Unrolled RC4 IA-64 loop gives 40% improvement over current assembler
[openssl.git] / crypto / rc4 / asm / rc4-ia64.pl
diff --git a/crypto/rc4/asm/rc4-ia64.pl b/crypto/rc4/asm/rc4-ia64.pl
new file mode 100644 (file)
index 0000000..330b95f
--- /dev/null
@@ -0,0 +1,788 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by David Mosberger <David.Mosberger@acm.org> based on the
+# Itanium optimized Crypto code which was released by HP Labs at
+# http://www.hpl.hp.com/research/linux/crypto/.
+#
+# Copyright (c) 2005 Hewlett-Packard Development Company, L.P.
+#
+# Permission is hereby granted, free of charge, to any person obtaining
+# a copy of this software and associated documentation files (the
+# "Software"), to deal in the Software without restriction, including
+# without limitation the rights to use, copy, modify, merge, publish,
+# distribute, sublicense, and/or sell copies of the Software, and to
+# permit persons to whom the Software is furnished to do so, subject to
+# the following conditions:
+#
+# The above copyright notice and this permission notice shall be
+# included in all copies or substantial portions of the Software.
+
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */
+
+
+
+# This is a little helper program which generates a software-pipelined
+# for RC4 encryption.  The basic algorithm looks like this:
+#
+#   for (counter = 0; counter < len; ++counter)
+#     {
+#       in = inp[counter];
+#       SI = S[I];
+#       J = (SI + J) & 0xff;
+#       SJ = S[J];
+#       T = (SI + SJ) & 0xff;
+#       S[I] = SJ, S[J] = SI;
+#       ST = S[T];
+#       outp[counter] = in ^ ST;
+#       I = (I + 1) & 0xff;
+#     }
+#
+# Pipelining this loop isn't easy, because the stores to the S[] array
+# need to be observed in the right order.  The loop generated by the
+# code below has the following pipeline diagram:
+#
+#      cycle
+#     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 |
+# iter
+#   1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
+#   2:             xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
+#   3:                         xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
+#
+#   where:
+#      LDI = load of S[I]
+#      LDJ = load of S[J]
+#      SWP = swap of S[I] and S[J]
+#      LDT = load of S[T]
+#
+# Note that in the above diagram, the major trouble-spot is that LDI
+# of the 2nd iteration is performed BEFORE the SWP of the first
+# iteration.  Fortunately, this is easy to detect (I of the 1st
+# iteration will be equal to J of the 2nd iteration) and when this
+# happens, we simply forward the proper value from the 1st iteration
+# to the 2nd one.  The proper value in this case is simply the value
+# of S[I] from the first iteration (thanks to the fact that SWP
+# simply swaps the contents of S[I] and S[J]).
+#
+# Another potential trouble-spot is in cycle 7, where SWP of the 1st
+# iteration issues at the same time as the LDI of the 3rd iteration.
+# However, thanks to IA-64 execution semantics, this can be taken
+# care of simply by placing LDI later in the instruction-group than
+# SWP.  IA-64 CPUs will automatically forward the value if they
+# detect that the SWP and LDI are accessing the same memory-location.
+
+# The core-loop that can be pipelined then looks like this (annotated
+# with McKinley/Madison issue port & latency numbers, assuming L1
+# cache hits for the most part):
+
+# operation:       instruction:                    issue-ports:  latency
+# ------------------  -----------------------------   ------------- -------
+
+# Data = *inp++       ld1 data = [inp], 1             M0-M1         1 cyc     c0
+#                     shladd Iptr = I, KeyTable, 3    M0-M3, I0, I1 1 cyc
+# I = (I + 1) & 0xff  padd1 nextI = I, one            M0-M3, I0, I1 3 cyc
+#                     ;;
+# SI = S[I]           ld8 SI = [Iptr]                 M0-M1         1 cyc     c1 * after SWAP!
+#                     ;;
+#                     cmp.eq.unc pBypass = I, J                                  * after J is valid!
+# J = SI + J          add J = J, SI                   M0-M3, I0, I1 1 cyc     c2
+#                     (pBypass) br.cond.spnt Bypass
+#                     ;;
+# ---------------------------------------------------------------------------------------
+# J = J & 0xff        zxt1 J = J                      I0, I1, 1 cyc           c3
+#                     ;;
+#                     shladd Jptr = J, KeyTable, 3    M0-M3, I0, I1 1 cyc     c4
+#                     ;;
+# SJ = S[J]           ld8 SJ = [Jptr]                 M0-M1         1 cyc     c5
+#                     ;;
+# ---------------------------------------------------------------------------------------
+# T = (SI + SJ)       add T = SI, SJ                  M0-M3, I0, I1 1 cyc     c6
+#                     ;;
+# T = T & 0xff        zxt1 T = T                      I0, I1        1 cyc
+# S[I] = SJ           st8 [Iptr] = SJ                 M2-M3                   c7
+# S[J] = SI           st8 [Jptr] = SI                 M2-M3
+#                     ;;
+#                     shladd Tptr = T, KeyTable, 3    M0-M3, I0, I1 1 cyc     c8
+#                     ;;
+# ---------------------------------------------------------------------------------------
+# T = S[T]            ld8 T = [Tptr]                  M0-M1         1 cyc     c9
+#                     ;;
+# data ^= T           xor data = data, T              M0-M3, I0, I1 1 cyc     c10
+#                     ;;
+# *out++ = Data ^ T   dep word = word, data, 8, POS   I0, I1        1 cyc     c11
+#                     ;;
+# ---------------------------------------------------------------------------------------
+
+# There are several points worth making here:
+
+#   - Note that due to the bypass/forwarding-path, the first two
+#     phases of the loop are strangly mingled together.  In
+#     particular, note that the first stage of the pipeline is
+#     using the value of "J", as calculated by the second stage.
+#   - Each bundle-pair will have exactly 6 instructions.
+#   - Pipelined, the loop can execute in 3 cycles/iteration and
+#     4 stages.  However, McKinley/Madison can issue "st1" to
+#     the same bank at a rate of at most one per 4 cycles.  Thus,
+#     instead of storing each byte, we accumulate them in a word
+#     and then write them back at once with a single "st8" (this
+#     implies that the setup code needs to ensure that the output
+#     buffer is properly aligned, if need be, by encoding the
+#     first few bytes separately).
+#   - There is no space for a "br.ctop" instruction.  For this
+#     reason we can't use module-loop support in IA-64 and have
+#     to do a traditional, purely software-pipelined loop.
+#   - We can't replace any of the remaining "add/zxt1" pairs with
+#     "padd1" because the latency for that instruction is too high
+#     and would push the loop to the point where more bypasses
+#     would be needed, which we don't have space for.
+#   - The above loop runs at around 3.26 cycles/byte, or roughly
+#     440 MByte/sec on a 1.5GHz Madison.  This is well below the
+#     system bus bandwidth and hence with judicious use of
+#     "lfetch" this loop can run at (almost) peak speed even when
+#     the input and output data reside in memory.  The
+#     max. latency that can be tolerated is (PREFETCH_DISTANCE *
+#     L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at
+#     least) 1-ahead prefetching of 128 byte cache-lines.  Note
+#     that we do NOT prefetch into L1, since that would only
+#     interfere with the S[] table values stored there.  This is
+#     acceptable because there is a 10 cycle latency between
+#     load and first use of the input data.
+#   - We use a branch to out-of-line bypass-code of cycle-pressure:
+#     we calculate the next J, check for the need to activate the
+#     bypass path, and activate the bypass path ALL IN THE SAME
+#     CYCLE.  If we didn't have these constraints, we could do
+#     the bypass with a simple conditional move instruction.
+#     Fortunately, the bypass paths get activated relatively
+#     infrequently, so the extra branches don't cost all that much
+#     (about 0.04 cycles/byte, measured on a 16396 byte file with
+#     random input data).
+#
+
+$phases = 4;           # number of stages/phases in the pipelined-loop
+$unroll_count = 6;     # number of times we unrolled it
+$pComI = (1 << 0);
+$pComJ = (1 << 1);
+$pComT = (1 << 2);
+$pOut  = (1 << 3);
+
+$NData = 4;
+$NIP = 3;
+$NJP = 2;
+$NI = 2;
+$NSI = 3;
+$NSJ = 2;
+$NT = 2;
+$NOutWord = 2;
+
+#
+# $threshold is the minimum length before we attempt to use the
+# big software-pipelined loop.  It MUST be greater-or-equal
+# to:
+#              PHASES * (UNROLL_COUNT + 1) + 7
+#
+# The "+ 7" comes from the fact we may have to encode up to
+#   7 bytes separately before the output pointer is aligned.
+#
+$threshold = (3 * ($phases * ($unroll_count + 1)) + 7);
+
+sub I {
+    local *code = shift;
+    local $format = shift;
+    local $a0 = shift;
+    local $a1 = shift;
+    local $a2 = shift;
+    local $a3 = shift;
+    $code .= sprintf ("\t\t".$format."\n", $a0, $a1, $a2, $a3);
+}
+
+sub P {
+    local *code = shift;
+    local $format = shift;
+    local $a0 = shift;
+    local $a1 = shift;
+    local $a2 = shift;
+    local $a3 = shift;
+    $code .= sprintf ($format."\n", $a0, $a1, $a2, $a3);
+}
+
+sub STOP {
+    local *code = shift;
+    $code .=<<___;
+               ;;
+___
+}
+
+sub emit_body {
+    local *c = shift;
+    local *bypass = shift;
+    local ($iteration, $p) = @_;
+
+    local $i0 = $iteration;
+    local $i1 = $iteration - 1;
+    local $i2 = $iteration - 2;
+    local $i3 = $iteration - 3;
+    local $iw0 = ($iteration - 3) / 8;
+    local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1;
+    local $byte_num = ($iteration - 3) % 8;
+    local $label = $iteration + 1;
+    local $pAny = ($p & 0xf) == 0xf;
+    local $pByp = (($p & $pComI) && ($iteration > 0));
+
+    $c.=<<___;
+//////////////////////////////////////////////////
+___
+
+    if (($p & 0xf) == 0) {
+       &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord);
+       return;
+    }
+
+    # Cycle 0
+    &I(\$c, "{ .mmi")                                        if ($pAny);
+    &I(\$c, "ld1    Data[%u] = [InPtr], 1", $i0 % $NData)     if ($p & $pComI);
+    &I(\$c, "padd1  I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI);
+    &I(\$c, "zxt1   J = J")                                  if ($p & $pComJ);
+    &I(\$c, "}")                                             if ($pAny);
+    &I(\$c, "{ .mmi")                                        if ($pAny);
+    &I(\$c, "LKEY   T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT)   if ($p & $pOut);
+    &I(\$c, "add    T[%u] = SI[%u], SJ[%u]",
+       $i0 % $NT, $i2 % $NSI, $i1 % $NSJ)                    if ($p & $pComT);
+    &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI);
+    &I(\$c, "}")                                             if ($pAny);
+    &STOP(\$c);
+
+    # Cycle 1
+    &I(\$c, "{ .mmi")                                        if ($pAny);
+    &I(\$c, "SKEY   [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT);
+    &I(\$c, "SKEY   [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT);
+    &I(\$c, "zxt1   T[%u] = T[%u]", $i0 % $NT, $i0 % $NT)     if ($p & $pComT);
+    &I(\$c, "}")                                             if ($pAny);
+    &I(\$c, "{ .mmi")                                        if ($pAny);
+    &I(\$c, "LKEY   SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI);
+    &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP)                if ($p & $pComJ);
+    &I(\$c, "xor    Data[%u] = Data[%u], T[%u]",
+       $i3 % $NData, $i3 % $NData, $i1 % $NT)                if ($p & $pOut);
+    &I(\$c, "}")                                             if ($pAny);
+    &STOP(\$c);
+
+    # Cycle 2
+    &I(\$c, "{ .mmi")                                        if ($pAny);
+    &I(\$c, "LKEY   SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ);
+    &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI)              if ($pByp);
+    &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8",
+       $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut);
+    &I(\$c, "}")                                             if ($pAny);
+    &I(\$c, "{ .mmb")                                        if ($pAny);
+    &I(\$c, "add    J = J, SI[%u]", $i0 % $NSI)                      if ($p & $pComI);
+    &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT)    if ($p & $pComT);
+    &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp);
+    &I(\$c, "}") if ($pAny);
+    &STOP(\$c);
+
+    &P(\$c, ".rc4Resume%u:", $label)                         if ($pByp);
+    if ($byte_num == 0 && $iteration >= $phases) {
+       &I(\$c, "st8 [OutPtr] = OutWord[%u], 8",
+          $iw1 % $NOutWord)                                  if ($p & $pOut);
+       if ($iteration == (1 + $unroll_count) * $phases - 1) {
+           if ($unroll_count == 6) {
+               &I(\$c, "mov OutWord[%u] = OutWord[%u]",
+                  $iw1 % $NOutWord, $iw0 % $NOutWord);
+           }
+           &I(\$c, "lfetch.nt1 [InPrefetch], %u",
+              $unroll_count * $phases);
+           &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u",
+              $unroll_count * $phases);
+           &I(\$c, "br.cloop.sptk.few .rc4Loop");
+       }
+    }
+
+    if ($pByp) {
+       &P(\$bypass, ".rc4Bypass%u:", $label);
+       &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI);
+       &I(\$bypass, "nop 0");
+       &I(\$bypass, "nop 0");
+       &I(\$bypass, ";;");
+       &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI);
+       &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI);
+       &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label);
+    }
+}
+
+$code=<<___;
+.ident \"rc4-ia64.s, version 3.0\"
+.ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\"
+
+#define LCSave         r8
+#define PRSave         r9
+
+/* Inputs become invalid once rotation begins!  */
+
+#define StateTable     in0
+#define DataLen                in1
+#define InputBuffer    in2
+#define OutputBuffer   in3
+
+#define KTable         r14
+#define J              r15
+#define InPtr          r16
+#define OutPtr         r17
+#define InPrefetch     r18
+#define OutPrefetch    r19
+#define One            r20
+#define LoopCount      r21
+#define Remainder      r22
+#define IFinal         r23
+#define EndPtr         r24
+
+#define tmp0           r25
+#define tmp1           r26
+
+#define pBypass                p6
+#define pDone          p7
+#define pSmall         p8
+#define pAligned       p9
+#define pUnaligned     p10
+
+#define pComputeI      pPhase[0]
+#define pComputeJ      pPhase[1]
+#define pComputeT      pPhase[2]
+#define pOutput                pPhase[3]
+
+#define RetVal         r8
+#define L_OK           p7
+#define L_NOK          p8
+
+#define        _NINPUTS        4
+#define        _NOUTPUT        0
+
+#define        _NROTATE        24
+#define        _NLOCALS        (_NROTATE - _NINPUTS - _NOUTPUT)
+
+#ifndef SZ
+# define SZ    4       // this must be set to sizeof(RC4_INT)
+#endif
+
+#if SZ == 1
+# define LKEY                  ld1
+# define SKEY                  st1
+# define KEYADDR(dst, i)       add dst = i, KTable
+#elif SZ == 2
+# define LKEY                  ld2
+# define SKEY                  st2
+# define KEYADDR(dst, i)       shladd dst = i, 1, KTable
+#elif SZ == 4
+# define LKEY                  ld4
+# define SKEY                  st4
+# define KEYADDR(dst, i)       shladd dst = i, 2, KTable
+#else
+# define LKEY                  ld8
+# define SKEY                  st8
+# define KEYADDR(dst, i)       shladd dst = i, 3, KTable
+#endif
+
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+# define ADDP  addp4
+#else
+# define ADDP  add
+#endif
+
+/* Define a macro for the bit number of the n-th byte: */
+
+#ifdef L_ENDIAN
+# define BYTE_POS(n)   (8 * (n))
+#else
+# define BYTE_POS(n)   (56 - (8 * (n)))
+#endif
+
+/*
+   We must perform the first phase of the pipeline explicitly since
+   we will always load from the stable the first time. The br.cexit
+   will never be taken since regardless of the number of bytes because
+   the epilogue count is 4.
+*/
+
+#define MODSCHED_RC4(label)                                               \\
+       {                                                                  \\
+                               ld1             Data[0] = [InPtr], 1;      \\
+                               add             IFinal = 1, I[1];          \\
+                               KEYADDR(IPr[0], I[1]);                     \\
+       } ;;                                                               \\
+       {                                                                  \\
+                               LKEY            SI[0] = [IPr[0]];          \\
+                               mov             pr.rot = 0x10000;          \\
+                               mov             ar.ec = 4;                 \\
+       } ;;                                                               \\
+       {                                                                  \\
+                               add             J = J, SI[0];              \\
+                               zxt1            I[0] = IFinal;             \\
+                               br.cexit.spnt.few label; /* never taken */ \\
+       } ;;                                                               \\
+label:                                                                    \\
+       {       .mmi;                                                      \\
+               (pComputeI)     ld1             Data[0] = [InPtr], 1;      \\
+               (pComputeI)     add             IFinal = 1, I[1];          \\
+               (pComputeJ)     zxt1            J = J;                     \\
+       }{      .mmi;                                                      \\
+               (pOutput)       LKEY            T[1] = [T[1]];             \\
+               (pComputeT)     add             T[0] = SI[2], SJ[1];       \\
+               (pComputeI)     KEYADDR(IPr[0], I[1]);                     \\
+       } ;;                                                               \\
+       {       .mmi;                                                      \\
+               (pComputeT)     SKEY            [IPr[2]] = SJ[1];          \\
+               (pComputeT)     SKEY            [JP[1]] = SI[2];           \\
+               (pComputeT)     zxt1            T[0] = T[0];               \\
+       }{      .mmi;                                                      \\
+               (pComputeI)     LKEY            SI[0] = [IPr[0]];          \\
+               (pComputeJ)     KEYADDR(JP[0], J);                         \\
+               (pComputeI)     cmp.eq.unc      pBypass, p0 = I[1], J;     \\
+       } ;;                                                               \\
+       {       .mmi;                                                      \\
+               (pComputeJ)     LKEY            SJ[0] = [JP[0]];           \\
+               (pOutput)       xor             Data[3] = Data[3], T[1];   \\
+                               nop             0x0;                       \\
+       }{      .mmi;                                                      \\
+               (pComputeT)     KEYADDR(T[0], T[0]);                       \\
+               (pBypass)       mov             SI[0] = SI[1];             \\
+               (pComputeI)     zxt1            I[0] = IFinal;             \\
+       } ;;                                                               \\
+       {       .mmb;                                                      \\
+               (pOutput)       st1             [OutPtr] = Data[3], 1;     \\
+               (pComputeI)     add             J = J, SI[0];              \\
+                               br.ctop.sptk.few label;                    \\
+       } ;;
+
+       .text
+
+       .align  32
+
+       .type   RC4, \@function
+       .global RC4
+
+       .proc   RC4
+       .prologue
+
+RC4:
+       {
+               .mmi
+               alloc   r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
+
+               .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\
+                     OutWord[2]
+               .rotp pPhase[4]
+
+#ifdef _LP64
+               add             InPrefetch = 0, InputBuffer
+               nop             0x0
+       }
+#else
+               ADDP            InputBuffer = 0, InputBuffer
+               ADDP            StateTable = 0, StateTable
+       }
+       ;;
+       {
+               ADDP            InPrefetch = 0, InputBuffer
+               ADDP            OutputBuffer = 0, OutputBuffer
+               nop             0x0
+       }
+#endif
+       ;;
+       {
+               .mmi
+               lfetch.nt1      [InPrefetch], 0x80
+               LKEY            I[1] = [StateTable], SZ
+               mov             OutPrefetch = OutputBuffer
+       } ;;
+       {
+               .mii
+               nop             0x0
+               nop             0x0
+               mov             RetVal = r0
+       }
+       {               // Return 0 if the input length is nonsensical
+               .mib
+               nop             0x0
+               cmp.ge          L_NOK, L_OK = r0, DataLen
+       (L_NOK) br.ret.sptk.few rp
+       }
+       ;;
+       {
+               .mib
+               nop             0x0
+               cmp.eq          L_NOK, L_OK = r0, InputBuffer
+       (L_NOK) br.ret.sptk.few rp
+       }
+       ;;
+       {
+               .mib
+               nop             0x0
+               cmp.eq          L_NOK, L_OK = r0, OutputBuffer
+       (L_NOK) br.ret.sptk.few rp
+       }
+       ;;
+       {
+               .mib
+               nop             0x0
+               cmp.eq          L_NOK, L_OK = r0, StateTable
+       (L_NOK) br.ret.sptk.few rp
+       }
+
+
+/* Prefetch the state-table. It contains 256 elements of size SZ */
+
+#if SZ == 1
+               ADDP            tmp0 = 1*128, StateTable
+#elif SZ == 2
+               ADDP            tmp0 = 3*128, StateTable
+               ADDP            tmp1 = 2*128, StateTable
+#elif SZ == 4
+               ADDP            tmp0 = 7*128, StateTable
+               ADDP            tmp1 = 6*128, StateTable
+#elif SZ == 8
+               ADDP            tmp0 = 15*128, StateTable
+               ADDP            tmp1 = 14*128, StateTable
+#endif
+               ;;
+#if SZ >= 8
+               lfetch.fault.nt1                [tmp0], -256    // 15
+               lfetch.fault.nt1                [tmp1], -256;;
+               lfetch.fault.nt1                [tmp0], -256    // 13
+               lfetch.fault.nt1                [tmp1], -256;;
+               lfetch.fault.nt1                [tmp0], -256    // 11
+               lfetch.fault.nt1                [tmp1], -256;;
+               lfetch.fault.nt1                [tmp0], -256    //  9
+               lfetch.fault.nt1                [tmp1], -256;;
+#endif
+#if SZ >= 4
+               lfetch.fault.nt1                [tmp0], -256    //  7
+               lfetch.fault.nt1                [tmp1], -256;;
+               lfetch.fault.nt1                [tmp0], -256    //  5
+               lfetch.fault.nt1                [tmp1], -256;;
+#endif
+#if SZ >= 2
+               lfetch.fault.nt1                [tmp0], -256    //  3
+               lfetch.fault.nt1                [tmp1], -256;;
+#endif
+               lfetch.fault.nt1                [tmp0]          //  1
+
+       {
+               .mmi
+               lfetch.nt1      [InPrefetch], 0x80
+               lfetch.excl.nt1 [OutPrefetch], 0x80
+               .save           pr, PRSave
+               mov             PRSave = pr
+       } ;;
+       {
+               .mmi
+               lfetch.excl.nt1 [OutPrefetch], 0x80
+               LKEY            J = [StateTable], SZ
+               ADDP            EndPtr = DataLen, InputBuffer
+       }  ;;
+       {
+               .mmi
+               mov             InPtr = InputBuffer
+               mov             OutPtr = OutputBuffer
+               ADDP            EndPtr = -1, EndPtr     // Make it point to
+                                                       // last data byte.
+       } ;;
+       {
+               .mii
+               mov             KTable = StateTable
+               mov             One = 1
+               .save           ar.lc, LCSave
+               mov             LCSave = ar.lc
+               .body
+       } ;;
+       {
+               .mmb
+               sub             Remainder = 0, OutPtr
+               cmp.gtu         pSmall, p0 = $threshold, DataLen
+(pSmall)       br.cond.dpnt    .rc4Remainder           // Data too small for
+                                                       // big loop.
+       } ;;
+       {
+               .mmi
+               and             Remainder = 0x7, Remainder
+               ;;
+               cmp.eq          pAligned, pUnaligned = Remainder, r0
+               nop             0x0
+       } ;;
+       {
+               .mmb
+(pUnaligned)   add             Remainder = -1, Remainder
+(pAligned)     sub             Remainder = EndPtr, InPtr
+(pAligned)     br.cond.dptk.many .rc4Aligned
+       } ;;
+       {
+               .mmi
+               nop             0x0
+               nop             0x0
+               mov.i           ar.lc = Remainder
+       }
+
+/* Do the initial few bytes via the compact, modulo-scheduled loop
+   until the output pointer is 8-byte-aligned.  */
+
+               MODSCHED_RC4(.RC4AlignLoop)
+
+       {
+               .mib
+               sub             Remainder = EndPtr, InPtr
+               zxt1            IFinal = IFinal
+               clrrrb                          // Clear CFM.rrb.pr so
+               ;;                              // next "mov pr.rot = N"
+                                               // does the right thing.
+       }
+       {
+               .mmi
+               mov             I[1] = IFinal
+               nop             0x0
+               nop             0x0
+       } ;;
+
+
+.rc4Aligned:
+
+/*
+   Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases)
+ */
+
+       {
+               .mlx
+               add     LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder
+               movl            Remainder = 0xaaaaaaaaaaaaaaab
+       } ;;
+       {
+               .mmi
+               setf.sig        f6 = LoopCount          // M2, M3       6 cyc
+               setf.sig        f7 = Remainder          // M2, M3       6 cyc
+               nop             0x0
+       } ;;
+       {
+               .mfb
+               nop             0x0
+               xmpy.hu         f6 = f6, f7
+               nop             0x0
+       } ;;
+       {
+               .mmi
+               getf.sig        LoopCount = f6          // M2           5 cyc
+               nop             0x0
+               nop             0x0
+       } ;;
+       {
+               .mmi
+               nop             0x0
+               nop             0x0
+               shr.u           LoopCount = LoopCount, 4
+       } ;;
+       {
+               .mmi
+               nop             0x0
+               nop             0x0
+               mov.i           ar.lc = LoopCount
+       } ;;
+
+/* Now comes the unrolled loop: */
+
+.rc4Prologue:
+___
+
+$iteration = 0;
+
+# Generate the prologue:
+$predicates = 1;
+for ($i = 0; $i < $phases; ++$i) {
+    &emit_body (\$code, \$bypass, $iteration++, $predicates);
+    $predicates = ($predicates << 1) | 1;
+}
+
+$code.=<<___;
+.rc4Loop:
+___
+
+# Generate the body:
+for ($i = 0; $i < $unroll_count*$phases; ++$i) {
+    &emit_body (\$code, \$bypass, $iteration++, $predicates);
+}
+
+$code.=<<___;
+.rc4Epilogue:
+___
+
+# Generate the epilogue:
+for ($i = 0; $i < $phases; ++$i) {
+    $predicates <<= 1;
+    &emit_body (\$code, \$bypass, $iteration++, $predicates);
+}
+
+$code.=<<___;
+       {
+               .mmi
+               lfetch.nt1      [EndPtr]        // fetch line with last byte
+               mov             IFinal = I[1]
+               nop             0x0
+       }
+
+.rc4Remainder:
+       {
+               .mmi
+               sub             Remainder = EndPtr, InPtr       // Calculate
+                                                               // # of bytes
+                                                               // left - 1
+               nop             0x0
+               nop             0x0
+       } ;;
+       {
+               .mib
+               cmp.eq          pDone, p0 = -1, Remainder // done already?
+               mov.i           ar.lc = Remainder
+(pDone)                br.cond.dptk.few .rc4Complete
+       }
+
+/* Do the remaining bytes via the compact, modulo-scheduled loop */
+
+               MODSCHED_RC4(.RC4RestLoop)
+
+       {
+               .mmi
+               nop             0x0
+               nop             0x0
+               zxt1            IFinal = IFinal
+       } ;;
+
+.rc4Complete:
+       {
+               .mmi
+               ADDP            KTable = -2*SZ, KTable ;;
+               SKEY            [KTable] = IFinal, SZ
+               mov             ar.lc = LCSave
+       } ;;
+       {
+               .mii
+               nop             0x0
+               nop             0x0
+               add             RetVal = 1, r0
+       }
+       {
+               .mib
+               SKEY            [KTable] = J
+               mov             pr = PRSave, 0x1FFFF
+               br.ret.sptk.few rp
+       } ;;
+___
+
+# Last but not least, emit the code for the bypass-code of the unrolled loop:
+
+$code.=$bypass;
+
+$code.=<<___;
+       .endp RC4
+___
+
+print $code;