}
while (BN_is_zero(r));
- /* Check if optimized inverse is implemented */
- if (EC_GROUP_do_inverse_ord(group, k, k, ctx) == 0) {
- /* compute the inverse of k */
- if (group->mont_data != NULL) {
- /*
- * We want inverse in constant time, therefore we utilize the fact
- * order must be prime and use Fermats Little Theorem instead.
- */
- if (!BN_set_word(X, 2)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- if (!BN_mod_sub(X, order, X, order, ctx)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- BN_set_flags(X, BN_FLG_CONSTTIME);
- if (!BN_mod_exp_mont_consttime(k, k, X, order, ctx,
- group->mont_data)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- } else {
- if (!BN_mod_inverse(k, k, order, ctx)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- }
+ /* compute the inverse of k */
+ if (!EC_GROUP_do_inverse_ord(group, k, k, ctx)) {
+ ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
+ goto err;
}
/* clear old values if necessary */
goto err;
}
/* calculate tmp1 = inv(S) mod order */
- /* Check if optimized inverse is implemented */
- if (EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx) == 0) {
- if (!BN_mod_inverse(u2, sig->s, order, ctx)) {
- ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
- goto err;
- }
+ if (!EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx)) {
+ ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
+ goto err;
}
/* digest -> m */
i = BN_num_bits(order);