X-Git-Url: https://git.openssl.org/gitweb/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fbn%2Fbn_gf2m.c;h=19a101bccdaf429f8f0c581801e67211bb35f368;hp=0bb4f9b2515f62a43c4d0e2ad74466df92c4d765;hb=925596f85be423ab24be2a481a0c37fc3ab88472;hpb=d870740cd75dd4f0cb66fb8c32653a7d47369706 diff --git a/crypto/bn/bn_gf2m.c b/crypto/bn/bn_gf2m.c index 0bb4f9b251..19a101bccd 100644 --- a/crypto/bn/bn_gf2m.c +++ b/crypto/bn/bn_gf2m.c @@ -88,12 +88,16 @@ * */ +#define OPENSSL_FIPSAPI + #include #include #include #include "cryptlib.h" #include "bn_lcl.h" +#ifndef OPENSSL_NO_EC2M + /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ #define MAX_ITERATIONS 50 @@ -121,74 +125,13 @@ static const BN_ULONG SQR_tb[16] = SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] #endif -#ifdef SIXTEEN_BIT -#define SQR1(w) \ - SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] -#endif -#ifdef EIGHT_BIT -#define SQR1(w) \ - SQR_tb[(w) >> 4 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) & 15] -#endif +#if !defined(OPENSSL_BN_ASM_GF2m) /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, * result is a polynomial r with degree < 2 * BN_BITS - 1 * The caller MUST ensure that the variables have the right amount * of space allocated. */ -#ifdef EIGHT_BIT -static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) - { - register BN_ULONG h, l, s; - BN_ULONG tab[4], top1b = a >> 7; - register BN_ULONG a1, a2; - - a1 = a & (0x7F); a2 = a1 << 1; - - tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; - - s = tab[b & 0x3]; l = s; - s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6; - s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4; - s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2; - - /* compensate for the top bit of a */ - - if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } - - *r1 = h; *r0 = l; - } -#endif -#ifdef SIXTEEN_BIT -static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) - { - register BN_ULONG h, l, s; - BN_ULONG tab[4], top1b = a >> 15; - register BN_ULONG a1, a2; - - a1 = a & (0x7FFF); a2 = a1 << 1; - - tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; - - s = tab[b & 0x3]; l = s; - s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14; - s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12; - s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10; - s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8; - s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6; - s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4; - s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2; - - /* compensate for the top bit of a */ - - if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } - - *r1 = h; *r0 = l; - } -#endif #ifdef THIRTY_TWO_BIT static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) { @@ -228,7 +171,7 @@ static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG tab[16], top3b = a >> 61; register BN_ULONG a1, a2, a4, a8; - a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; + a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; @@ -278,7 +221,9 @@ static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, c r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ } - +#else +void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0); +#endif /* Add polynomials a and b and store result in r; r could be a or b, a and b * could be equal; r is the bitwise XOR of a and b. @@ -288,10 +233,14 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) int i; const BIGNUM *at, *bt; + bn_check_top(a); + bn_check_top(b); + if (a->top < b->top) { at = b; bt = a; } else { at = a; bt = b; } - bn_wexpand(r, at->top); + if(bn_wexpand(r, at->top) == NULL) + return 0; for (i = 0; i < bt->top; i++) { @@ -317,14 +266,23 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) /* Performs modular reduction of a and store result in r. r could be a. */ -int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) +int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) { int j, k; int n, dN, d0, d1; BN_ULONG zz, *z; - - /* Since the algorithm does reduction in the r value, if a != r, copy the - * contents of a into r so we can do reduction in r. + + bn_check_top(a); + + if (!p[0]) + { + /* reduction mod 1 => return 0 */ + BN_zero(r); + return 1; + } + + /* Since the algorithm does reduction in the r value, if a != r, copy + * the contents of a into r so we can do reduction in r. */ if (a != r) { @@ -345,7 +303,7 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) if (z[j] == 0) { j--; continue; } z[j] = 0; - for (k = 1; p[k] > 0; k++) + for (k = 1; p[k] != 0; k++) { /* reducing component t^p[k] */ n = p[0] - p[k]; @@ -372,10 +330,14 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) if (zz == 0) break; d1 = BN_BITS2 - d0; - if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */ + /* clear up the top d1 bits */ + if (d0) + z[dN] = (z[dN] << d1) >> d1; + else + z[dN] = 0; z[0] ^= zz; /* reduction t^0 component */ - for (k = 1; p[k] > 0; k++) + for (k = 1; p[k] != 0; k++) { BN_ULONG tmp_ulong; @@ -393,7 +355,6 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) } bn_correct_top(r); - return 1; } @@ -405,18 +366,18 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) */ int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) { - const int max = BN_num_bits(p); - unsigned int *arr=NULL, ret = 0; - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; - if (BN_GF2m_poly2arr(p, arr, max) > max) + int ret = 0; + int arr[6]; + bn_check_top(a); + bn_check_top(p); + ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0])); + if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0]))) { BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); - goto err; + return 0; } ret = BN_GF2m_mod_arr(r, a, arr); bn_check_top(r); - err: - if (arr) OPENSSL_free(arr); return ret; } @@ -424,17 +385,19 @@ int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) /* Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r. r could be a or b; a could be b. */ -int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int zlen, i, j, k, ret = 0; BIGNUM *s; BN_ULONG x1, x0, y1, y0, zz[4]; - + + bn_check_top(a); + bn_check_top(b); + if (a == b) { return BN_GF2m_mod_sqr_arr(r, a, p, ctx); } - BN_CTX_start(ctx); if ((s = BN_CTX_get(ctx)) == NULL) goto err; @@ -459,14 +422,13 @@ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig } bn_correct_top(s); - BN_GF2m_mod_arr(r, s, p); + if (BN_GF2m_mod_arr(r, s, p)) + ret = 1; bn_check_top(r); - ret = 1; - err: +err: BN_CTX_end(ctx); return ret; - } /* Compute the product of two polynomials a and b, reduce modulo p, and store @@ -478,28 +440,34 @@ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig */ int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { - const int max = BN_num_bits(p); - unsigned int *arr=NULL, ret = 0; - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; - if (BN_GF2m_poly2arr(p, arr, max) > max) + int ret = 0; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; + bn_check_top(a); + bn_check_top(b); + bn_check_top(p); + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; + ret = BN_GF2m_poly2arr(p, arr, max); + if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); bn_check_top(r); - err: +err: if (arr) OPENSSL_free(arr); return ret; } /* Square a, reduce the result mod p, and store it in a. r could be a. */ -int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int i, ret = 0; BIGNUM *s; - + + bn_check_top(a); BN_CTX_start(ctx); if ((s = BN_CTX_get(ctx)) == NULL) return 0; if (!bn_wexpand(s, 2 * a->top)) goto err; @@ -515,7 +483,7 @@ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_C if (!BN_GF2m_mod_arr(r, s, p)) goto err; bn_check_top(r); ret = 1; - err: +err: BN_CTX_end(ctx); return ret; } @@ -528,17 +496,22 @@ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_C */ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { - const int max = BN_num_bits(p); - unsigned int *arr=NULL, ret = 0; - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; - if (BN_GF2m_poly2arr(p, arr, max) > max) + int ret = 0; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; + + bn_check_top(a); + bn_check_top(p); + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; + ret = BN_GF2m_poly2arr(p, arr, max); + if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); bn_check_top(r); - err: +err: if (arr) OPENSSL_free(arr); return ret; } @@ -554,25 +527,23 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) BIGNUM *b, *c, *u, *v, *tmp; int ret = 0; + bn_check_top(a); + bn_check_top(p); + BN_CTX_start(ctx); - b = BN_CTX_get(ctx); - c = BN_CTX_get(ctx); - u = BN_CTX_get(ctx); - v = BN_CTX_get(ctx); - if (v == NULL) goto err; + if ((b = BN_CTX_get(ctx))==NULL) goto err; + if ((c = BN_CTX_get(ctx))==NULL) goto err; + if ((u = BN_CTX_get(ctx))==NULL) goto err; + if ((v = BN_CTX_get(ctx))==NULL) goto err; - if (!BN_one(b)) goto err; - if (!BN_zero(c)) goto err; if (!BN_GF2m_mod(u, a, p)) goto err; - if (!BN_copy(v, p)) goto err; - - u->neg = 0; /* Need to set u->neg = 0 because BN_is_one(u) checks - * the neg flag of the bignum. - */ - if (BN_is_zero(u)) goto err; + if (!BN_copy(v, p)) goto err; +#if 0 + if (!BN_one(b)) goto err; + while (1) { while (!BN_is_odd(u)) @@ -585,7 +556,7 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) if (!BN_rshift1(b, b)) goto err; } - if (BN_is_one(u)) break; + if (BN_abs_is_word(u, 1)) break; if (BN_num_bits(u) < BN_num_bits(v)) { @@ -596,13 +567,81 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) if (!BN_GF2m_add(u, u, v)) goto err; if (!BN_GF2m_add(b, b, c)) goto err; } +#else + { + int i, ubits = BN_num_bits(u), + vbits = BN_num_bits(v), /* v is copy of p */ + top = p->top; + BN_ULONG *udp,*bdp,*vdp,*cdp; + + bn_wexpand(u,top); udp = u->d; + for (i=u->top;itop = top; + bn_wexpand(b,top); bdp = b->d; + bdp[0] = 1; + for (i=1;itop = top; + bn_wexpand(c,top); cdp = c->d; + for (i=0;itop = top; + vdp = v->d; /* It pays off to "cache" *->d pointers, because + * it allows optimizer to be more aggressive. + * But we don't have to "cache" p->d, because *p + * is declared 'const'... */ + while (1) + { + while (ubits && !(udp[0]&1)) + { + BN_ULONG u0,u1,b0,b1,mask; + + u0 = udp[0]; + b0 = bdp[0]; + mask = (BN_ULONG)0-(b0&1); + b0 ^= p->d[0]&mask; + for (i=0;i>1)|(u1<<(BN_BITS2-1)))&BN_MASK2; + u0 = u1; + b1 = bdp[i+1]^(p->d[i+1]&mask); + bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2; + b0 = b1; + } + udp[i] = u0>>1; + bdp[i] = b0>>1; + ubits--; + } + if (ubits<=BN_BITS2 && udp[0]==1) break; + + if (ubitsd; + bdp = cdp; cdp = c->d; + } + for(i=0;ineg = 0; /* Need to set a->neg = 0 because BN_is_one(a) checks - * the neg flag of the bignum. - */ - while (!BN_is_odd(a)) { if (!BN_rshift1(a, a)) goto err; @@ -703,7 +746,7 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p if (!BN_rshift1(v, v)) goto err; } while (!BN_is_odd(b)); } - else if (BN_is_one(a)) + else if (BN_abs_is_word(a, 1)) break; else { @@ -722,7 +765,7 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p bn_check_top(r); ret = 1; - err: +err: BN_CTX_end(ctx); return ret; } @@ -735,11 +778,14 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p * function is only provided for convenience; for best performance, use the * BN_GF2m_mod_div function. */ -int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; + bn_check_top(yy); + bn_check_top(xx); + BN_CTX_start(ctx); if ((field = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_GF2m_arr2poly(p, field)) goto err; @@ -747,7 +793,7 @@ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const uns ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); bn_check_top(r); - err: +err: BN_CTX_end(ctx); return ret; } @@ -757,16 +803,19 @@ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const uns * the result in r. r could be a. * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. */ -int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int ret = 0, i, n; BIGNUM *u; - + + bn_check_top(a); + bn_check_top(b); + if (BN_is_zero(b)) - { return(BN_one(r)); - } - + + if (BN_abs_is_word(b, 1)) + return (BN_copy(r, a) != NULL); BN_CTX_start(ctx); if ((u = BN_CTX_get(ctx)) == NULL) goto err; @@ -784,10 +833,8 @@ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig } if (!BN_copy(r, u)) goto err; bn_check_top(r); - ret = 1; - - err: +err: BN_CTX_end(ctx); return ret; } @@ -801,17 +848,22 @@ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig */ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { - const int max = BN_num_bits(p); - unsigned int *arr=NULL, ret = 0; - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; - if (BN_GF2m_poly2arr(p, arr, max) > max) + int ret = 0; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; + bn_check_top(a); + bn_check_top(b); + bn_check_top(p); + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; + ret = BN_GF2m_poly2arr(p, arr, max); + if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); bn_check_top(r); - err: +err: if (arr) OPENSSL_free(arr); return ret; } @@ -820,20 +872,28 @@ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p * the result in r. r could be a. * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. */ -int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int ret = 0; BIGNUM *u; - + + bn_check_top(a); + + if (!p[0]) + { + /* reduction mod 1 => return 0 */ + BN_zero(r); + return 1; + } + BN_CTX_start(ctx); if ((u = BN_CTX_get(ctx)) == NULL) goto err; - if (!BN_zero(u)) goto err; if (!BN_set_bit(u, p[0] - 1)) goto err; ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); bn_check_top(r); - err: +err: BN_CTX_end(ctx); return ret; } @@ -847,17 +907,21 @@ int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_ */ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { - const int max = BN_num_bits(p); - unsigned int *arr=NULL, ret = 0; - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; - if (BN_GF2m_poly2arr(p, arr, max) > max) + int ret = 0; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; + bn_check_top(a); + bn_check_top(p); + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; + ret = BN_GF2m_poly2arr(p, arr, max); + if (!ret || ret > max) { - BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); + BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); bn_check_top(r); - err: +err: if (arr) OPENSSL_free(arr); return ret; } @@ -865,12 +929,20 @@ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. */ -int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) { - int ret = 0, count = 0; - unsigned int j; + int ret = 0, count = 0, j; BIGNUM *a, *z, *rho, *w, *w2, *tmp; - + + bn_check_top(a_); + + if (!p[0]) + { + /* reduction mod 1 => return 0 */ + BN_zero(r); + return 1; + } + BN_CTX_start(ctx); a = BN_CTX_get(ctx); z = BN_CTX_get(ctx); @@ -881,7 +953,8 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p if (BN_is_zero(a)) { - ret = BN_zero(r); + BN_zero(r); + ret = 1; goto err; } @@ -907,7 +980,7 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p { if (!BN_rand(rho, p[0], 0, 0)) goto err; if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; - if (!BN_zero(z)) goto err; + BN_zero(z); if (!BN_copy(w, rho)) goto err; for (j = 1; j <= p[0] - 1; j++) { @@ -928,14 +1001,18 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; if (!BN_GF2m_add(w, z, w)) goto err; - if (BN_GF2m_cmp(w, a)) goto err; + if (BN_GF2m_cmp(w, a)) + { + BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); + goto err; + } if (!BN_copy(r, z)) goto err; bn_check_top(r); ret = 1; - err: +err: BN_CTX_end(ctx); return ret; } @@ -948,36 +1025,45 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p */ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { - const int max = BN_num_bits(p); - unsigned int *arr=NULL, ret = 0; - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; - if (BN_GF2m_poly2arr(p, arr, max) > max) + int ret = 0; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; + bn_check_top(a); + bn_check_top(p); + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * + max)) == NULL) goto err; + ret = BN_GF2m_poly2arr(p, arr, max); + if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); bn_check_top(r); - err: +err: if (arr) OPENSSL_free(arr); return ret; } -/* Convert the bit-string representation of a polynomial a into an array - * of integers corresponding to the bits with non-zero coefficient. +/* Convert the bit-string representation of a polynomial + * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding + * to the bits with non-zero coefficient. Array is terminated with -1. * Up to max elements of the array will be filled. Return value is total - * number of coefficients that would be extracted if array was large enough. + * number of array elements that would be filled if array was large enough. */ -int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) +int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) { - int i, j, k; + int i, j, k = 0; BN_ULONG mask; - for (k = 0; k < max; k++) p[k] = 0; - k = 0; + if (BN_is_zero(a)) + return 0; for (i = a->top - 1; i >= 0; i--) { + if (!a->d[i]) + /* skip word if a->d[i] == 0 */ + continue; mask = BN_TBIT; for (j = BN_BITS2 - 1; j >= 0; j--) { @@ -990,24 +1076,31 @@ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) } } + if (k < max) { + p[k] = -1; + k++; + } + return k; } /* Convert the coefficient array representation of a polynomial to a - * bit-string. The array must be terminated by 0. + * bit-string. The array must be terminated by -1. */ -int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a) +int BN_GF2m_arr2poly(const int p[], BIGNUM *a) { int i; + bn_check_top(a); BN_zero(a); - for (i = 0; p[i] > 0; i++) + for (i = 0; p[i] != -1; i++) { - BN_set_bit(a, p[i]); + if (BN_set_bit(a, p[i]) == 0) + return 0; } - BN_set_bit(a, 0); bn_check_top(a); - + return 1; } +#endif