improve wNAF generation
[openssl.git] / crypto / ec / ec_mult.c
index e075a1ee07f276ac2063a2f72800f3b233dfdc19..74e1a962df74abfe2888ae72f4c3e84e433db8c8 100644 (file)
@@ -1,6 +1,6 @@
 /* crypto/ec/ec_mult.c */
 /* ====================================================================
- * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
+ * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
 #include "ec_lcl.h"
 
 
-/* TODO: width-m NAFs */
-
 /* TODO: optional precomputation of multiples of the generator */
 
 
+
+/*
+ * wNAF-based interleaving multi-exponentation method
+ * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>)
+ */
+
+
+/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
+ * This is an array  r[]  of values that are either zero or odd with an
+ * absolute value less than  2^w  satisfying
+ *     scalar = \sum_j r[j]*2^j
+ * where at most one of any  w+1  consecutive digits is non-zero
+ * with the exception that the most significant digit may be only
+ * w-1 zeros away from that next non-zero digit.
+ */
+static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
+       {
+       int window_val;
+       int ok = 0;
+       signed char *r = NULL;
+       int sign = 1;
+       int bit, next_bit, mask;
+       size_t len = 0, j;
+       
+       if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
+               {
+               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+               goto err;
+               }
+       bit = 1 << w; /* at most 128 */
+       next_bit = bit << 1; /* at most 256 */
+       mask = next_bit - 1; /* at most 255 */
+
+       if (scalar->neg)
+               {
+               sign = -1;
+               }
+
+       len = BN_num_bits(scalar);
+       r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation */
+       if (r == NULL) goto err;
+
+       if (scalar->d == NULL || scalar->top == 0)
+               {
+               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+               goto err;
+               }
+       window_val = scalar->d[0] & mask;
+       j = 0;
+       while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
+               {
+               int digit = 0;
+
+               /* 0 <= window_val <= 2^(w+1) */
+
+               if (window_val & 1)
+                       {
+                       /* 0 < window_val < 2^(w+1) */
+
+                       if (window_val & bit)
+                               {
+                               digit = window_val - next_bit; /* -2^w < digit < 0 */
+
+#if 1 /* modified wNAF */
+                               if (j + w + 1 >= len)
+                                       {
+                                       /* special case for generating modified wNAFs:
+                                        * no new bits will be added into window_val,
+                                        * so using a positive digit here will decrease
+                                        * the total length of the representation */
+                                       
+                                       digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
+                                       }
+#endif
+                               }
+                       else
+                               {
+                               digit = window_val; /* 0 < digit < 2^w */
+                               }
+                       
+                       if (digit <= -bit || digit >= bit || !(digit & 1))
+                               {
+                               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+                               goto err;
+                               }
+
+                       window_val -= digit;
+
+                       /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
+                        * for modified window NAFs, it may also be 2^w
+                        */
+                       if (window_val != 0 && window_val != next_bit && window_val != bit)
+                               {
+                               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+                               goto err;
+                               }
+                       }
+
+               r[j++] = sign * digit;
+
+               window_val >>= 1;
+               window_val += bit * BN_is_bit_set(scalar, j + w);
+
+               if (window_val > next_bit)
+                       {
+                       ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+                       goto err;
+                       }
+               }
+
+       if (j > len + 1)
+               {
+               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+               goto err;
+               }
+       len = j;
+       ok = 1;
+
+ err:
+       if (!ok)
+               {
+               OPENSSL_free(r);
+               r = NULL;
+               }
+       if (ok)
+               *ret_len = len;
+       return r;
+       }
+
+
+/* TODO: table should be optimised for the wNAF-based implementation,
+ *       sometimes smaller windows will give better performance
+ *       (thus the boundaries should be increased)
+ */
 #define EC_window_bits_for_scalar_size(b) \
                ((b) >= 2000 ? 6 : \
                 (b) >=  800 ? 5 : \
                 (b) >=   70 ? 3 : \
                 (b) >=   20 ? 2 : \
                  1)
-/* For window size 'w' (w >= 2), we compute the odd multiples
- *      1*P .. (2^w-1)*P.
- * This accounts for  2^(w-1)  point additions (neglecting constants),
- * each of which requires 16 field multiplications (4 squarings
- * and 12 general multiplications) in the case of curves defined
- * over GF(p), which are the only curves we have so far.
- *
- * Converting these precomputed points into affine form takes
- * three field multiplications for inverting Z and one squaring
- * and three multiplications for adjusting X and Y, i.e.
- * 7 multiplications in total (1 squaring and 6 general multiplications),
- * again except for constants.
- *
- * The average number of windows for a 'b' bit scalar is roughly
- *          b/(w+1).
- * Each of these windows (except possibly for the first one, but
- * we are ignoring constants anyway) requires one point addition.
- * As the precomputed table stores points in affine form, these
- * additions take only 11 field multiplications each (3 squarings
- * and 8 general multiplications).
- *
- * So the total workload, except for constants, is
- *
- *        2^(w-1)*[5 squarings + 18 multiplications]
- *      + (b/(w+1))*[3 squarings + 8 multiplications]
- *
- * If we assume that 10 squarings are as costly as 9 multiplications,
- * our task is to find the 'w' that, given 'b', minimizes
- *
- *        2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
- *      = 2^(w-1)*225 +           (b/(w+1))*107.
- *
- * Thus optimal window sizes should be roughly as follows:
- *
- *    w >= 6  if         b >= 1414
- *     w = 5  if 1413 >= b >=  505
- *     w = 4  if  504 >= b >=  169
- *     w = 3  if  168 >= b >=   51
- *     w = 2  if   50 >= b >=   13
- *     w = 1  if   12 >= b
- *
- * If we assume instead that squarings are exactly as costly as
- * multiplications, we have to minimize
- *      2^(w-1)*23 + (b/(w+1))*11.
- *
- * This gives us the following (nearly unchanged) table of optimal
- * windows sizes:
- *
- *    w >= 6  if         b >= 1406
- *     w = 5  if 1405 >= b >=  502
- *     w = 4  if  501 >= b >=  168
- *     w = 3  if  167 >= b >=   51
- *     w = 2  if   50 >= b >=   13
- *     w = 1  if   12 >= b
- *
- * Note that neither table tries to take into account memory usage
- * (allocation overhead, code locality etc.).  Actual timings with
- * NIST curves P-192, P-224, and P-256 with scalars of 192, 224,
- * and 256 bits, respectively, show that  w = 3  (instead of 4) is
- * preferrable; timings with NIST curve P-384 and 384-bit scalars
- * confirm that  w = 4  is optimal for this case; and timings with
- * NIST curve P-521 and 521-bit scalars show that  w = 4  (instead
- * of 5) is preferrable.  So we generously round up all the
- * boundaries and use the following table:
- *
- *    w >= 6  if         b >= 2000
- *     w = 5  if 1999 >= b >=  800
- *     w = 4  if  799 >= b >=  300
- *     w = 3  if  299 >= b >=   70
- *     w = 2  if   69 >= b >=   20
- *     w = 1  if   19 >= b
- */
-
-
 
 /* Compute
  *      \sum scalars[i]*points[i],
@@ -159,13 +217,13 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        EC_POINT *tmp = NULL;
        size_t totalnum;
        size_t i, j;
-       int k, t;
+       int k;
+       int r_is_inverted = 0;
        int r_is_at_infinity = 1;
-       size_t max_bits = 0;
        size_t *wsize = NULL; /* individual window sizes */
-       unsigned long *wbits = NULL; /* individual window contents */
-       int *wpos = NULL; /* position of bottom bit of current individual windows
-                          * (wpos[i] is valid if wbits[i] != 0) */
+       signed char **wNAF = NULL; /* individual wNAFs */
+       size_t *wNAF_len = NULL;
+       size_t max_len = 0;
        size_t num_val;
        EC_POINT **val = NULL; /* precomputation */
        EC_POINT **v;
@@ -194,9 +252,13 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        totalnum = num + (scalar != NULL);
 
        wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
-       wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]);
-       wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]);
-       if (wsize == NULL || wbits == NULL || wpos == NULL) goto err;
+       wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
+       wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]);
+       if (wNAF != NULL)
+               {
+               wNAF[0] = NULL; /* preliminary pivot */
+               }
+       if (wsize == NULL || wNAF_len == NULL || wNAF == NULL) goto err;
 
        /* num_val := total number of points to precompute */
        num_val = 0;
@@ -207,10 +269,6 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
                wsize[i] = EC_window_bits_for_scalar_size(bits);
                num_val += 1u << (wsize[i] - 1);
-               if (bits > max_bits)
-                       max_bits = bits;
-               wbits[i] = 0;
-               wpos[i] = 0;
                }
 
        /* all precomputed points go into a single array 'val',
@@ -261,18 +319,10 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                if (i < num)
                        {
                        if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
-                       if (scalars[i]->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
                        }
                else
                        {
                        if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
-                       if (scalar->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
                        }
 
                if (wsize[i] > 1)
@@ -283,6 +333,12 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                                if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
                                }
                        }
+
+               wNAF[i + 1] = NULL; /* make sure we always have a pivot */
+               wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
+               if (wNAF[i] == NULL) goto err;
+               if (wNAF_len[i] > max_len)
+                       max_len = wNAF_len[i];
                }
 
 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
@@ -291,7 +347,7 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
 
        r_is_at_infinity = 1;
 
-       for (k = max_bits - 1; k >= 0; k--)
+       for (k = max_len - 1; k >= 0; k--)
                {
                if (!r_is_at_infinity)
                        {
@@ -300,48 +356,52 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                
                for (i = 0; i < totalnum; i++)
                        {
-                       if (wbits[i] == 0)
+                       if (wNAF_len[i] > (size_t)k)
                                {
-                               const BIGNUM *s;
+                               int digit = wNAF[i][k];
+                               int is_neg;
 
-                               s = i < num ? scalars[i] : scalar;
-
-                               if (BN_is_bit_set(s, k))
+                               if (digit) 
                                        {
-                                       /* look at bits  k - wsize[i] + 1 .. k  for this window */
-                                       t = k - wsize[i] + 1;
-                                       while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */
-                                               t++;
-                                       wpos[i] = t;
-                                       wbits[i] = 1;
-                                       for (t = k - 1; t >= wpos[i]; t--)
+                                       is_neg = digit < 0;
+
+                                       if (is_neg)
+                                               digit = -digit;
+
+                                       if (is_neg != r_is_inverted)
                                                {
-                                               wbits[i] <<= 1;
-                                               if (BN_is_bit_set(s, t))
-                                                       wbits[i]++;
+                                               if (!r_is_at_infinity)
+                                                       {
+                                                       if (!EC_POINT_invert(group, r, ctx)) goto err;
+                                                       }
+                                               r_is_inverted = !r_is_inverted;
+                                               }
+
+                                       /* digit > 0 */
+
+                                       if (r_is_at_infinity)
+                                               {
+                                               if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
+                                               r_is_at_infinity = 0;
+                                               }
+                                       else
+                                               {
+                                               if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
                                                }
-                                       /* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */
-                                       }
-                               }
-                       
-                       if ((wbits[i] != 0) && (wpos[i] == k))
-                               {
-                               if (r_is_at_infinity)
-                                       {
-                                       if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err;
-                                       r_is_at_infinity = 0;
-                                       }
-                               else
-                                       {
-                                       if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err;
                                        }
-                               wbits[i] = 0;
                                }
                        }
                }
 
        if (r_is_at_infinity)
+               {
                if (!EC_POINT_set_to_infinity(group, r)) goto err;
+               }
+       else
+               {
+               if (r_is_inverted)
+                       if (!EC_POINT_invert(group, r, ctx)) goto err;
+               }
        
        ret = 1;
 
@@ -352,10 +412,17 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                EC_POINT_free(tmp);
        if (wsize != NULL)
                OPENSSL_free(wsize);
-       if (wbits != NULL)
-               OPENSSL_free(wbits);
-       if (wpos != NULL)
-               OPENSSL_free(wpos);
+       if (wNAF_len != NULL)
+               OPENSSL_free(wNAF_len);
+       if (wNAF != NULL)
+               {
+               signed char **w;
+               
+               for (w = wNAF; *w != NULL; w++)
+                       OPENSSL_free(*w);
+               
+               OPENSSL_free(wNAF);
+               }
        if (val != NULL)
                {
                for (v = val; *v != NULL; v++)