Allow EC_GROUP objects to share precomputation for improved memory
[openssl.git] / crypto / ec / ec_mult.c
index f14f8d88ed7faafe33c0a683faa3ca2ed0313d2c..c71a69ac0d45676304cb3b0b2ce0e4ee557c4a8e 100644 (file)
@@ -1,6 +1,9 @@
 /* crypto/ec/ec_mult.c */
+/*
+ * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
+ */
 /* ====================================================================
- * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
+ * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * Hudson (tjh@cryptsoft.com).
  *
  */
+/* ====================================================================
+ * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
+ * Portions of this software developed by SUN MICROSYSTEMS, INC.,
+ * and contributed to the OpenSSL project.
+ */
+
+#include <string.h>
 
 #include <openssl/err.h>
 
 #include "ec_lcl.h"
 
 
-/* TODO: optional precomputation of multiples of the generator */
-
-
-#if 1
 /*
- * wNAF-based interleaving multi-exponentation method
- * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>)
+ * This file implements the wNAF-based interleaving multi-exponentation method
+ * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
+ * for multiplication with precomputation, we use wNAF splitting
+ * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
  */
 
 
 
-/* Determine the width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
+
+/* structure for precomputed multiples of the generator */
+typedef struct ec_pre_comp_st {
+       const EC_GROUP *group; /* parent EC_GROUP object */
+       size_t blocksize;      /* block size for wNAF splitting */
+       size_t numblocks;      /* max. number of blocks for which we have precomputation */
+       size_t w;              /* window size */
+       EC_POINT **points;     /* array with pre-calculated multiples of generator:
+                               * 'num' pointers to EC_POINT objects followed by a NULL */
+       size_t num;            /* numblocks * 2^(w-1) */
+       int references;
+} EC_PRE_COMP;
+/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
+static void *ec_pre_comp_dup(void *);
+static void ec_pre_comp_free(void *);
+static void ec_pre_comp_clear_free(void *);
+
+static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
+       {
+       EC_PRE_COMP *ret = NULL;
+
+       if (!group)
+               return NULL;
+
+       ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
+       if (!ret)
+               return ret;
+       ret->group = group;
+       ret->blocksize = 8; /* default */
+       ret->numblocks = 0;
+       ret->w = 4; /* default */
+       ret->points = NULL;
+       ret->num = 0;
+       ret->references = 1;
+       return ret;
+       }
+
+static void *ec_pre_comp_dup(void *src_)
+       {
+       EC_PRE_COMP *src = src_;
+
+       /* no need to actually copy, these objects never change! */
+
+       CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
+
+       return src_;
+       }
+
+static void ec_pre_comp_free(void *pre_)
+       {
+       int i;
+       EC_PRE_COMP *pre = pre_;
+
+       if (!pre)
+               return;
+
+       i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
+       if (i > 0)
+               return;
+
+       if (pre->points)
+               {
+               EC_POINT **p;
+
+               for (p = pre->points; *p != NULL; p++)
+                       EC_POINT_free(*p);
+               OPENSSL_free(pre->points);
+               }
+       OPENSSL_free(pre);
+       }
+
+static void ec_pre_comp_clear_free(void *pre_)
+       {
+       int i;
+       EC_PRE_COMP *pre = pre_;
+
+       if (!pre)
+               return;
+
+       i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
+       if (i > 0)
+               return;
+
+       if (pre->points)
+               {
+               EC_POINT **p;
+
+               for (p = pre->points; *p != NULL; p++)
+                       EC_POINT_clear_free(*p);
+               OPENSSL_cleanse(pre->points, sizeof pre->points);
+               OPENSSL_free(pre->points);
+               }
+       OPENSSL_cleanse(pre, sizeof pre);
+       OPENSSL_free(pre);
+       }
+
+
+
+
+/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
  * This is an array  r[]  of values that are either zero or odd with an
  * absolute value less than  2^w  satisfying
  *     scalar = \sum_j r[j]*2^j
- * where at most one of any  w+1  consecutive digits is non-zero.
+ * where at most one of any  w+1  consecutive digits is non-zero
+ * with the exception that the most significant digit may be only
+ * w-1 zeros away from that next non-zero digit.
  */
-static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, BN_CTX *ctx)
+static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
        {
-       BIGNUM *c;
+       int window_val;
        int ok = 0;
        signed char *r = NULL;
        int sign = 1;
        int bit, next_bit, mask;
        size_t len = 0, j;
        
-       BN_CTX_start(ctx);
-       c = BN_CTX_get(ctx);
-       if (c == NULL) goto err;
-       
        if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
                {
                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
@@ -97,60 +203,86 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, B
        next_bit = bit << 1; /* at most 256 */
        mask = next_bit - 1; /* at most 255 */
 
-       if (!BN_copy(c, scalar)) goto err;
-       if (c->neg)
+       if (BN_get_sign(scalar))
                {
                sign = -1;
-               c->neg = 0;
                }
 
-       len = BN_num_bits(c) + 1; /* wNAF may be one digit longer than binary representation */
-       r = OPENSSL_malloc(len);
+       len = BN_num_bits(scalar);
+       r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
+                                     * (*ret_len will be set to the actual length, i.e. at most
+                                     * BN_num_bits(scalar) + 1) */
        if (r == NULL) goto err;
 
+       if (scalar->d == NULL || scalar->top == 0)
+               {
+               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+               goto err;
+               }
+       window_val = scalar->d[0] & mask;
        j = 0;
-       while (!BN_is_zero(c))
+       while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
                {
-               int u = 0;
+               int digit = 0;
 
-               if (BN_is_odd(c)) 
+               /* 0 <= window_val <= 2^(w+1) */
+
+               if (window_val & 1)
                        {
-                       if (c->d == NULL || c->top == 0)
+                       /* 0 < window_val < 2^(w+1) */
+
+                       if (window_val & bit)
                                {
-                               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
-                               goto err;
+                               digit = window_val - next_bit; /* -2^w < digit < 0 */
+
+#if 1 /* modified wNAF */
+                               if (j + w + 1 >= len)
+                                       {
+                                       /* special case for generating modified wNAFs:
+                                        * no new bits will be added into window_val,
+                                        * so using a positive digit here will decrease
+                                        * the total length of the representation */
+                                       
+                                       digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
+                                       }
+#endif
                                }
-                       u = c->d[0] & mask;
-                       if (u & bit)
+                       else
                                {
-                               u -= next_bit;
-                               /* u < 0 */
-                               if (!BN_add_word(c, -u)) goto err;
+                               digit = window_val; /* 0 < digit < 2^w */
                                }
-                       else
+                       
+                       if (digit <= -bit || digit >= bit || !(digit & 1))
                                {
-                               /* u > 0 */
-                               if (!BN_sub_word(c, u)) goto err;
+                               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+                               goto err;
                                }
 
-                       if (u <= -bit || u >= bit || !(u & 1) || c->neg)
+                       window_val -= digit;
+
+                       /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
+                        * for modified window NAFs, it may also be 2^w
+                        */
+                       if (window_val != 0 && window_val != next_bit && window_val != bit)
                                {
                                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
                                goto err;
                                }
                        }
 
-               r[j++] = sign * u;
-               
-               if (BN_is_odd(c))
+               r[j++] = sign * digit;
+
+               window_val >>= 1;
+               window_val += bit * BN_is_bit_set(scalar, j + w);
+
+               if (window_val > next_bit)
                        {
                        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
                        goto err;
                        }
-               if (!BN_rshift1(c, c)) goto err;
                }
 
-       if (j > len)
+       if (j > len + 1)
                {
                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
                goto err;
@@ -159,7 +291,6 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, B
        ok = 1;
 
  err:
-       BN_CTX_end(ctx);
        if (!ok)
                {
                OPENSSL_free(r);
@@ -189,13 +320,15 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, B
  *      scalar*generator
  * in the addition if scalar != NULL
  */
-int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
+int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
        {
        BN_CTX *new_ctx = NULL;
        EC_POINT *generator = NULL;
        EC_POINT *tmp = NULL;
        size_t totalnum;
+       size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
+       size_t pre_points_per_block = 0;
        size_t i, j;
        int k;
        int r_is_inverted = 0;
@@ -207,62 +340,235 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        size_t num_val;
        EC_POINT **val = NULL; /* precomputation */
        EC_POINT **v;
-       EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
+       EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
+       const EC_PRE_COMP *pre_comp = NULL;
+       int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
+                            * i.e. precomputation is not available */
        int ret = 0;
        
-       if (scalar != NULL)
+       if (group->meth != r->meth)
                {
-               generator = EC_GROUP_get0_generator(group);
-               if (generator == NULL)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
-                       return 0;
-                       }
+               ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
+               return 0;
                }
-       
+
+       if ((scalar == NULL) && (num == 0))
+               {
+               return EC_POINT_set_to_infinity(group, r);
+               }
+
        for (i = 0; i < num; i++)
                {
                if (group->meth != points[i]->meth)
                        {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
+                       ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
                        return 0;
                        }
                }
 
-       totalnum = num + (scalar != NULL);
+       if (ctx == NULL)
+               {
+               ctx = new_ctx = BN_CTX_new();
+               if (ctx == NULL)
+                       goto err;
+               }
 
-       wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
-       wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
-       wNAF = OPENSSL_malloc(totalnum * sizeof wNAF[0] + 1);
-       if (wNAF != NULL)
+       if (scalar != NULL)
                {
-               wNAF[0] = NULL; /* preliminary pivot */
+               generator = EC_GROUP_get0_generator(group);
+               if (generator == NULL)
+                       {
+                       ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
+                       goto err;
+                       }
+               
+               /* look if we can use precomputed multiples of generator */
+
+               pre_comp = EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
+
+               if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
+                       {
+                       blocksize = pre_comp->blocksize;
+
+                       /* determine maximum number of blocks that wNAF splitting may yield
+                        * (NB: maximum wNAF length is bit length plus one) */
+                       numblocks = (BN_num_bits(scalar) / blocksize) + 1;
+
+                       /* we cannot use more blocks than we have precomputation for */
+                       if (numblocks > pre_comp->numblocks)
+                               numblocks = pre_comp->numblocks;
+
+                       pre_points_per_block = 1u << (pre_comp->w - 1);
+
+                       /* check that pre_comp looks sane */
+                       if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
+                               {
+                               ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                               goto err;
+                               }
+                       }
+               else
+                       {
+                       /* can't use precomputation */
+                       pre_comp = NULL;
+                       numblocks = 1;
+                       num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
+                       }
                }
-       if (wsize == NULL || wNAF_len == NULL || wNAF == NULL) goto err;
+       
+       totalnum = num + numblocks;
+
+       wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
+       wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
+       wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
+       val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
+                
+       if (!wsize || !wNAF_len || !wNAF || !val_sub)
+               goto err;
+
+       wNAF[0] = NULL; /* preliminary pivot */
 
-       /* num_val := total number of points to precompute */
+       /* num_val will be the total number of temporarily precomputed points */
        num_val = 0;
-       for (i = 0; i < totalnum; i++)
+
+       for (i = 0; i < num + num_scalar; i++)
                {
                size_t bits;
 
                bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
                wsize[i] = EC_window_bits_for_scalar_size(bits);
                num_val += 1u << (wsize[i] - 1);
+               wNAF[i + 1] = NULL; /* make sure we always have a pivot */
+               wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
+               if (wNAF[i] == NULL)
+                       goto err;
+               if (wNAF_len[i] > max_len)
+                       max_len = wNAF_len[i];
+               }
+
+       if (numblocks)
+               {
+               /* we go here iff scalar != NULL */
+               
+               if (pre_comp == NULL)
+                       {
+                       if (num_scalar != 1)
+                               {
+                               ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                               goto err;
+                               }
+                       /* we have already generated a wNAF for 'scalar' */
+                       }
+               else
+                       {
+                       signed char *tmp_wNAF = NULL;
+                       size_t tmp_len = 0;
+                       
+                       if (num_scalar != 0)
+                               {
+                               ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                               goto err;
+                               }
+
+                       /* use the window size for which we have precomputation */
+                       wsize[num] = pre_comp->w;
+                       tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
+                       if (!tmp_wNAF)
+                               goto err;
+
+                       if (tmp_len <= max_len)
+                               {
+                               /* One of the other wNAFs is at least as long
+                                * as the wNAF belonging to the generator,
+                                * so wNAF splitting will not buy us anything. */
+
+                               numblocks = 1;
+                               totalnum = num + 1; /* don't use wNAF splitting */
+                               wNAF[num] = tmp_wNAF;
+                               wNAF[num + 1] = NULL;
+                               wNAF_len[num] = tmp_len;
+                               if (tmp_len > max_len)
+                                       max_len = tmp_len;
+                               /* pre_comp->points starts with the points that we need here: */
+                               val_sub[num] = pre_comp->points;
+                               }
+                       else
+                               {
+                               /* don't include tmp_wNAF directly into wNAF array
+                                * - use wNAF splitting and include the blocks */
+
+                               signed char *pp;
+                               EC_POINT **tmp_points;
+                               
+                               if (tmp_len < numblocks * blocksize)
+                                       {
+                                       /* possibly we can do with fewer blocks than estimated */
+                                       numblocks = (tmp_len + blocksize - 1) / blocksize;
+                                       if (numblocks > pre_comp->numblocks)
+                                               {
+                                               ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                                               goto err;
+                                               }
+                                       totalnum = num + numblocks;
+                                       }
+                               
+                               /* split wNAF in 'numblocks' parts */
+                               pp = tmp_wNAF;
+                               tmp_points = pre_comp->points;
+
+                               for (i = num; i < totalnum; i++)
+                                       {
+                                       if (i < totalnum - 1)
+                                               {
+                                               wNAF_len[i] = blocksize;
+                                               if (tmp_len < blocksize)
+                                                       {
+                                                       ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                                                       goto err;
+                                                       }
+                                               tmp_len -= blocksize;
+                                               }
+                                       else
+                                               /* last block gets whatever is left
+                                                * (this could be more or less than 'blocksize'!) */
+                                               wNAF_len[i] = tmp_len;
+                                       
+                                       wNAF[i + 1] = NULL;
+                                       wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
+                                       if (wNAF[i] == NULL)
+                                               {
+                                               OPENSSL_free(tmp_wNAF);
+                                               goto err;
+                                               }
+                                       memcpy(wNAF[i], pp, wNAF_len[i]);
+                                       if (wNAF_len[i] > max_len)
+                                               max_len = wNAF_len[i];
+
+                                       if (*tmp_points == NULL)
+                                               {
+                                               ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                                               OPENSSL_free(tmp_wNAF);
+                                               goto err;
+                                               }
+                                       val_sub[i] = tmp_points;
+                                       tmp_points += pre_points_per_block;
+                                       pp += blocksize;
+                                       }
+                               OPENSSL_free(tmp_wNAF);
+                               }
+                       }
                }
 
-       /* all precomputed points go into a single array 'val',
-        * 'val_sub[i]' is a pointer to the subarray for the i-th point */
+       /* All points we precompute now go into a single array 'val'.
+        * 'val_sub[i]' is a pointer to the subarray for the i-th point,
+        * or to a subarray of 'pre_comp->points' if we already have precomputation. */
        val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
        if (val == NULL) goto err;
        val[num_val] = NULL; /* pivot element */
 
-       val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
-       if (val_sub == NULL) goto err;
-
        /* allocate points for precomputation */
        v = val;
-       for (i = 0; i < totalnum; i++)
+       for (i = 0; i < num + num_scalar; i++)
                {
                val_sub[i] = v;
                for (j = 0; j < (1u << (wsize[i] - 1)); j++)
@@ -274,19 +580,12 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                }
        if (!(v == val + num_val))
                {
-               ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
+               ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
                }
 
-       if (ctx == NULL)
-               {
-               ctx = new_ctx = BN_CTX_new();
-               if (ctx == NULL)
-                       goto err;
-               }
-       
-       tmp = EC_POINT_new(group);
-       if (tmp == NULL) goto err;
+       if (!(tmp = EC_POINT_new(group)))
+               goto err;
 
        /* prepare precomputed values:
         *    val_sub[i][0] :=     points[i]
@@ -294,7 +593,7 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
         *    val_sub[i][2] := 5 * points[i]
         *    ...
         */
-       for (i = 0; i < totalnum; i++)
+       for (i = 0; i < num + num_scalar; i++)
                {
                if (i < num)
                        {
@@ -313,16 +612,11 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                                if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
                                }
                        }
-
-               wNAF[i + 1] = NULL; /* make sure we always have a pivot */
-               wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i], ctx);
-               if (wNAF[i] == NULL) goto err;
-               if (wNAF_len[i] > max_len)
-                       max_len = wNAF_len[i];
                }
 
 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
-       if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
+       if (!EC_POINTs_make_affine(group, num_val, val, ctx))
+               goto err;
 #endif
 
        r_is_at_infinity = 1;
@@ -417,180 +711,47 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        return ret;
        }
 
-#else
 
-/*
- * Basic interleaving multi-exponentation method
- */
-
-
-
-#define EC_window_bits_for_scalar_size(b) \
-               ((b) >= 2000 ? 6 : \
-                (b) >=  800 ? 5 : \
-                (b) >=  300 ? 4 : \
-                (b) >=   70 ? 3 : \
-                (b) >=   20 ? 2 : \
-                 1)
-/* For window size 'w' (w >= 2), we compute the odd multiples
- *      1*P .. (2^w-1)*P.
- * This accounts for  2^(w-1)  point additions (neglecting constants),
- * each of which requires 16 field multiplications (4 squarings
- * and 12 general multiplications) in the case of curves defined
- * over GF(p), which are the only curves we have so far.
- *
- * Converting these precomputed points into affine form takes
- * three field multiplications for inverting Z and one squaring
- * and three multiplications for adjusting X and Y, i.e.
- * 7 multiplications in total (1 squaring and 6 general multiplications),
- * again except for constants.
- *
- * The average number of windows for a 'b' bit scalar is roughly
- *          b/(w+1).
- * Each of these windows (except possibly for the first one, but
- * we are ignoring constants anyway) requires one point addition.
- * As the precomputed table stores points in affine form, these
- * additions take only 11 field multiplications each (3 squarings
- * and 8 general multiplications).
- *
- * So the total workload, except for constants, is
- *
- *        2^(w-1)*[5 squarings + 18 multiplications]
- *      + (b/(w+1))*[3 squarings + 8 multiplications]
- *
- * If we assume that 10 squarings are as costly as 9 multiplications,
- * our task is to find the 'w' that, given 'b', minimizes
- *
- *        2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
- *      = 2^(w-1)*225 +           (b/(w+1))*107.
- *
- * Thus optimal window sizes should be roughly as follows:
- *
- *    w >= 6  if         b >= 1414
- *     w = 5  if 1413 >= b >=  505
- *     w = 4  if  504 >= b >=  169
- *     w = 3  if  168 >= b >=   51
- *     w = 2  if   50 >= b >=   13
- *     w = 1  if   12 >= b
- *
- * If we assume instead that squarings are exactly as costly as
- * multiplications, we have to minimize
- *      2^(w-1)*23 + (b/(w+1))*11.
- *
- * This gives us the following (nearly unchanged) table of optimal
- * windows sizes:
- *
- *    w >= 6  if         b >= 1406
- *     w = 5  if 1405 >= b >=  502
- *     w = 4  if  501 >= b >=  168
- *     w = 3  if  167 >= b >=   51
- *     w = 2  if   50 >= b >=   13
- *     w = 1  if   12 >= b
- *
- * Note that neither table tries to take into account memory usage
- * (allocation overhead, code locality etc.).  Actual timings with
- * NIST curves P-192, P-224, and P-256 with scalars of 192, 224,
- * and 256 bits, respectively, show that  w = 3  (instead of 4) is
- * preferrable; timings with NIST curve P-384 and 384-bit scalars
- * confirm that  w = 4  is optimal for this case; and timings with
- * NIST curve P-521 and 521-bit scalars show that  w = 4  (instead
- * of 5) is preferrable.  So we generously round up all the
- * boundaries and use the following table:
- *
- *    w >= 6  if         b >= 2000
- *     w = 5  if 1999 >= b >=  800
- *     w = 4  if  799 >= b >=  300
- *     w = 3  if  299 >= b >=   70
- *     w = 2  if   69 >= b >=   20
- *     w = 1  if   19 >= b
+/* ec_wNAF_precompute_mult()
+ * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
+ * for use with wNAF splitting as implemented in ec_wNAF_mul().
+ * 
+ * 'pre_comp->points' is an array of multiples of the generator
+ * of the following form:
+ * points[0] =     generator;
+ * points[1] = 3 * generator;
+ * ...
+ * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
+ * points[2^(w-1)]   =     2^blocksize * generator;
+ * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
+ * ...
+ * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
+ * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
+ * ...
+ * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
+ * points[2^(w-1)*numblocks]       = NULL
  */
-
-int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
-       size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
+int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
        {
+       const EC_POINT *generator;
+       EC_POINT *tmp_point = NULL, *base = NULL, **var;
        BN_CTX *new_ctx = NULL;
-       EC_POINT *generator = NULL;
-       EC_POINT *tmp = NULL;
-       size_t totalnum;
-       size_t i, j;
-       int k, t;
-       int r_is_at_infinity = 1;
-       size_t max_bits = 0;
-       size_t *wsize = NULL; /* individual window sizes */
-       unsigned long *wbits = NULL; /* individual window contents */
-       int *wpos = NULL; /* position of bottom bit of current individual windows
-                          * (wpos[i] is valid if wbits[i] != 0) */
-       size_t num_val;
-       EC_POINT **val = NULL; /* precomputation */
-       EC_POINT **v;
-       EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
+       BIGNUM *order;
+       size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
+       EC_POINT **points = NULL;
+       EC_PRE_COMP *pre_comp;
        int ret = 0;
-       
-       if (scalar != NULL)
-               {
-               generator = EC_GROUP_get0_generator(group);
-               if (generator == NULL)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
-                       return 0;
-                       }
-               }
-       
-       for (i = 0; i < num; i++)
-               {
-               if (group->meth != points[i]->meth)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
-                       return 0;
-                       }
-               }
-
-       totalnum = num + (scalar != NULL);
-
-       wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
-       wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]);
-       wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]);
-       if (wsize == NULL || wbits == NULL || wpos == NULL) goto err;
-
-       /* num_val := total number of points to precompute */
-       num_val = 0;
-       for (i = 0; i < totalnum; i++)
-               {
-               size_t bits;
-
-               bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
-               wsize[i] = EC_window_bits_for_scalar_size(bits);
-               num_val += 1u << (wsize[i] - 1);
-               if (bits > max_bits)
-                       max_bits = bits;
-               wbits[i] = 0;
-               wpos[i] = 0;
-               }
 
-       /* all precomputed points go into a single array 'val',
-        * 'val_sub[i]' is a pointer to the subarray for the i-th point */
-       val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
-       if (val == NULL) goto err;
-       val[num_val] = NULL; /* pivot element */
+       /* if there is an old EC_PRE_COMP object, throw it away */
+       EC_GROUP_free_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
 
-       val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
-       if (val_sub == NULL) goto err;
+       if ((pre_comp = ec_pre_comp_new(group)) == NULL)
+               return 0;
 
-       /* allocate points for precomputation */
-       v = val;
-       for (i = 0; i < totalnum; i++)
-               {
-               val_sub[i] = v;
-               for (j = 0; j < (1u << (wsize[i] - 1)); j++)
-                       {
-                       *v = EC_POINT_new(group);
-                       if (*v == NULL) goto err;
-                       v++;
-                       }
-               }
-       if (!(v == val + num_val))
+       generator = EC_GROUP_get0_generator(group);
+       if (generator == NULL)
                {
-               ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
+               ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
                goto err;
                }
 
@@ -601,182 +762,147 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                        goto err;
                }
        
-       tmp = EC_POINT_new(group);
-       if (tmp == NULL) goto err;
+       BN_CTX_start(ctx);
+       order = BN_CTX_get(ctx);
+       if (order == NULL) goto err;
+       
+       if (!EC_GROUP_get_order(group, order, ctx)) goto err;           
+       if (BN_is_zero(order))
+               {
+               ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
+               goto err;
+               }
 
-       /* prepare precomputed values:
-        *    val_sub[i][0] :=     points[i]
-        *    val_sub[i][1] := 3 * points[i]
-        *    val_sub[i][2] := 5 * points[i]
-        *    ...
+       bits = BN_num_bits(order);
+       /* The following parameters mean we precompute (approximately)
+        * one point per bit.
+        *
+        * TBD: The combination  8, 4  is perfect for 160 bits; for other
+        * bit lengths, other parameter combinations might provide better
+        * efficiency.
         */
-       for (i = 0; i < totalnum; i++)
+       blocksize = 8;
+       w = 4;
+       if (EC_window_bits_for_scalar_size(bits) > w)
                {
-               if (i < num)
-                       {
-                       if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
-                       if (scalars[i]->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
-                       }
-               else
-                       {
-                       if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
-                       if (scalar->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
-                       }
+               /* let's not make the window too small ... */
+               w = EC_window_bits_for_scalar_size(bits);
+               }
 
-               if (wsize[i] > 1)
+       numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
+       
+       pre_points_per_block = 1u << (w - 1);
+       num = pre_points_per_block * numblocks; /* number of points to compute and store */
+
+       points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
+       if (!points)
+               {
+               ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
+               goto err;
+               }
+
+       var = points;
+       var[num] = NULL; /* pivot */
+       for (i = 0; i < num; i++)
+               {
+               if ((var[i] = EC_POINT_new(group)) == NULL)
                        {
-                       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
-                       for (j = 1; j < (1u << (wsize[i] - 1)); j++)
-                               {
-                               if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
-                               }
+                       ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
+                       goto err;
                        }
                }
 
-#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
-       if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
-#endif
+       if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
+               {
+               ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
+               goto err;
+               }       
+       
+       if (!EC_POINT_copy(base, generator))
+               goto err;
+       
+       /* do the precomputation */
+       for (i = 0; i < numblocks; i++)
+               {
+               size_t j;
 
-       r_is_at_infinity = 1;
+               if (!EC_POINT_dbl(group, tmp_point, base, ctx))
+                       goto err;
 
-       for (k = max_bits - 1; k >= 0; k--)
-               {
-               if (!r_is_at_infinity)
+               if (!EC_POINT_copy(*var++, base))
+                       goto err;
+
+               for (j = 1; j < pre_points_per_block; j++, var++)
                        {
-                       if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
+                       /* calculate odd multiples of the current base point */
+                       if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
+                               goto err;
                        }
-               
-               for (i = 0; i < totalnum; i++)
+
+               if (i < numblocks - 1)
                        {
-                       if (wbits[i] == 0)
-                               {
-                               const BIGNUM *s;
+                       /* get the next base (multiply current one by 2^blocksize) */
+                       size_t k;
 
-                               s = i < num ? scalars[i] : scalar;
+                       if (blocksize <= 2)
+                               {
+                               ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
+                               goto err;
+                               }                               
 
-                               if (BN_is_bit_set(s, k))
-                                       {
-                                       /* look at bits  k - wsize[i] + 1 .. k  for this window */
-                                       t = k - wsize[i] + 1;
-                                       while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */
-                                               t++;
-                                       wpos[i] = t;
-                                       wbits[i] = 1;
-                                       for (t = k - 1; t >= wpos[i]; t--)
-                                               {
-                                               wbits[i] <<= 1;
-                                               if (BN_is_bit_set(s, t))
-                                                       wbits[i]++;
-                                               }
-                                       /* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */
-                                       }
-                               }
-                       
-                       if ((wbits[i] != 0) && (wpos[i] == k))
+                       if (!EC_POINT_dbl(group, base, tmp_point, ctx))
+                               goto err;
+                       for (k = 2; k < blocksize; k++)
                                {
-                               if (r_is_at_infinity)
-                                       {
-                                       if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err;
-                                       r_is_at_infinity = 0;
-                                       }
-                               else
-                                       {
-                                       if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err;
-                                       }
-                               wbits[i] = 0;
+                               if (!EC_POINT_dbl(group,base,base,ctx))
+                                       goto err;
                                }
                        }
-               }
+               }
 
-       if (r_is_at_infinity)
-               if (!EC_POINT_set_to_infinity(group, r)) goto err;
+       if (!EC_POINTs_make_affine(group, num, points, ctx))
+               goto err;
        
-       ret = 1;
+       pre_comp->group = group;
+       pre_comp->blocksize = blocksize;
+       pre_comp->numblocks = numblocks;
+       pre_comp->w = w;
+       pre_comp->points = points;
+       points = NULL;
+       pre_comp->num = num;
+
+       if (!EC_GROUP_set_extra_data(group, pre_comp,
+               ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
+               goto err;
+       pre_comp = NULL;
 
+       ret = 1;
  err:
+       BN_CTX_end(ctx);
        if (new_ctx != NULL)
                BN_CTX_free(new_ctx);
-       if (tmp != NULL)
-               EC_POINT_free(tmp);
-       if (wsize != NULL)
-               OPENSSL_free(wsize);
-       if (wbits != NULL)
-               OPENSSL_free(wbits);
-       if (wpos != NULL)
-               OPENSSL_free(wpos);
-       if (val != NULL)
+       if (pre_comp)
+               ec_pre_comp_free(pre_comp);
+       if (points)
                {
-               for (v = val; *v != NULL; v++)
-                       EC_POINT_clear_free(*v);
+               EC_POINT **p;
 
-               OPENSSL_free(val);
-               }
-       if (val_sub != NULL)
-               {
-               OPENSSL_free(val_sub);
+               for (p = points; *p != NULL; p++)
+                       EC_POINT_free(*p);
+               OPENSSL_free(points);
                }
+       if (tmp_point)
+               EC_POINT_free(tmp_point);
+       if (base)
+               EC_POINT_free(base);
        return ret;
        }
-#endif
-
-
-int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
-       {
-       const EC_POINT *points[1];
-       const BIGNUM *scalars[1];
-
-       points[0] = point;
-       scalars[0] = p_scalar;
-
-       return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx);
-       }
 
 
-int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
+int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
        {
-       const EC_POINT *generator;
-       BN_CTX *new_ctx = NULL;
-       BIGNUM *order;
-       int ret = 0;
-
-       generator = EC_GROUP_get0_generator(group);
-       if (generator == NULL)
-               {
-               ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
+       if (EC_GROUP_get_extra_data(group, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
+               return 1;
+       else
                return 0;
-               }
-
-       if (ctx == NULL)
-               {
-               ctx = new_ctx = BN_CTX_new();
-               if (ctx == NULL)
-                       return 0;
-               }
-       
-       BN_CTX_start(ctx);
-       order = BN_CTX_get(ctx);
-       if (order == NULL) goto err;
-       
-       if (!EC_GROUP_get_order(group, order, ctx)) return 0;
-       if (BN_is_zero(order))
-               {
-               ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
-               goto err;
-               }
-
-       /* TODO */
-
-       ret = 1;
-       
- err:
-       BN_CTX_end(ctx);
-       if (new_ctx != NULL)
-               BN_CTX_free(new_ctx);
-       return ret;
        }