const BIGNUM *scalars[], + BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + int ret = 0; + size_t i; + EC_POINT *p = NULL; + EC_POINT *acc = NULL; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + /* + * This implementation is more efficient than the wNAF implementation for + * 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more + * points, or if we can perform a fast multiplication based on + * precomputation. + */ + if ((scalar && (num > 1)) || (num > 2) + || (num == 0 && EC_GROUP_have_precompute_mult(group))) { + ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); + goto err; + } + + if ((p = EC_POINT_new(group)) == NULL) + goto err; + if ((acc = EC_POINT_new(group)) == NULL) + goto err; + + if (!EC_POINT_set_to_infinity(group, acc)) + goto err; + + if (scalar) { + if (!ec_GF2m_montgomery_point_multiply + (group, p, scalar, group->generator, ctx)) + goto err; + if (BN_is_negative(scalar)) + if (!group->meth->invert(group, p, ctx)) + goto err; + if (!group->meth->add(group, acc, acc, p, ctx)) + goto err; + } + + for (i = 0; i < num; i++) { + if (!ec_GF2m_montgomery_point_multiply + (group, p, scalars[i], points[i], ctx)) + goto err; + if (BN_is_negative(scalars[i])) + if (!group->meth->invert(group, p, ctx)) + goto err; + if (!group->meth->add(group, acc, acc, p, ctx)) + goto err; + } + + if (!EC_POINT_copy(r, acc)) + goto err; + + ret = 1; + + err: + if (p) + EC_POINT_free(p); + if (acc) + EC_POINT_free(acc); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +/* + * Precomputation for point multiplication: fall back to wNAF methods because + * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate + */ int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) - { - return ec_wNAF_precompute_mult(group, ctx); - } +{ + return ec_wNAF_precompute_mult(group, ctx); +} int ec_GF2m_have_precompute_mult(const EC_GROUP *group) - { - return ec_wNAF_have_precompute_mult(group); - } +{ + return ec_wNAF_have_precompute_mult(group); +} + +#endif