deprecate EC_POINT_make_affine and EC_POINTs_make_affine
[openssl.git] / crypto / ec / ec_mult.c
index 19d2336784fab5f55215b0dd49dc25d1f1b655da..aea2afd5804d5f08e3277a9ab94a974ece04efd7 100644 (file)
-/* crypto/ec/ec_mult.c */
-/* ====================================================================
- * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
+/*
+ * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer. 
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in
- *    the documentation and/or other materials provided with the
- *    distribution.
+ * Licensed under the Apache License 2.0 (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+/*
+ * ECDSA low level APIs are deprecated for public use, but still ok for
+ * internal use.
+ */
+#include "internal/deprecated.h"
+
+#include <string.h>
+#include <openssl/err.h>
+
+#include "internal/cryptlib.h"
+#include "crypto/bn.h"
+#include "ec_local.h"
+#include "internal/refcount.h"
+
+/*
+ * This file implements the wNAF-based interleaving multi-exponentiation method
+ * Formerly at:
+ *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
+ * You might now find it here:
+ *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
+ *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
+ * For multiplication with precomputation, we use wNAF splitting, formerly at:
+ *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
+ */
+
+/* structure for precomputed multiples of the generator */
+struct ec_pre_comp_st {
+    const EC_GROUP *group;      /* parent EC_GROUP object */
+    size_t blocksize;           /* block size for wNAF splitting */
+    size_t numblocks;           /* max. number of blocks for which we have
+                                 * precomputation */
+    size_t w;                   /* window size */
+    EC_POINT **points;          /* array with pre-calculated multiples of
+                                 * generator: 'num' pointers to EC_POINT
+                                 * objects followed by a NULL */
+    size_t num;                 /* numblocks * 2^(w-1) */
+    CRYPTO_REF_COUNT references;
+    CRYPTO_RWLOCK *lock;
+};
+
+static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
+{
+    EC_PRE_COMP *ret = NULL;
+
+    if (!group)
+        return NULL;
+
+    ret = OPENSSL_zalloc(sizeof(*ret));
+    if (ret == NULL) {
+        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
+        return ret;
+    }
+
+    ret->group = group;
+    ret->blocksize = 8;         /* default */
+    ret->w = 4;                 /* default */
+    ret->references = 1;
+
+    ret->lock = CRYPTO_THREAD_lock_new();
+    if (ret->lock == NULL) {
+        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
+        OPENSSL_free(ret);
+        return NULL;
+    }
+    return ret;
+}
+
+EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
+{
+    int i;
+    if (pre != NULL)
+        CRYPTO_UP_REF(&pre->references, &i, pre->lock);
+    return pre;
+}
+
+void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
+{
+    int i;
+
+    if (pre == NULL)
+        return;
+
+    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
+    REF_PRINT_COUNT("EC_ec", pre);
+    if (i > 0)
+        return;
+    REF_ASSERT_ISNT(i < 0);
+
+    if (pre->points != NULL) {
+        EC_POINT **pts;
+
+        for (pts = pre->points; *pts != NULL; pts++)
+            EC_POINT_free(*pts);
+        OPENSSL_free(pre->points);
+    }
+    CRYPTO_THREAD_lock_free(pre->lock);
+    OPENSSL_free(pre);
+}
+
+#define EC_POINT_BN_set_flags(P, flags) do { \
+    BN_set_flags((P)->X, (flags)); \
+    BN_set_flags((P)->Y, (flags)); \
+    BN_set_flags((P)->Z, (flags)); \
+} while(0)
+
+/*-
+ * This functions computes a single point multiplication over the EC group,
+ * using, at a high level, a Montgomery ladder with conditional swaps, with
+ * various timing attack defenses.
  *
- * 3. All advertising materials mentioning features or use of this
- *    software must display the following acknowledgment:
- *    "This product includes software developed by the OpenSSL Project
- *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
+ * It performs either a fixed point multiplication
+ *          (scalar * generator)
+ * when point is NULL, or a variable point multiplication
+ *          (scalar * point)
+ * when point is not NULL.
  *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- *    endorse or promote products derived from this software without
- *    prior written permission. For written permission, please contact
- *    openssl-core@openssl.org.
+ * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
+ * constant time bets are off (where n is the cardinality of the EC group).
  *
- * 5. Products derived from this software may not be called "OpenSSL"
- *    nor may "OpenSSL" appear in their names without prior written
- *    permission of the OpenSSL Project.
+ * This function expects `group->order` and `group->cardinality` to be well
+ * defined and non-zero: it fails with an error code otherwise.
  *
- * 6. Redistributions of any form whatsoever must retain the following
- *    acknowledgment:
- *    "This product includes software developed by the OpenSSL Project
- *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
+ * NB: This says nothing about the constant-timeness of the ladder step
+ * implementation (i.e., the default implementation is based on EC_POINT_add and
+ * EC_POINT_dbl, which of course are not constant time themselves) or the
+ * underlying multiprecision arithmetic.
  *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
+ * The product is stored in `r`.
  *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com).  This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
+ * This is an internal function: callers are in charge of ensuring that the
+ * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
  *
+ * Returns 1 on success, 0 otherwise.
  */
+int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
+                         const BIGNUM *scalar, const EC_POINT *point,
+                         BN_CTX *ctx)
+{
+    int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
+    EC_POINT *p = NULL;
+    EC_POINT *s = NULL;
+    BIGNUM *k = NULL;
+    BIGNUM *lambda = NULL;
+    BIGNUM *cardinality = NULL;
+    int ret = 0;
+
+    /* early exit if the input point is the point at infinity */
+    if (point != NULL && EC_POINT_is_at_infinity(group, point))
+        return EC_POINT_set_to_infinity(group, r);
+
+    if (BN_is_zero(group->order)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
+        return 0;
+    }
+    if (BN_is_zero(group->cofactor)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
+        return 0;
+    }
+
+    BN_CTX_start(ctx);
+
+    if (((p = EC_POINT_new(group)) == NULL)
+        || ((s = EC_POINT_new(group)) == NULL)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
+        goto err;
+    }
+
+    if (point == NULL) {
+        if (!EC_POINT_copy(p, group->generator)) {
+            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
+            goto err;
+        }
+    } else {
+        if (!EC_POINT_copy(p, point)) {
+            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
+            goto err;
+        }
+    }
+
+    EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
+    EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
+    EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
+
+    cardinality = BN_CTX_get(ctx);
+    lambda = BN_CTX_get(ctx);
+    k = BN_CTX_get(ctx);
+    if (k == NULL) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
+        goto err;
+    }
+
+    if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+        goto err;
+    }
+
+    /*
+     * Group cardinalities are often on a word boundary.
+     * So when we pad the scalar, some timing diff might
+     * pop if it needs to be expanded due to carries.
+     * So expand ahead of time.
+     */
+    cardinality_bits = BN_num_bits(cardinality);
+    group_top = bn_get_top(cardinality);
+    if ((bn_wexpand(k, group_top + 2) == NULL)
+        || (bn_wexpand(lambda, group_top + 2) == NULL)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+        goto err;
+    }
+
+    if (!BN_copy(k, scalar)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+        goto err;
+    }
+
+    BN_set_flags(k, BN_FLG_CONSTTIME);
+
+    if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
+        /*-
+         * this is an unusual input, and we don't guarantee
+         * constant-timeness
+         */
+        if (!BN_nnmod(k, k, cardinality, ctx)) {
+            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+            goto err;
+        }
+    }
+
+    if (!BN_add(lambda, k, cardinality)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+        goto err;
+    }
+    BN_set_flags(lambda, BN_FLG_CONSTTIME);
+    if (!BN_add(k, lambda, cardinality)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+        goto err;
+    }
+    /*
+     * lambda := scalar + cardinality
+     * k := scalar + 2*cardinality
+     */
+    kbit = BN_is_bit_set(lambda, cardinality_bits);
+    BN_consttime_swap(kbit, k, lambda, group_top + 2);
+
+    group_top = bn_get_top(group->field);
+    if ((bn_wexpand(s->X, group_top) == NULL)
+        || (bn_wexpand(s->Y, group_top) == NULL)
+        || (bn_wexpand(s->Z, group_top) == NULL)
+        || (bn_wexpand(r->X, group_top) == NULL)
+        || (bn_wexpand(r->Y, group_top) == NULL)
+        || (bn_wexpand(r->Z, group_top) == NULL)
+        || (bn_wexpand(p->X, group_top) == NULL)
+        || (bn_wexpand(p->Y, group_top) == NULL)
+        || (bn_wexpand(p->Z, group_top) == NULL)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
+        goto err;
+    }
+
+    /* ensure input point is in affine coords for ladder step efficiency */
+    if (!p->Z_is_one && (group->meth->make_affine == NULL
+                         || !group->meth->make_affine(group, p, ctx))) {
+            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
+            goto err;
+    }
+
+    /* Initialize the Montgomery ladder */
+    if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
+        goto err;
+    }
+
+    /* top bit is a 1, in a fixed pos */
+    pbit = 1;
+
+#define EC_POINT_CSWAP(c, a, b, w, t) do {         \
+        BN_consttime_swap(c, (a)->X, (b)->X, w);   \
+        BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
+        BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
+        t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
+        (a)->Z_is_one ^= (t);                      \
+        (b)->Z_is_one ^= (t);                      \
+} while(0)
+
+    /*-
+     * The ladder step, with branches, is
+     *
+     * k[i] == 0: S = add(R, S), R = dbl(R)
+     * k[i] == 1: R = add(S, R), S = dbl(S)
+     *
+     * Swapping R, S conditionally on k[i] leaves you with state
+     *
+     * k[i] == 0: T, U = R, S
+     * k[i] == 1: T, U = S, R
+     *
+     * Then perform the ECC ops.
+     *
+     * U = add(T, U)
+     * T = dbl(T)
+     *
+     * Which leaves you with state
+     *
+     * k[i] == 0: U = add(R, S), T = dbl(R)
+     * k[i] == 1: U = add(S, R), T = dbl(S)
+     *
+     * Swapping T, U conditionally on k[i] leaves you with state
+     *
+     * k[i] == 0: R, S = T, U
+     * k[i] == 1: R, S = U, T
+     *
+     * Which leaves you with state
+     *
+     * k[i] == 0: S = add(R, S), R = dbl(R)
+     * k[i] == 1: R = add(S, R), S = dbl(S)
+     *
+     * So we get the same logic, but instead of a branch it's a
+     * conditional swap, followed by ECC ops, then another conditional swap.
+     *
+     * Optimization: The end of iteration i and start of i-1 looks like
+     *
+     * ...
+     * CSWAP(k[i], R, S)
+     * ECC
+     * CSWAP(k[i], R, S)
+     * (next iteration)
+     * CSWAP(k[i-1], R, S)
+     * ECC
+     * CSWAP(k[i-1], R, S)
+     * ...
+     *
+     * So instead of two contiguous swaps, you can merge the condition
+     * bits and do a single swap.
+     *
+     * k[i]   k[i-1]    Outcome
+     * 0      0         No Swap
+     * 0      1         Swap
+     * 1      0         Swap
+     * 1      1         No Swap
+     *
+     * This is XOR. pbit tracks the previous bit of k.
+     */
+
+    for (i = cardinality_bits - 1; i >= 0; i--) {
+        kbit = BN_is_bit_set(k, i) ^ pbit;
+        EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
+
+        /* Perform a single step of the Montgomery ladder */
+        if (!ec_point_ladder_step(group, r, s, p, ctx)) {
+            ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
+            goto err;
+        }
+        /*
+         * pbit logic merges this cswap with that of the
+         * next iteration
+         */
+        pbit ^= kbit;
+    }
+    /* one final cswap to move the right value into r */
+    EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
+#undef EC_POINT_CSWAP
+
+    /* Finalize ladder (and recover full point coordinates) */
+    if (!ec_point_ladder_post(group, r, s, p, ctx)) {
+        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
+        goto err;
+    }
+
+    ret = 1;
 
-#include <openssl/err.h>
-
-#include "ec_lcl.h"
-
-
-/* TODO: width-m NAFs */
+ err:
+    EC_POINT_free(p);
+    EC_POINT_clear_free(s);
+    BN_CTX_end(ctx);
 
-/* TODO: optional Lim-Lee precomputation for the generator */
+    return ret;
+}
 
+#undef EC_POINT_BN_set_flags
 
-/* this is just BN_window_bits_for_exponent_size from bn_lcl.h for now;
- * the table should be updated for EC */ /* TODO */
+/*
+ * TODO: table should be optimised for the wNAF-based implementation,
+ * sometimes smaller windows will give better performance (thus the
+ * boundaries should be increased)
+ */
 #define EC_window_bits_for_scalar_size(b) \
-               ((b) > 671 ? 6 : \
-                (b) > 239 ? 5 : \
-                (b) >  79 ? 4 : \
-                (b) >  23 ? 3 : 1)
-
-/* Compute
- *      \sum scalars[i]*points[i]
- * where
+                ((size_t) \
+                 ((b) >= 2000 ? 6 : \
+                  (b) >=  800 ? 5 : \
+                  (b) >=  300 ? 4 : \
+                  (b) >=   70 ? 3 : \
+                  (b) >=   20 ? 2 : \
+                  1))
+
+/*-
+ * Compute
+ *      \sum scalars[i]*points[i],
+ * also including
  *      scalar*generator
- * is included in the addition if scalar != NULL
+ * in the addition if scalar != NULL
+ */
+int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
+                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
+                BN_CTX *ctx)
+{
+    const EC_POINT *generator = NULL;
+    EC_POINT *tmp = NULL;
+    size_t totalnum;
+    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
+    size_t pre_points_per_block = 0;
+    size_t i, j;
+    int k;
+    int r_is_inverted = 0;
+    int r_is_at_infinity = 1;
+    size_t *wsize = NULL;       /* individual window sizes */
+    signed char **wNAF = NULL;  /* individual wNAFs */
+    size_t *wNAF_len = NULL;
+    size_t max_len = 0;
+    size_t num_val;
+    EC_POINT **val = NULL;      /* precomputation */
+    EC_POINT **v;
+    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
+                                 * 'pre_comp->points' */
+    const EC_PRE_COMP *pre_comp = NULL;
+    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
+                                 * treated like other scalars, i.e.
+                                 * precomputation is not available */
+    int ret = 0;
+
+    if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
+        /*-
+         * Handle the common cases where the scalar is secret, enforcing a
+         * scalar multiplication implementation based on a Montgomery ladder,
+         * with various timing attack defenses.
+         */
+        if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
+            /*-
+             * In this case we want to compute scalar * GeneratorPoint: this
+             * codepath is reached most prominently by (ephemeral) key
+             * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
+             * ECDH keygen/first half), where the scalar is always secret. This
+             * is why we ignore if BN_FLG_CONSTTIME is actually set and we
+             * always call the ladder version.
+             */
+            return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
+        }
+        if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
+            /*-
+             * In this case we want to compute scalar * VariablePoint: this
+             * codepath is reached most prominently by the second half of ECDH,
+             * where the secret scalar is multiplied by the peer's public point.
+             * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
+             * actually set and we always call the ladder version.
+             */
+            return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
+        }
+    }
+
+    if (scalar != NULL) {
+        generator = EC_GROUP_get0_generator(group);
+        if (generator == NULL) {
+            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
+            goto err;
+        }
+
+        /* look if we can use precomputed multiples of generator */
+
+        pre_comp = group->pre_comp.ec;
+        if (pre_comp && pre_comp->numblocks
+            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
+                0)) {
+            blocksize = pre_comp->blocksize;
+
+            /*
+             * determine maximum number of blocks that wNAF splitting may
+             * yield (NB: maximum wNAF length is bit length plus one)
+             */
+            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
+
+            /*
+             * we cannot use more blocks than we have precomputation for
+             */
+            if (numblocks > pre_comp->numblocks)
+                numblocks = pre_comp->numblocks;
+
+            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
+
+            /* check that pre_comp looks sane */
+            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
+                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                goto err;
+            }
+        } else {
+            /* can't use precomputation */
+            pre_comp = NULL;
+            numblocks = 1;
+            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
+                                 * 'scalars' */
+        }
+    }
+
+    totalnum = num + numblocks;
+
+    wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
+    wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
+    /* include space for pivot */
+    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
+    val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
+
+    /* Ensure wNAF is initialised in case we end up going to err */
+    if (wNAF != NULL)
+        wNAF[0] = NULL;         /* preliminary pivot */
+
+    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
+        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
+        goto err;
+    }
+
+    /*
+     * num_val will be the total number of temporarily precomputed points
+     */
+    num_val = 0;
+
+    for (i = 0; i < num + num_scalar; i++) {
+        size_t bits;
+
+        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
+        wsize[i] = EC_window_bits_for_scalar_size(bits);
+        num_val += (size_t)1 << (wsize[i] - 1);
+        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
+        wNAF[i] =
+            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
+                            &wNAF_len[i]);
+        if (wNAF[i] == NULL)
+            goto err;
+        if (wNAF_len[i] > max_len)
+            max_len = wNAF_len[i];
+    }
+
+    if (numblocks) {
+        /* we go here iff scalar != NULL */
+
+        if (pre_comp == NULL) {
+            if (num_scalar != 1) {
+                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                goto err;
+            }
+            /* we have already generated a wNAF for 'scalar' */
+        } else {
+            signed char *tmp_wNAF = NULL;
+            size_t tmp_len = 0;
+
+            if (num_scalar != 0) {
+                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                goto err;
+            }
+
+            /*
+             * use the window size for which we have precomputation
+             */
+            wsize[num] = pre_comp->w;
+            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
+            if (!tmp_wNAF)
+                goto err;
+
+            if (tmp_len <= max_len) {
+                /*
+                 * One of the other wNAFs is at least as long as the wNAF
+                 * belonging to the generator, so wNAF splitting will not buy
+                 * us anything.
+                 */
+
+                numblocks = 1;
+                totalnum = num + 1; /* don't use wNAF splitting */
+                wNAF[num] = tmp_wNAF;
+                wNAF[num + 1] = NULL;
+                wNAF_len[num] = tmp_len;
+                /*
+                 * pre_comp->points starts with the points that we need here:
+                 */
+                val_sub[num] = pre_comp->points;
+            } else {
+                /*
+                 * don't include tmp_wNAF directly into wNAF array - use wNAF
+                 * splitting and include the blocks
+                 */
+
+                signed char *pp;
+                EC_POINT **tmp_points;
+
+                if (tmp_len < numblocks * blocksize) {
+                    /*
+                     * possibly we can do with fewer blocks than estimated
+                     */
+                    numblocks = (tmp_len + blocksize - 1) / blocksize;
+                    if (numblocks > pre_comp->numblocks) {
+                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                        OPENSSL_free(tmp_wNAF);
+                        goto err;
+                    }
+                    totalnum = num + numblocks;
+                }
+
+                /* split wNAF in 'numblocks' parts */
+                pp = tmp_wNAF;
+                tmp_points = pre_comp->points;
+
+                for (i = num; i < totalnum; i++) {
+                    if (i < totalnum - 1) {
+                        wNAF_len[i] = blocksize;
+                        if (tmp_len < blocksize) {
+                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                            OPENSSL_free(tmp_wNAF);
+                            goto err;
+                        }
+                        tmp_len -= blocksize;
+                    } else
+                        /*
+                         * last block gets whatever is left (this could be
+                         * more or less than 'blocksize'!)
+                         */
+                        wNAF_len[i] = tmp_len;
+
+                    wNAF[i + 1] = NULL;
+                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
+                    if (wNAF[i] == NULL) {
+                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
+                        OPENSSL_free(tmp_wNAF);
+                        goto err;
+                    }
+                    memcpy(wNAF[i], pp, wNAF_len[i]);
+                    if (wNAF_len[i] > max_len)
+                        max_len = wNAF_len[i];
+
+                    if (*tmp_points == NULL) {
+                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+                        OPENSSL_free(tmp_wNAF);
+                        goto err;
+                    }
+                    val_sub[i] = tmp_points;
+                    tmp_points += pre_points_per_block;
+                    pp += blocksize;
+                }
+                OPENSSL_free(tmp_wNAF);
+            }
+        }
+    }
+
+    /*
+     * All points we precompute now go into a single array 'val'.
+     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
+     * subarray of 'pre_comp->points' if we already have precomputation.
+     */
+    val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
+    if (val == NULL) {
+        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
+        goto err;
+    }
+    val[num_val] = NULL;        /* pivot element */
+
+    /* allocate points for precomputation */
+    v = val;
+    for (i = 0; i < num + num_scalar; i++) {
+        val_sub[i] = v;
+        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
+            *v = EC_POINT_new(group);
+            if (*v == NULL)
+                goto err;
+            v++;
+        }
+    }
+    if (!(v == val + num_val)) {
+        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
+        goto err;
+    }
+
+    if ((tmp = EC_POINT_new(group)) == NULL)
+        goto err;
+
+    /*-
+     * prepare precomputed values:
+     *    val_sub[i][0] :=     points[i]
+     *    val_sub[i][1] := 3 * points[i]
+     *    val_sub[i][2] := 5 * points[i]
+     *    ...
+     */
+    for (i = 0; i < num + num_scalar; i++) {
+        if (i < num) {
+            if (!EC_POINT_copy(val_sub[i][0], points[i]))
+                goto err;
+        } else {
+            if (!EC_POINT_copy(val_sub[i][0], generator))
+                goto err;
+        }
+
+        if (wsize[i] > 1) {
+            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
+                goto err;
+            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
+                if (!EC_POINT_add
+                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
+                    goto err;
+            }
+        }
+    }
+
+    if (group->meth->points_make_affine == NULL
+        || !group->meth->points_make_affine(group, num_val, val, ctx))
+        goto err;
+
+    r_is_at_infinity = 1;
+
+    for (k = max_len - 1; k >= 0; k--) {
+        if (!r_is_at_infinity) {
+            if (!EC_POINT_dbl(group, r, r, ctx))
+                goto err;
+        }
+
+        for (i = 0; i < totalnum; i++) {
+            if (wNAF_len[i] > (size_t)k) {
+                int digit = wNAF[i][k];
+                int is_neg;
+
+                if (digit) {
+                    is_neg = digit < 0;
+
+                    if (is_neg)
+                        digit = -digit;
+
+                    if (is_neg != r_is_inverted) {
+                        if (!r_is_at_infinity) {
+                            if (!EC_POINT_invert(group, r, ctx))
+                                goto err;
+                        }
+                        r_is_inverted = !r_is_inverted;
+                    }
+
+                    /* digit > 0 */
+
+                    if (r_is_at_infinity) {
+                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
+                            goto err;
+
+                        /*-
+                         * Apply coordinate blinding for EC_POINT.
+                         *
+                         * The underlying EC_METHOD can optionally implement this function:
+                         * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
+                         * success or if coordinate blinding is not implemented for this
+                         * group.
+                         */
+                        if (!ec_point_blind_coordinates(group, r, ctx)) {
+                            ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE);
+                            goto err;
+                        }
+
+                        r_is_at_infinity = 0;
+                    } else {
+                        if (!EC_POINT_add
+                            (group, r, r, val_sub[i][digit >> 1], ctx))
+                            goto err;
+                    }
+                }
+            }
+        }
+    }
+
+    if (r_is_at_infinity) {
+        if (!EC_POINT_set_to_infinity(group, r))
+            goto err;
+    } else {
+        if (r_is_inverted)
+            if (!EC_POINT_invert(group, r, ctx))
+                goto err;
+    }
+
+    ret = 1;
+
+ err:
+    EC_POINT_free(tmp);
+    OPENSSL_free(wsize);
+    OPENSSL_free(wNAF_len);
+    if (wNAF != NULL) {
+        signed char **w;
+
+        for (w = wNAF; *w != NULL; w++)
+            OPENSSL_free(*w);
+
+        OPENSSL_free(wNAF);
+    }
+    if (val != NULL) {
+        for (v = val; *v != NULL; v++)
+            EC_POINT_clear_free(*v);
+
+        OPENSSL_free(val);
+    }
+    OPENSSL_free(val_sub);
+    return ret;
+}
+
+/*-
+ * ec_wNAF_precompute_mult()
+ * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
+ * for use with wNAF splitting as implemented in ec_wNAF_mul().
+ *
+ * 'pre_comp->points' is an array of multiples of the generator
+ * of the following form:
+ * points[0] =     generator;
+ * points[1] = 3 * generator;
+ * ...
+ * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
+ * points[2^(w-1)]   =     2^blocksize * generator;
+ * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
+ * ...
+ * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
+ * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
+ * ...
+ * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
+ * points[2^(w-1)*numblocks]       = NULL
  */
-int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
-       size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
-       {
-       BN_CTX *new_ctx = NULL;
-       EC_POINT *generator = NULL;
-       EC_POINT *tmp = NULL;
-       size_t totalnum;
-       size_t i, j;
-       int k, t;
-       int r_is_at_infinity = 1;
-       size_t max_bits = 0;
-       size_t *wsize = NULL; /* individual window sizes */
-       unsigned long *wbits = NULL; /* individual window contents */
-       int *wpos = NULL; /* position of bottom bit of current individual windows
-                          * (wpos[i] is valid if wbits[i] != 0) */
-       size_t num_val;
-       EC_POINT **val = NULL; /* precomputation */
-       EC_POINT **v;
-       EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
-       int ret = 0;
-       
-       if (scalar != NULL)
-               {
-               generator = EC_GROUP_get0_generator(group);
-               if (generator == NULL)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
-                       return 0;
-                       }
-               }
-       
-       for (i = 0; i < num; i++)
-               {
-               if (group->meth != points[i]->meth)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
-                       return 0;
-                       }
-               }
-
-       totalnum = num + (scalar != NULL);
-
-       wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
-       wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]);
-       wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]);
-       if (wsize == NULL || wbits == NULL || wpos == NULL) goto err;
-
-       /* num_val := total number of points to precompute */
-       num_val = 0;
-       for (i = 0; i < totalnum; i++)
-               {
-               size_t bits;
-
-               bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
-               wsize[i] = EC_window_bits_for_scalar_size(bits);
-               num_val += 1 << (wsize[i] - 1);
-               if (bits > max_bits)
-                       max_bits = bits;
-               wbits[i] = 0;
-               wpos[i] = 0;
-               }
-
-       /* all precomputed points go into a single array 'val',
-        * 'val_sub[i]' is a pointer to the subarray for the i-th point */
-       val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
-       if (val == NULL) goto err;
-       val[num_val] = NULL; /* pivot element */
-
-       val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
-       if (val_sub == NULL) goto err;
-
-       /* allocate points for precomputation */
-       v = val;
-       for (i = 0; i < totalnum; i++)
-               {
-               val_sub[i] = v;
-               for (j = 0; j < (1 << (wsize[i] - 1)); j++)
-                       {
-                       *v = EC_POINT_new(group);
-                       if (*v == NULL) goto err;
-                       v++;
-                       }
-               }
-       if (!(v == val + num_val))
-               {
-               ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
-               goto err;
-               }
-
-       if (ctx == NULL)
-               {
-               ctx = new_ctx = BN_CTX_new();
-               if (ctx == NULL)
-                       goto err;
-               }
-       
-       tmp = EC_POINT_new(group);
-       if (tmp == NULL) goto err;
-
-       /* prepare precomputed values:
-        *    val_sub[i][0] :=     points[i]
-        *    val_sub[i][1] := 3 * points[i]
-        *    val_sub[i][2] := 5 * points[i]
-        *    ...
-        */
-       for (i = 0; i < totalnum; i++)
-               {
-               if (i < num)
-                       {
-                       if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
-                       if (scalars[i]->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
-                       }
-               else
-                       {
-                       if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
-                       if (scalar->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
-                       }
-
-               if (wsize[i] > 1)
-                       {
-                       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
-                       for (j = 1; j < (1 << (wsize[i] - 1)); j++)
-                               {
-                               if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
-                               }
-                       }
-               }
-
-#if 1 /* optional, maybe we should only do this if total_num > 1 */
-       if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
+int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
+{
+    const EC_POINT *generator;
+    EC_POINT *tmp_point = NULL, *base = NULL, **var;
+    const BIGNUM *order;
+    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
+    EC_POINT **points = NULL;
+    EC_PRE_COMP *pre_comp;
+    int ret = 0;
+#ifndef FIPS_MODULE
+    BN_CTX *new_ctx = NULL;
 #endif
 
-       r_is_at_infinity = 1;
-
-       for (k = max_bits - 1; k >= 0; k--)
-               {
-               if (!r_is_at_infinity)
-                       {
-                       if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
-                       }
-               
-               for (i = 0; i < totalnum; i++)
-                       {
-                       if (wbits[i] == 0)
-                               {
-                               const BIGNUM *s;
-
-                               s = i < num ? scalars[i] : scalar;
-
-                               if (BN_is_bit_set(s, k))
-                                       {
-                                       /* look at bits  k - wsize[i] + 1 .. k  for this window */
-                                       t = k - wsize[i] + 1;
-                                       while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */
-                                               t++;
-                                       wpos[i] = t;
-                                       wbits[i] = 1;
-                                       for (t = k - 1; t >= wpos[i]; t--)
-                                               {
-                                               wbits[i] <<= 1;
-                                               if (BN_is_bit_set(s, t))
-                                                       wbits[i]++;
-                                               }
-                                       /* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */
-                                       }
-                               }
-                       
-                       if ((wbits[i] != 0) && (wpos[i] == k))
-                               {
-                               if (r_is_at_infinity)
-                                       {
-                                       if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err;
-                                       r_is_at_infinity = 0;
-                                       }
-                               else
-                                       {
-                                       if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err;
-                                       }
-                               wbits[i] = 0;
-                               }
-                       }
-               }
-
-       if (r_is_at_infinity)
-               if (!EC_POINT_set_to_infinity(group, r)) goto err;
-       
-       ret = 1;
+    /* if there is an old EC_PRE_COMP object, throw it away */
+    EC_pre_comp_free(group);
+    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
+        return 0;
+
+    generator = EC_GROUP_get0_generator(group);
+    if (generator == NULL) {
+        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
+        goto err;
+    }
+
+#ifndef FIPS_MODULE
+    if (ctx == NULL)
+        ctx = new_ctx = BN_CTX_new();
+#endif
+    if (ctx == NULL)
+        goto err;
+
+    BN_CTX_start(ctx);
+
+    order = EC_GROUP_get0_order(group);
+    if (order == NULL)
+        goto err;
+    if (BN_is_zero(order)) {
+        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
+        goto err;
+    }
+
+    bits = BN_num_bits(order);
+    /*
+     * The following parameters mean we precompute (approximately) one point
+     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
+     * bit lengths, other parameter combinations might provide better
+     * efficiency.
+     */
+    blocksize = 8;
+    w = 4;
+    if (EC_window_bits_for_scalar_size(bits) > w) {
+        /* let's not make the window too small ... */
+        w = EC_window_bits_for_scalar_size(bits);
+    }
+
+    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
+                                                     * to use for wNAF
+                                                     * splitting */
+
+    pre_points_per_block = (size_t)1 << (w - 1);
+    num = pre_points_per_block * numblocks; /* number of points to compute
+                                             * and store */
+
+    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
+    if (points == NULL) {
+        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
+        goto err;
+    }
+
+    var = points;
+    var[num] = NULL;            /* pivot */
+    for (i = 0; i < num; i++) {
+        if ((var[i] = EC_POINT_new(group)) == NULL) {
+            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
+            goto err;
+        }
+    }
+
+    if ((tmp_point = EC_POINT_new(group)) == NULL
+        || (base = EC_POINT_new(group)) == NULL) {
+        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
+        goto err;
+    }
+
+    if (!EC_POINT_copy(base, generator))
+        goto err;
+
+    /* do the precomputation */
+    for (i = 0; i < numblocks; i++) {
+        size_t j;
+
+        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
+            goto err;
+
+        if (!EC_POINT_copy(*var++, base))
+            goto err;
+
+        for (j = 1; j < pre_points_per_block; j++, var++) {
+            /*
+             * calculate odd multiples of the current base point
+             */
+            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
+                goto err;
+        }
+
+        if (i < numblocks - 1) {
+            /*
+             * get the next base (multiply current one by 2^blocksize)
+             */
+            size_t k;
+
+            if (blocksize <= 2) {
+                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
+                goto err;
+            }
+
+            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
+                goto err;
+            for (k = 2; k < blocksize; k++) {
+                if (!EC_POINT_dbl(group, base, base, ctx))
+                    goto err;
+            }
+        }
+    }
+
+    if (group->meth->points_make_affine == NULL
+        || !group->meth->points_make_affine(group, num, points, ctx))
+        goto err;
+
+    pre_comp->group = group;
+    pre_comp->blocksize = blocksize;
+    pre_comp->numblocks = numblocks;
+    pre_comp->w = w;
+    pre_comp->points = points;
+    points = NULL;
+    pre_comp->num = num;
+    SETPRECOMP(group, ec, pre_comp);
+    pre_comp = NULL;
+    ret = 1;
 
  err:
-       if (new_ctx != NULL)
-               BN_CTX_free(new_ctx);
-       if (tmp != NULL)
-               EC_POINT_free(tmp);
-       if (wsize != NULL)
-               OPENSSL_free(wsize);
-       if (wbits != NULL)
-               OPENSSL_free(wbits);
-       if (wpos != NULL)
-               OPENSSL_free(wpos);
-       if (val != NULL)
-               {
-               for (v = val; *v != NULL; v++)
-                       EC_POINT_clear_free(*v);
-
-               OPENSSL_free(val);
-               }
-       if (val_sub != NULL)
-               {
-               OPENSSL_free(val_sub);
-               }
-       return ret;
-       }
-
-
-int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
-       {
-       const EC_POINT *points[1];
-       const BIGNUM *scalars[1];
-
-       points[0] = point;
-       scalars[0] = p_scalar;
-
-       return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx);
-       }
-
-
-int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
-       {
-       const EC_POINT *generator;
-       BN_CTX *new_ctx = NULL;
-       BIGNUM *order;
-       int ret = 0;
-
-       generator = EC_GROUP_get0_generator(group);
-       if (generator == NULL)
-               {
-               ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
-               return 0;
-               }
-
-       if (ctx == NULL)
-               {
-               ctx = new_ctx = BN_CTX_new();
-               if (ctx == NULL)
-                       return 0;
-               }
-       
-       BN_CTX_start(ctx);
-       order = BN_CTX_get(ctx);
-       if (order == NULL) goto err;
-       
-       if (!EC_GROUP_get_order(group, order, ctx)) return 0;
-       if (BN_is_zero(order))
-               {
-               ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
-               goto err;
-               }
-
-       /* TODO */
-
-       ret = 1;
-       
- err:
-       BN_CTX_end(ctx);
-       if (new_ctx != NULL)
-               BN_CTX_free(new_ctx);
-       return ret;
-       }
+    BN_CTX_end(ctx);
+#ifndef FIPS_MODULE
+    BN_CTX_free(new_ctx);
+#endif
+    EC_ec_pre_comp_free(pre_comp);
+    if (points) {
+        EC_POINT **p;
+
+        for (p = points; *p != NULL; p++)
+            EC_POINT_free(*p);
+        OPENSSL_free(points);
+    }
+    EC_POINT_free(tmp_point);
+    EC_POINT_free(base);
+    return ret;
+}
+
+int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
+{
+    return HAVEPRECOMP(group, ec);
+}