improve wNAF generation
[openssl.git] / crypto / ec / ec_mult.c
index 4e409d07bfae16e95b3aa626615494003dfc4211..74e1a962df74abfe2888ae72f4c3e84e433db8c8 100644 (file)
@@ -1,6 +1,6 @@
 /* crypto/ec/ec_mult.c */
 /* ====================================================================
- * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
+ * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
 /* TODO: optional precomputation of multiples of the generator */
 
 
-#if 1
+
 /*
  * wNAF-based interleaving multi-exponentation method
  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>)
  */
 
 
-
-/* Determine the width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
+/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
  * This is an array  r[]  of values that are either zero or odd with an
  * absolute value less than  2^w  satisfying
  *     scalar = \sum_j r[j]*2^j
- * where at most one of any  w+1  consecutive digits is non-zero.
+ * where at most one of any  w+1  consecutive digits is non-zero
+ * with the exception that the most significant digit may be only
+ * w-1 zeros away from that next non-zero digit.
  */
-static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, BN_CTX *ctx)
+static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
        {
-       BIGNUM *c;
+       int window_val;
        int ok = 0;
        signed char *r = NULL;
        int sign = 1;
        int bit, next_bit, mask;
        size_t len = 0, j;
        
-       BN_CTX_start(ctx);
-       c = BN_CTX_get(ctx);
-       if (c == NULL) goto err;
-       
        if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
                {
                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
@@ -97,60 +94,84 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, B
        next_bit = bit << 1; /* at most 256 */
        mask = next_bit - 1; /* at most 255 */
 
-       if (!BN_copy(c, scalar)) goto err;
-       if (c->neg)
+       if (scalar->neg)
                {
                sign = -1;
-               c->neg = 0;
                }
 
-       len = BN_num_bits(c) + 1; /* wNAF may be one digit longer than binary representation */
-       r = OPENSSL_malloc(len);
+       len = BN_num_bits(scalar);
+       r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation */
        if (r == NULL) goto err;
 
+       if (scalar->d == NULL || scalar->top == 0)
+               {
+               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+               goto err;
+               }
+       window_val = scalar->d[0] & mask;
        j = 0;
-       while (!BN_is_zero(c))
+       while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
                {
-               int u = 0;
+               int digit = 0;
 
-               if (BN_is_odd(c)) 
+               /* 0 <= window_val <= 2^(w+1) */
+
+               if (window_val & 1)
                        {
-                       if (c->d == NULL || c->top == 0)
+                       /* 0 < window_val < 2^(w+1) */
+
+                       if (window_val & bit)
                                {
-                               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
-                               goto err;
+                               digit = window_val - next_bit; /* -2^w < digit < 0 */
+
+#if 1 /* modified wNAF */
+                               if (j + w + 1 >= len)
+                                       {
+                                       /* special case for generating modified wNAFs:
+                                        * no new bits will be added into window_val,
+                                        * so using a positive digit here will decrease
+                                        * the total length of the representation */
+                                       
+                                       digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
+                                       }
+#endif
                                }
-                       u = c->d[0] & mask;
-                       if (u & bit)
+                       else
                                {
-                               u -= next_bit;
-                               /* u < 0 */
-                               if (!BN_add_word(c, -u)) goto err;
+                               digit = window_val; /* 0 < digit < 2^w */
                                }
-                       else
+                       
+                       if (digit <= -bit || digit >= bit || !(digit & 1))
                                {
-                               /* u > 0 */
-                               if (!BN_sub_word(c, u)) goto err;
+                               ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
+                               goto err;
                                }
 
-                       if (u <= -bit || u >= bit || !(u & 1) || c->neg)
+                       window_val -= digit;
+
+                       /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
+                        * for modified window NAFs, it may also be 2^w
+                        */
+                       if (window_val != 0 && window_val != next_bit && window_val != bit)
                                {
                                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
                                goto err;
                                }
                        }
 
-               r[j++] = sign * u;
-               
-               if (BN_is_odd(c))
+               r[j++] = sign * digit;
+
+               window_val >>= 1;
+               window_val += bit * BN_is_bit_set(scalar, j + w);
+
+               if (window_val > next_bit)
                        {
                        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
                        goto err;
                        }
-               if (!BN_rshift1(c, c)) goto err;
                }
 
-       if (j > len)
+       if (j > len + 1)
                {
                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
                goto err;
@@ -159,7 +180,6 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, B
        ok = 1;
 
  err:
-       BN_CTX_end(ctx);
        if (!ok)
                {
                OPENSSL_free(r);
@@ -315,7 +335,7 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                        }
 
                wNAF[i + 1] = NULL; /* make sure we always have a pivot */
-               wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i], ctx);
+               wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
                if (wNAF[i] == NULL) goto err;
                if (wNAF_len[i] > max_len)
                        max_len = wNAF_len[i];
@@ -417,314 +437,6 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        return ret;
        }
 
-#else
-
-/*
- * Basic interleaving multi-exponentation method
- */
-
-
-
-#define EC_window_bits_for_scalar_size(b) \
-               ((b) >= 2000 ? 6 : \
-                (b) >=  800 ? 5 : \
-                (b) >=  300 ? 4 : \
-                (b) >=   70 ? 3 : \
-                (b) >=   20 ? 2 : \
-                 1)
-/* For window size 'w' (w >= 2), we compute the odd multiples
- *      1*P .. (2^w-1)*P.
- * This accounts for  2^(w-1)  point additions (neglecting constants),
- * each of which requires 16 field multiplications (4 squarings
- * and 12 general multiplications) in the case of curves defined
- * over GF(p), which are the only curves we have so far.
- *
- * Converting these precomputed points into affine form takes
- * three field multiplications for inverting Z and one squaring
- * and three multiplications for adjusting X and Y, i.e.
- * 7 multiplications in total (1 squaring and 6 general multiplications),
- * again except for constants.
- *
- * The average number of windows for a 'b' bit scalar is roughly
- *          b/(w+1).
- * Each of these windows (except possibly for the first one, but
- * we are ignoring constants anyway) requires one point addition.
- * As the precomputed table stores points in affine form, these
- * additions take only 11 field multiplications each (3 squarings
- * and 8 general multiplications).
- *
- * So the total workload, except for constants, is
- *
- *        2^(w-1)*[5 squarings + 18 multiplications]
- *      + (b/(w+1))*[3 squarings + 8 multiplications]
- *
- * If we assume that 10 squarings are as costly as 9 multiplications,
- * our task is to find the 'w' that, given 'b', minimizes
- *
- *        2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
- *      = 2^(w-1)*225 +           (b/(w+1))*107.
- *
- * Thus optimal window sizes should be roughly as follows:
- *
- *    w >= 6  if         b >= 1414
- *     w = 5  if 1413 >= b >=  505
- *     w = 4  if  504 >= b >=  169
- *     w = 3  if  168 >= b >=   51
- *     w = 2  if   50 >= b >=   13
- *     w = 1  if   12 >= b
- *
- * If we assume instead that squarings are exactly as costly as
- * multiplications, we have to minimize
- *      2^(w-1)*23 + (b/(w+1))*11.
- *
- * This gives us the following (nearly unchanged) table of optimal
- * windows sizes:
- *
- *    w >= 6  if         b >= 1406
- *     w = 5  if 1405 >= b >=  502
- *     w = 4  if  501 >= b >=  168
- *     w = 3  if  167 >= b >=   51
- *     w = 2  if   50 >= b >=   13
- *     w = 1  if   12 >= b
- *
- * Note that neither table tries to take into account memory usage
- * (allocation overhead, code locality etc.).  Actual timings with
- * NIST curves P-192, P-224, and P-256 with scalars of 192, 224,
- * and 256 bits, respectively, show that  w = 3  (instead of 4) is
- * preferrable; timings with NIST curve P-384 and 384-bit scalars
- * confirm that  w = 4  is optimal for this case; and timings with
- * NIST curve P-521 and 521-bit scalars show that  w = 4  (instead
- * of 5) is preferrable.  So we generously round up all the
- * boundaries and use the following table:
- *
- *    w >= 6  if         b >= 2000
- *     w = 5  if 1999 >= b >=  800
- *     w = 4  if  799 >= b >=  300
- *     w = 3  if  299 >= b >=   70
- *     w = 2  if   69 >= b >=   20
- *     w = 1  if   19 >= b
- */
-
-int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
-       size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
-       {
-       BN_CTX *new_ctx = NULL;
-       EC_POINT *generator = NULL;
-       EC_POINT *tmp = NULL;
-       size_t totalnum;
-       size_t i, j;
-       int k, t;
-       int r_is_at_infinity = 1;
-       size_t max_bits = 0;
-       size_t *wsize = NULL; /* individual window sizes */
-       unsigned long *wbits = NULL; /* individual window contents */
-       int *wpos = NULL; /* position of bottom bit of current individual windows
-                          * (wpos[i] is valid if wbits[i] != 0) */
-       size_t num_val;
-       EC_POINT **val = NULL; /* precomputation */
-       EC_POINT **v;
-       EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
-       int ret = 0;
-       
-       if (scalar != NULL)
-               {
-               generator = EC_GROUP_get0_generator(group);
-               if (generator == NULL)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
-                       return 0;
-                       }
-               }
-       
-       for (i = 0; i < num; i++)
-               {
-               if (group->meth != points[i]->meth)
-                       {
-                       ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
-                       return 0;
-                       }
-               }
-
-       totalnum = num + (scalar != NULL);
-
-       wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
-       wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]);
-       wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]);
-       if (wsize == NULL || wbits == NULL || wpos == NULL) goto err;
-
-       /* num_val := total number of points to precompute */
-       num_val = 0;
-       for (i = 0; i < totalnum; i++)
-               {
-               size_t bits;
-
-               bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
-               wsize[i] = EC_window_bits_for_scalar_size(bits);
-               num_val += 1u << (wsize[i] - 1);
-               if (bits > max_bits)
-                       max_bits = bits;
-               wbits[i] = 0;
-               wpos[i] = 0;
-               }
-
-       /* all precomputed points go into a single array 'val',
-        * 'val_sub[i]' is a pointer to the subarray for the i-th point */
-       val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
-       if (val == NULL) goto err;
-       val[num_val] = NULL; /* pivot element */
-
-       val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
-       if (val_sub == NULL) goto err;
-
-       /* allocate points for precomputation */
-       v = val;
-       for (i = 0; i < totalnum; i++)
-               {
-               val_sub[i] = v;
-               for (j = 0; j < (1u << (wsize[i] - 1)); j++)
-                       {
-                       *v = EC_POINT_new(group);
-                       if (*v == NULL) goto err;
-                       v++;
-                       }
-               }
-       if (!(v == val + num_val))
-               {
-               ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
-               goto err;
-               }
-
-       if (ctx == NULL)
-               {
-               ctx = new_ctx = BN_CTX_new();
-               if (ctx == NULL)
-                       goto err;
-               }
-       
-       tmp = EC_POINT_new(group);
-       if (tmp == NULL) goto err;
-
-       /* prepare precomputed values:
-        *    val_sub[i][0] :=     points[i]
-        *    val_sub[i][1] := 3 * points[i]
-        *    val_sub[i][2] := 5 * points[i]
-        *    ...
-        */
-       for (i = 0; i < totalnum; i++)
-               {
-               if (i < num)
-                       {
-                       if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
-                       if (scalars[i]->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
-                       }
-               else
-                       {
-                       if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
-                       if (scalar->neg)
-                               {
-                               if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
-                               }
-                       }
-
-               if (wsize[i] > 1)
-                       {
-                       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
-                       for (j = 1; j < (1u << (wsize[i] - 1)); j++)
-                               {
-                               if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
-                               }
-                       }
-               }
-
-#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
-       if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
-#endif
-
-       r_is_at_infinity = 1;
-
-       for (k = max_bits - 1; k >= 0; k--)
-               {
-               if (!r_is_at_infinity)
-                       {
-                       if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
-                       }
-               
-               for (i = 0; i < totalnum; i++)
-                       {
-                       if (wbits[i] == 0)
-                               {
-                               const BIGNUM *s;
-
-                               s = i < num ? scalars[i] : scalar;
-
-                               if (BN_is_bit_set(s, k))
-                                       {
-                                       /* look at bits  k - wsize[i] + 1 .. k  for this window */
-                                       t = k - wsize[i] + 1;
-                                       while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */
-                                               t++;
-                                       wpos[i] = t;
-                                       wbits[i] = 1;
-                                       for (t = k - 1; t >= wpos[i]; t--)
-                                               {
-                                               wbits[i] <<= 1;
-                                               if (BN_is_bit_set(s, t))
-                                                       wbits[i]++;
-                                               }
-                                       /* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */
-                                       }
-                               }
-                       
-                       if ((wbits[i] != 0) && (wpos[i] == k))
-                               {
-                               if (r_is_at_infinity)
-                                       {
-                                       if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err;
-                                       r_is_at_infinity = 0;
-                                       }
-                               else
-                                       {
-                                       if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err;
-                                       }
-                               wbits[i] = 0;
-                               }
-                       }
-               }
-
-       if (r_is_at_infinity)
-               if (!EC_POINT_set_to_infinity(group, r)) goto err;
-       
-       ret = 1;
-
- err:
-       if (new_ctx != NULL)
-               BN_CTX_free(new_ctx);
-       if (tmp != NULL)
-               EC_POINT_free(tmp);
-       if (wsize != NULL)
-               OPENSSL_free(wsize);
-       if (wbits != NULL)
-               OPENSSL_free(wbits);
-       if (wpos != NULL)
-               OPENSSL_free(wpos);
-       if (val != NULL)
-               {
-               for (v = val; *v != NULL; v++)
-                       EC_POINT_clear_free(*v);
-
-               OPENSSL_free(val);
-               }
-       if (val_sub != NULL)
-               {
-               OPENSSL_free(val_sub);
-               }
-       return ret;
-       }
-#endif
-
 
 int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
        {