* ====================================================================
*/
-#include "modes.h"
+#include "crypto.h"
+#include "modes_lcl.h"
#include <string.h>
#ifndef MODES_DEBUG
#endif
#include <assert.h>
-#if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
-typedef __int64 i64;
-typedef unsigned __int64 u64;
-#define U64(C) C##UI64
-#elif defined(__arch64__)
-typedef long i64;
-typedef unsigned long u64;
-#define U64(C) C##UL
-#else
-typedef long long i64;
-typedef unsigned long long u64;
-#define U64(C) C##ULL
-#endif
-
-typedef unsigned int u32;
-typedef unsigned char u8;
typedef struct { u64 hi,lo; } u128;
-#define STRICT_ALIGNMENT
-#if defined(__i386) || defined(__i386__) || \
- defined(__x86_64) || defined(__x86_64__) || \
- defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \
- defined(__s390__) || defined(__s390x__)
-# undef STRICT_ALIGNMENT
+#if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
+/* redefine, because alignment is ensured */
+#undef GETU32
+#define GETU32(p) BSWAP4(*(const u32 *)(p))
+#undef PUTU32
+#define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
#endif
-#if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
-# if defined(__x86_64) || defined(__x86_64__)
-# define BSWAP8(x) ({ u64 ret=(x); \
- asm volatile ("bswapq %0" \
- : "+r"(ret)); ret; })
-# define BSWAP4(x) ({ u32 ret=(x); \
- asm volatile ("bswapl %0" \
- : "+r"(ret)); ret; })
-# elif (defined(__i386) || defined(__i386__)) && !defined(PEDANTIC)
-# define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \
- asm volatile ("bswapl %0; bswapl %1" \
- : "+r"(hi),"+r"(lo)); \
- (u64)hi<<32|lo; })
-# define BSWAP4(x) ({ u32 ret=(x); \
- asm volatile ("bswapl %0" \
- : "+r"(ret)); ret; })
-# endif
-#elif defined(_MSC_VER)
-# if _MSC_VER>=1300
-# pragma intrinsic(_byteswap_uint64,_byteswap_ulong)
-# define BSWAP8(x) _byteswap_uint64((u64)(x))
-# define BSWAP4(x) _byteswap_ulong((u32)(x))
-# elif defined(_M_IX86)
-# endif
-#endif
+#define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
+#define REDUCE1BIT(V) do { \
+ if (sizeof(size_t)==8) { \
+ u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
+ V.lo = (V.hi<<63)|(V.lo>>1); \
+ V.hi = (V.hi>>1 )^T; \
+ } \
+ else { \
+ u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
+ V.lo = (V.hi<<63)|(V.lo>>1); \
+ V.hi = (V.hi>>1 )^((u64)T<<32); \
+ } \
+} while(0)
-#ifdef BSWAP4
-#define GETU32(p) BSWAP4(*(const u32 *)(p))
-#define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
-#else
-#define GETU32(p) ((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)[3])
-#define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v))
-#endif
-
-#define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
#ifdef TABLE_BITS
#undef TABLE_BITS
#endif
/*
* Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
* never be set to 8. 8 is effectively reserved for testing purposes.
- * Under ideal conditions "8-bit" version should be twice as fast as
- * "4-bit" one. But world is far from ideal. For gcc-generated x86 code,
- * "8-bit" was observed to run only ~50% faster. On x86_64 observed
- * improvement was ~75%, much closer to optimal, but the fact of
- * deviation means that references to pre-computed tables end up on
- * critical path and as tables are pretty big, 4KB per key+1KB shared,
- * execution time is sensitive to cache timing. It's not actually
- * proven, but 4-bit procedure is believed to provide adequate
- * all-round performance...
- */
+ * TABLE_BITS>1 are lookup-table-driven implementations referred to as
+ * "Shoup's" in GCM specification. In other words OpenSSL does not cover
+ * whole spectrum of possible table driven implementations. Why? In
+ * non-"Shoup's" case memory access pattern is segmented in such manner,
+ * that it's trivial to see that cache timing information can reveal
+ * fair portion of intermediate hash value. Given that ciphertext is
+ * always available to attacker, it's possible for him to attempt to
+ * deduce secret parameter H and if successful, tamper with messages
+ * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
+ * not as trivial, but there is no reason to believe that it's resistant
+ * to cache-timing attack. And the thing about "8-bit" implementation is
+ * that it consumes 16 (sixteen) times more memory, 4KB per individual
+ * key + 1KB shared. Well, on pros side it should be twice as fast as
+ * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
+ * was observed to run ~75% faster, closer to 100% for commercial
+ * compilers... Yet "4-bit" procedure is preferred, because it's
+ * believed to provide better security-performance balance and adequate
+ * all-round performance. "All-round" refers to things like:
+ *
+ * - shorter setup time effectively improves overall timing for
+ * handling short messages;
+ * - larger table allocation can become unbearable because of VM
+ * subsystem penalties (for example on Windows large enough free
+ * results in VM working set trimming, meaning that consequent
+ * malloc would immediately incur working set expansion);
+ * - larger table has larger cache footprint, which can affect
+ * performance of other code paths (not necessarily even from same
+ * thread in Hyper-Threading world);
+ */
#define TABLE_BITS 4
#if TABLE_BITS==8
V.lo = H[1];
for (Htable[128]=V, i=64; i>0; i>>=1) {
- if (sizeof(size_t)==8) {
- u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
- V.lo = (V.hi<<63)|(V.lo>>1);
- V.hi = (V.hi>>1 )^T;
- }
- else {
- u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
- V.lo = (V.hi<<63)|(V.lo>>1);
- V.hi = (V.hi>>1 )^((u64)T<<32);
- }
+ REDUCE1BIT(V);
Htable[i] = V;
}
static void gcm_init_4bit(u128 Htable[16], u64 H[2])
{
- int i;
u128 V;
+#if defined(OPENSSL_SMALL_FOOTPRINT)
+ int i;
+#endif
Htable[0].hi = 0;
Htable[0].lo = 0;
V.hi = H[0];
V.lo = H[1];
+#if defined(OPENSSL_SMALL_FOOTPRINT)
for (Htable[8]=V, i=4; i>0; i>>=1) {
- if (sizeof(size_t)==8) {
- u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
- V.lo = (V.hi<<63)|(V.lo>>1);
- V.hi = (V.hi>>1 )^T;
- }
- else {
- u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
- V.lo = (V.hi<<63)|(V.lo>>1);
- V.hi = (V.hi>>1 )^((u64)T<<32);
- }
+ REDUCE1BIT(V);
Htable[i] = V;
}
-#if defined(OPENSSL_SMALL_FOOTPRINT)
for (i=2; i<16; i<<=1) {
u128 *Hi = Htable+i;
int j;
}
}
#else
+ Htable[8] = V;
+ REDUCE1BIT(V);
+ Htable[4] = V;
+ REDUCE1BIT(V);
+ Htable[2] = V;
+ REDUCE1BIT(V);
+ Htable[1] = V;
Htable[3].hi = V.hi^Htable[2].hi, Htable[3].lo = V.lo^Htable[2].lo;
V=Htable[4];
Htable[5].hi = V.hi^Htable[1].hi, Htable[5].lo = V.lo^Htable[1].lo;
Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo;
Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo;
#endif
+#if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
+ /*
+ * ARM assembler expects specific dword order in Htable.
+ */
+ {
+ int j;
+ const union { long one; char little; } is_endian = {1};
+
+ if (is_endian.little)
+ for (j=0;j<16;++j) {
+ V = Htable[j];
+ Htable[j].hi = V.lo;
+ Htable[j].lo = V.hi;
+ }
+ else
+ for (j=0;j<16;++j) {
+ V = Htable[j];
+ Htable[j].hi = V.lo<<32|V.lo>>32;
+ Htable[j].lo = V.hi<<32|V.hi>>32;
+ }
+ }
+#endif
}
#ifndef GHASH_ASM
size_t rem, nlo, nhi;
const union { long one; char little; } is_endian = {1};
+#if 1
do {
cnt = 15;
nlo = ((const u8 *)Xi)[15];
Z.hi ^= Htable[nlo].hi;
Z.lo ^= Htable[nlo].lo;
}
+#else
+ /*
+ * Extra 256+16 bytes per-key plus 512 bytes shared tables
+ * [should] give ~50% improvement... One could have PACK()-ed
+ * the rem_8bit even here, but the priority is to minimize
+ * cache footprint...
+ */
+ u128 Hshr4[16]; /* Htable shifted right by 4 bits */
+ u8 Hshl4[16]; /* Htable shifted left by 4 bits */
+ static const unsigned short rem_8bit[256] = {
+ 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E,
+ 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E,
+ 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E,
+ 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E,
+ 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E,
+ 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E,
+ 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E,
+ 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E,
+ 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
+ 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE,
+ 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE,
+ 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE,
+ 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E,
+ 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E,
+ 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE,
+ 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE,
+ 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E,
+ 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
+ 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E,
+ 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E,
+ 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E,
+ 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E,
+ 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E,
+ 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E,
+ 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE,
+ 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE,
+ 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
+ 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE,
+ 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E,
+ 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E,
+ 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE,
+ 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE };
+ /*
+ * This pre-processing phase slows down procedure by approximately
+ * same time as it makes each loop spin faster. In other words
+ * single block performance is approximately same as straightforward
+ * "4-bit" implementation, and then it goes only faster...
+ */
+ for (cnt=0; cnt<16; ++cnt) {
+ Z.hi = Htable[cnt].hi;
+ Z.lo = Htable[cnt].lo;
+ Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4);
+ Hshr4[cnt].hi = (Z.hi>>4);
+ Hshl4[cnt] = (u8)(Z.lo<<4);
+ }
+
+ do {
+ for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) {
+ nlo = ((const u8 *)Xi)[cnt];
+ nlo ^= inp[cnt];
+ nhi = nlo>>4;
+ nlo &= 0xf;
+
+ Z.hi ^= Htable[nlo].hi;
+ Z.lo ^= Htable[nlo].lo;
+
+ rem = (size_t)Z.lo&0xff;
+
+ Z.lo = (Z.hi<<56)|(Z.lo>>8);
+ Z.hi = (Z.hi>>8);
+
+ Z.hi ^= Hshr4[nhi].hi;
+ Z.lo ^= Hshr4[nhi].lo;
+ Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48;
+ }
+
+ nlo = ((const u8 *)Xi)[0];
+ nlo ^= inp[0];
+ nhi = nlo>>4;
+ nlo &= 0xf;
+
+ Z.hi ^= Htable[nlo].hi;
+ Z.lo ^= Htable[nlo].lo;
+
+ rem = (size_t)Z.lo&0xf;
+
+ Z.lo = (Z.hi<<60)|(Z.lo>>4);
+ Z.hi = (Z.hi>>4);
+
+ Z.hi ^= Htable[nhi].hi;
+ Z.lo ^= Htable[nhi].lo;
+ Z.hi ^= ((u64)rem_8bit[rem<<4])<<48;
+#endif
if (is_endian.little) {
#ifdef BSWAP8
#define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
#if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
-#define GHASH(in,len,ctx) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
+#define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
/* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
* trashing effect. In other words idea is to hash data while it's
* still in L1 cache after encryption pass... */
Z.hi ^= V.hi&M;
Z.lo ^= V.lo&M;
- if (sizeof(size_t)==8) {
- u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
- V.lo = (V.hi<<63)|(V.lo>>1);
- V.hi = (V.hi>>1 )^T;
- }
- else {
- u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
- V.lo = (V.hi<<63)|(V.lo>>1);
- V.hi = (V.hi>>1 )^((u64)T<<32);
- }
-
+ REDUCE1BIT(V);
}
}
struct gcm128_context {
/* Following 6 names follow names in GCM specification */
union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0,
- Xi,H,
- len;
+ Xi,H,len;
/* Pre-computed table used by gcm_gmult_* */
#if TABLE_BITS==8
u128 Htable[256];
#else
u128 Htable[16];
+ void (*gmult)(u64 Xi[2],const u128 Htable[16]);
+ void (*ghash)(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#endif
- unsigned int res, ctr;
+ unsigned int res, pad;
block128_f block;
void *key;
};
+#if TABLE_BITS==4 && defined(GHASH_ASM) && !defined(I386_ONLY) && \
+ (defined(__i386) || defined(__i386__) || \
+ defined(__x86_64) || defined(__x86_64__) || \
+ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
+# define GHASH_ASM_IAX
+extern unsigned int OPENSSL_ia32cap_P[2];
+
+void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]);
+void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+
+# if defined(__i386) || defined(__i386__) || defined(_M_IX86)
+# define GHASH_ASM_X86
+void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+
+void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+# endif
+
+# undef GCM_MUL
+# define GCM_MUL(ctx,Xi) (*((ctx)->gmult))(ctx->Xi.u,ctx->Htable)
+# undef GHASH
+# define GHASH(ctx,in,len) (*((ctx)->ghash))((ctx)->Xi.u,(ctx)->Htable,in,len)
+#endif
+
void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
{
const union { long one; char little; } is_endian = {1};
#if TABLE_BITS==8
gcm_init_8bit(ctx->Htable,ctx->H.u);
#elif TABLE_BITS==4
+# if defined(GHASH_ASM_IAX) /* both x86 and x86_64 */
+ if (OPENSSL_ia32cap_P[1]&(1<<1)) {
+ gcm_init_clmul(ctx->Htable,ctx->H.u);
+ ctx->gmult = gcm_gmult_clmul;
+ ctx->ghash = gcm_ghash_clmul;
+ return;
+ }
+ gcm_init_4bit(ctx->Htable,ctx->H.u);
+# if defined(GHASH_ASM_X86) /* x86 only */
+ if (OPENSSL_ia32cap_P[0]&(1<<23)) {
+ ctx->gmult = gcm_gmult_4bit_mmx;
+ ctx->ghash = gcm_ghash_4bit_mmx;
+ } else {
+ ctx->gmult = gcm_gmult_4bit_x86;
+ ctx->ghash = gcm_ghash_4bit_x86;
+ }
+# else
+ ctx->gmult = gcm_gmult_4bit;
+ ctx->ghash = gcm_ghash_4bit;
+# endif
+# else
gcm_init_4bit(ctx->Htable,ctx->H.u);
+# endif
#endif
}
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
{
const union { long one; char little; } is_endian = {1};
+ unsigned int ctr;
ctx->Yi.u[0] = 0;
ctx->Yi.u[1] = 0;
if (len==12) {
memcpy(ctx->Yi.c,iv,12);
ctx->Yi.c[15]=1;
- ctx->ctr=1;
+ ctr=1;
}
else {
size_t i;
GCM_MUL(ctx,Yi);
if (is_endian.little)
- ctx->ctr = GETU32(ctx->Yi.c+12);
+ ctr = GETU32(ctx->Yi.c+12);
else
- ctx->ctr = ctx->Yi.d[3];
+ ctr = ctx->Yi.d[3];
}
(*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key);
- ++ctx->ctr;
+ ++ctr;
if (is_endian.little)
- PUTU32(ctx->Yi.c+12,ctx->ctr);
+ PUTU32(ctx->Yi.c+12,ctr);
else
- ctx->Yi.d[3] = ctx->ctr;
+ ctx->Yi.d[3] = ctr;
}
void CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
#ifdef GHASH
if ((i = (len&(size_t)-16))) {
- GHASH(aad,i,ctx);
+ GHASH(ctx,aad,i);
aad += i;
len -= i;
}
ctx->len.u[1] += len;
n = ctx->res;
- ctr = ctx->ctr;
+ if (is_endian.little)
+ ctr = GETU32(ctx->Yi.c+12);
+ else
+ ctr = ctx->Yi.d[3];
#if !defined(OPENSSL_SMALL_FOOTPRINT)
if (16%sizeof(size_t) == 0) do { /* always true actually */
in += 16;
j -= 16;
}
- GHASH(out-GHASH_CHUNK,GHASH_CHUNK,ctx);
+ GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK);
len -= GHASH_CHUNK;
}
if ((i = (len&(size_t)-16))) {
in += 16;
len -= 16;
}
- GHASH(out-j,j,ctx);
+ GHASH(ctx,out-j,j);
}
#else
while (len>=16) {
}
ctx->res = n;
- ctx->ctr = ctr;
return;
} while(0);
#endif
}
ctx->res = n;
- ctx->ctr = ctr;
}
void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
ctx->len.u[1] += len;
n = ctx->res;
- ctr = ctx->ctr;
+ if (is_endian.little)
+ ctr = GETU32(ctx->Yi.c+12);
+ else
+ ctr = ctx->Yi.d[3];
#if !defined(OPENSSL_SMALL_FOOTPRINT)
if (16%sizeof(size_t) == 0) do { /* always true actually */
while (len>=GHASH_CHUNK) {
size_t j=GHASH_CHUNK;
- GHASH(in,GHASH_CHUNK,ctx);
+ GHASH(ctx,in,GHASH_CHUNK);
while (j) {
(*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
++ctr;
len -= GHASH_CHUNK;
}
if ((i = (len&(size_t)-16))) {
- GHASH(in,i,ctx);
+ GHASH(ctx,in,i);
while (len>=16) {
(*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
++ctr;
}
ctx->res = n;
- ctx->ctr = ctr;
return;
} while(0);
#endif
}
ctx->res = n;
- ctx->ctr = ctr;
}
-void CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx)
+int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag,
+ size_t len)
{
const union { long one; char little; } is_endian = {1};
u64 alen = ctx->len.u[0]<<3;
ctx->Xi.u[0] ^= ctx->EK0.u[0];
ctx->Xi.u[1] ^= ctx->EK0.u[1];
+
+ if (tag && len<=sizeof(ctx->Xi))
+ return memcmp(ctx->Xi.c,tag,len);
+ else
+ return -1;
+}
+
+GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
+{
+ GCM128_CONTEXT *ret;
+
+ if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT))))
+ CRYPTO_gcm128_init(ret,key,block);
+
+ return ret;
+}
+
+void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
+{
+ if (ctx) {
+ OPENSSL_cleanse(ctx,sizeof(*ctx));
+ OPENSSL_free(ctx);
+ }
}
#if defined(SELFTEST)
0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e,
0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05,
0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85},
- T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4,};
+ T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4};
/* Test Case 4 */
#define K4 K3
CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \
if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \
if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \
- CRYPTO_gcm128_finish(&ctx); \
- if (memcmp(ctx.Xi.c,T##n,16) || (C##n && memcmp(out,C##n,sizeof(out)))) \
+ if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \
+ (C##n && memcmp(out,C##n,sizeof(out)))) \
ret++, printf ("encrypt test#%d failed.\n",n);\
CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \
if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \
if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \
- CRYPTO_gcm128_finish(&ctx); \
- if (memcmp(ctx.Xi.c,T##n,16) || (P##n && memcmp(out,P##n,sizeof(out)))) \
- ret++, printf ("decrypt test#%d failed.\n",n);\
+ if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \
+ (P##n && memcmp(out,P##n,sizeof(out)))) \
+ ret++, printf ("decrypt test#%d failed.\n",n); \
} while(0)
int main()
{
size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc();
union { u64 u; u8 c[1024]; } buf;
+ int i;
AES_set_encrypt_key(K1,sizeof(K1)*8,&key);
CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);
ctr_t/(double)sizeof(buf),
(gcm_t-ctr_t)/(double)sizeof(buf));
#ifdef GHASH
- GHASH(buf.c,sizeof(buf),&ctx);
+ GHASH(&ctx,buf.c,sizeof(buf));
start = OPENSSL_rdtsc();
- GHASH(buf.c,sizeof(buf),&ctx);
+ for (i=0;i<100;++i) GHASH(&ctx,buf.c,sizeof(buf));
gcm_t = OPENSSL_rdtsc() - start;
- printf("%.2f\n",gcm_t/(double)sizeof(buf));
+ printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i);
#endif
}
#endif