[crypto/ec] for ECC parameters with NULL or zero cofactor, compute it
[openssl.git] / crypto / ec / ec_lib.c
index 6ccf6f12ccc9174ac6cdb88c2853e29b149655bb..1289c8608eddfb4a4453c195e6d1865f599595c0 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  *
  * Licensed under the OpenSSL license (the "License").  You may not use
@@ -140,6 +140,8 @@ int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src)
     if (dest == src)
         return 1;
 
+    dest->curve_name = src->curve_name;
+
     /* Copy precomputed */
     dest->pre_comp_type = src->pre_comp_type;
     switch (src->pre_comp_type) {
@@ -207,15 +209,15 @@ int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src)
             return 0;
     }
 
-    dest->curve_name = src->curve_name;
     dest->asn1_flag = src->asn1_flag;
     dest->asn1_form = src->asn1_form;
 
     if (src->seed) {
         OPENSSL_free(dest->seed);
-        dest->seed = OPENSSL_malloc(src->seed_len);
-        if (dest->seed == NULL)
+        if ((dest->seed = OPENSSL_malloc(src->seed_len)) == NULL) {
+            ECerr(EC_F_EC_GROUP_COPY, ERR_R_MALLOC_FAILURE);
             return 0;
+        }
         if (!memcpy(dest->seed, src->seed, src->seed_len))
             return 0;
         dest->seed_len = src->seed_len;
@@ -237,7 +239,7 @@ EC_GROUP *EC_GROUP_dup(const EC_GROUP *a)
         return NULL;
 
     if ((t = EC_GROUP_new(a->meth)) == NULL)
-        return (NULL);
+        return NULL;
     if (!EC_GROUP_copy(t, a))
         goto err;
 
@@ -261,6 +263,69 @@ int EC_METHOD_get_field_type(const EC_METHOD *meth)
     return meth->field_type;
 }
 
+static int ec_precompute_mont_data(EC_GROUP *);
+
+/*-
+ * Try computing cofactor from the generator order (n) and field cardinality (q).
+ * This works for all curves of cryptographic interest.
+ *
+ * Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q)
+ * h_min = (q + 1 - 2*sqrt(q))/n
+ * h_max = (q + 1 + 2*sqrt(q))/n
+ * h_max - h_min = 4*sqrt(q)/n
+ * So if n > 4*sqrt(q) holds, there is only one possible value for h:
+ * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil
+ *
+ * Otherwise, zero cofactor and return success.
+ */
+static int ec_guess_cofactor(EC_GROUP *group) {
+    int ret = 0;
+    BN_CTX *ctx = NULL;
+    BIGNUM *q = NULL;
+
+    /*-
+     * If the cofactor is too large, we cannot guess it.
+     * The RHS of below is a strict overestimate of lg(4 * sqrt(q))
+     */
+    if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) {
+        /* default to 0 */
+        BN_zero(group->cofactor);
+        /* return success */
+        return 1;
+    }
+
+    if ((ctx = BN_CTX_new()) == NULL)
+        return 0;
+
+    BN_CTX_start(ctx);
+    if ((q = BN_CTX_get(ctx)) == NULL)
+        goto err;
+
+    /* set q = 2**m for binary fields; q = p otherwise */
+    if (group->meth->field_type == NID_X9_62_characteristic_two_field) {
+        BN_zero(q);
+        if (!BN_set_bit(q, BN_num_bits(group->field) - 1))
+            goto err;
+    } else {
+        if (!BN_copy(q, group->field))
+            goto err;
+    }
+
+    /* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */
+    if (!BN_rshift1(group->cofactor, group->order) /* n/2 */
+        || !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */
+        /* q + 1 + n/2 */
+        || !BN_add(group->cofactor, group->cofactor, BN_value_one())
+        /* (q + 1 + n/2)/n */
+        || !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx))
+        goto err;
+    ret = 1;
+ err:
+    BN_CTX_end(ctx);
+    BN_CTX_free(ctx);
+    return ret;
+}
+
 int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
                            const BIGNUM *order, const BIGNUM *cofactor)
 {
@@ -269,6 +334,34 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
         return 0;
     }
 
+    /* require group->field >= 1 */
+    if (group->field == NULL || BN_is_zero(group->field)
+        || BN_is_negative(group->field)) {
+        ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD);
+        return 0;
+    }
+
+    /*-
+     * - require order >= 1
+     * - enforce upper bound due to Hasse thm: order can be no more than one bit
+     *   longer than field cardinality
+     */
+    if (order == NULL || BN_is_zero(order) || BN_is_negative(order)
+        || BN_num_bits(order) > BN_num_bits(group->field) + 1) {
+        ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER);
+        return 0;
+    }
+
+    /*-
+     * Unfortunately the cofactor is an optional field in many standards.
+     * Internally, the lib uses 0 cofactor as a marker for "unknown cofactor".
+     * So accept cofactor == NULL or cofactor >= 0.
+     */
+    if (cofactor != NULL && BN_is_negative(cofactor)) {
+        ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR);
+        return 0;
+    }
+
     if (group->generator == NULL) {
         group->generator = EC_POINT_new(group);
         if (group->generator == NULL)
@@ -277,17 +370,17 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
     if (!EC_POINT_copy(group->generator, generator))
         return 0;
 
-    if (order != NULL) {
-        if (!BN_copy(group->order, order))
-            return 0;
-    } else
-        BN_zero(group->order);
+    if (!BN_copy(group->order, order))
+        return 0;
 
-    if (cofactor != NULL) {
+    /* Either take the provided positive cofactor, or try to compute it */
+    if (cofactor != NULL && !BN_is_zero(cofactor)) {
         if (!BN_copy(group->cofactor, cofactor))
             return 0;
-    } else
+    } else if (!ec_guess_cofactor(group)) {
         BN_zero(group->cofactor);
+        return 0;
+    }
 
     /*
      * Some groups have an order with
@@ -391,8 +484,10 @@ size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *p, size_t len)
     if (!len || !p)
         return 1;
 
-    if ((group->seed = OPENSSL_malloc(len)) == NULL)
+    if ((group->seed = OPENSSL_malloc(len)) == NULL) {
+        ECerr(EC_F_EC_GROUP_SET_SEED, ERR_R_MALLOC_FAILURE);
         return 0;
+    }
     memcpy(group->seed, p, len);
     group->seed_len = len;
 
@@ -409,48 +504,52 @@ size_t EC_GROUP_get_seed_len(const EC_GROUP *group)
     return group->seed_len;
 }
 
-int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
-                           const BIGNUM *b, BN_CTX *ctx)
+int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
+                       const BIGNUM *b, BN_CTX *ctx)
 {
     if (group->meth->group_set_curve == 0) {
-        ECerr(EC_F_EC_GROUP_SET_CURVE_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+        ECerr(EC_F_EC_GROUP_SET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
     return group->meth->group_set_curve(group, p, a, b, ctx);
 }
 
-int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
-                           BIGNUM *b, BN_CTX *ctx)
+int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b,
+                       BN_CTX *ctx)
 {
-    if (group->meth->group_get_curve == 0) {
-        ECerr(EC_F_EC_GROUP_GET_CURVE_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+    if (group->meth->group_get_curve == NULL) {
+        ECerr(EC_F_EC_GROUP_GET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
     return group->meth->group_get_curve(group, p, a, b, ctx);
 }
 
-#ifndef OPENSSL_NO_EC2M
+#if OPENSSL_API_COMPAT < 0x10200000L
+int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
+                           const BIGNUM *b, BN_CTX *ctx)
+{
+    return EC_GROUP_set_curve(group, p, a, b, ctx);
+}
+
+int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
+                           BIGNUM *b, BN_CTX *ctx)
+{
+    return EC_GROUP_get_curve(group, p, a, b, ctx);
+}
+
+# ifndef OPENSSL_NO_EC2M
 int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
                             const BIGNUM *b, BN_CTX *ctx)
 {
-    if (group->meth->group_set_curve == 0) {
-        ECerr(EC_F_EC_GROUP_SET_CURVE_GF2M,
-              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
-        return 0;
-    }
-    return group->meth->group_set_curve(group, p, a, b, ctx);
+    return EC_GROUP_set_curve(group, p, a, b, ctx);
 }
 
 int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
                             BIGNUM *b, BN_CTX *ctx)
 {
-    if (group->meth->group_get_curve == 0) {
-        ECerr(EC_F_EC_GROUP_GET_CURVE_GF2M,
-              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
-        return 0;
-    }
-    return group->meth->group_get_curve(group, p, a, b, ctx);
+    return EC_GROUP_get_curve(group, p, a, b, ctx);
 }
+# endif
 #endif
 
 int EC_GROUP_get_degree(const EC_GROUP *group)
@@ -555,7 +654,7 @@ EC_POINT *EC_POINT_new(const EC_GROUP *group)
         ECerr(EC_F_EC_POINT_NEW, ERR_R_PASSED_NULL_PARAMETER);
         return NULL;
     }
-    if (group->meth->point_init == 0) {
+    if (group->meth->point_init == NULL) {
         ECerr(EC_F_EC_POINT_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return NULL;
     }
@@ -567,6 +666,7 @@ EC_POINT *EC_POINT_new(const EC_GROUP *group)
     }
 
     ret->meth = group->meth;
+    ret->curve_name = group->curve_name;
 
     if (!ret->meth->point_init(ret)) {
         OPENSSL_free(ret);
@@ -604,7 +704,10 @@ int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src)
         ECerr(EC_F_EC_POINT_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (dest->meth != src->meth) {
+    if (dest->meth != src->meth
+            || (dest->curve_name != src->curve_name
+                && dest->curve_name != 0
+                && src->curve_name != 0)) {
         ECerr(EC_F_EC_POINT_COPY, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -623,7 +726,7 @@ EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group)
 
     t = EC_POINT_new(group);
     if (t == NULL)
-        return (NULL);
+        return NULL;
     r = EC_POINT_copy(t, a);
     if (!r) {
         EC_POINT_free(t);
@@ -661,7 +764,7 @@ int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
               ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
+    if (!ec_point_is_compat(point, group)) {
         ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP,
               EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
@@ -680,7 +783,7 @@ int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
               ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
+    if (!ec_point_is_compat(point, group)) {
         ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP,
               EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
@@ -689,92 +792,83 @@ int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                               y, z, ctx);
 }
 
-int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group,
-                                        EC_POINT *point, const BIGNUM *x,
-                                        const BIGNUM *y, BN_CTX *ctx)
+int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
+                                    const BIGNUM *x, const BIGNUM *y,
+                                    BN_CTX *ctx)
 {
-    if (group->meth->point_set_affine_coordinates == 0) {
-        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP,
+    if (group->meth->point_set_affine_coordinates == NULL) {
+        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES,
               ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
-        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP,
-              EC_R_INCOMPATIBLE_OBJECTS);
+    if (!ec_point_is_compat(point, group)) {
+        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
     if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx))
         return 0;
 
     if (EC_POINT_is_on_curve(group, point, ctx) <= 0) {
-        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP,
-              EC_R_POINT_IS_NOT_ON_CURVE);
+        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_POINT_IS_NOT_ON_CURVE);
         return 0;
     }
     return 1;
 }
 
-#ifndef OPENSSL_NO_EC2M
+#if OPENSSL_API_COMPAT < 0x10200000L
+int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group,
+                                        EC_POINT *point, const BIGNUM *x,
+                                        const BIGNUM *y, BN_CTX *ctx)
+{
+    return EC_POINT_set_affine_coordinates(group, point, x, y, ctx);
+}
+
+# ifndef OPENSSL_NO_EC2M
 int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group,
                                          EC_POINT *point, const BIGNUM *x,
                                          const BIGNUM *y, BN_CTX *ctx)
 {
-    if (group->meth->point_set_affine_coordinates == 0) {
-        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M,
+    return EC_POINT_set_affine_coordinates(group, point, x, y, ctx);
+}
+# endif
+#endif
+
+int EC_POINT_get_affine_coordinates(const EC_GROUP *group,
+                                    const EC_POINT *point, BIGNUM *x, BIGNUM *y,
+                                    BN_CTX *ctx)
+{
+    if (group->meth->point_get_affine_coordinates == NULL) {
+        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES,
               ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
-        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M,
-              EC_R_INCOMPATIBLE_OBJECTS);
+    if (!ec_point_is_compat(point, group)) {
+        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
-    if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx))
-        return 0;
-
-    if (EC_POINT_is_on_curve(group, point, ctx) <= 0) {
-        ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M,
-              EC_R_POINT_IS_NOT_ON_CURVE);
+    if (EC_POINT_is_at_infinity(group, point)) {
+        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
         return 0;
     }
-    return 1;
+    return group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
 }
-#endif
 
+#if OPENSSL_API_COMPAT < 0x10200000L
 int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
                                         const EC_POINT *point, BIGNUM *x,
                                         BIGNUM *y, BN_CTX *ctx)
 {
-    if (group->meth->point_get_affine_coordinates == 0) {
-        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP,
-              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
-        return 0;
-    }
-    if (group->meth != point->meth) {
-        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP,
-              EC_R_INCOMPATIBLE_OBJECTS);
-        return 0;
-    }
-    return group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
+    return EC_POINT_get_affine_coordinates(group, point, x, y, ctx);
 }
 
-#ifndef OPENSSL_NO_EC2M
+# ifndef OPENSSL_NO_EC2M
 int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group,
                                          const EC_POINT *point, BIGNUM *x,
                                          BIGNUM *y, BN_CTX *ctx)
 {
-    if (group->meth->point_get_affine_coordinates == 0) {
-        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M,
-              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
-        return 0;
-    }
-    if (group->meth != point->meth) {
-        ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M,
-              EC_R_INCOMPATIBLE_OBJECTS);
-        return 0;
-    }
-    return group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
+    return EC_POINT_get_affine_coordinates(group, point, x, y, ctx);
 }
+# endif
 #endif
 
 int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
@@ -784,8 +878,8 @@ int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
         ECerr(EC_F_EC_POINT_ADD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if ((group->meth != r->meth) || (r->meth != a->meth)
-        || (a->meth != b->meth)) {
+    if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)
+        || !ec_point_is_compat(b, group)) {
         ECerr(EC_F_EC_POINT_ADD, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -799,7 +893,7 @@ int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
         ECerr(EC_F_EC_POINT_DBL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if ((group->meth != r->meth) || (r->meth != a->meth)) {
+    if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)) {
         ECerr(EC_F_EC_POINT_DBL, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -812,7 +906,7 @@ int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx)
         ECerr(EC_F_EC_POINT_INVERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != a->meth) {
+    if (!ec_point_is_compat(a, group)) {
         ECerr(EC_F_EC_POINT_INVERT, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -826,7 +920,7 @@ int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
               ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
+    if (!ec_point_is_compat(point, group)) {
         ECerr(EC_F_EC_POINT_IS_AT_INFINITY, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -847,7 +941,7 @@ int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
         ECerr(EC_F_EC_POINT_IS_ON_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
+    if (!ec_point_is_compat(point, group)) {
         ECerr(EC_F_EC_POINT_IS_ON_CURVE, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -861,7 +955,7 @@ int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
         ECerr(EC_F_EC_POINT_CMP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return -1;
     }
-    if ((group->meth != a->meth) || (a->meth != b->meth)) {
+    if (!ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) {
         ECerr(EC_F_EC_POINT_CMP, EC_R_INCOMPATIBLE_OBJECTS);
         return -1;
     }
@@ -874,7 +968,7 @@ int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
         ECerr(EC_F_EC_POINT_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
         return 0;
     }
-    if (group->meth != point->meth) {
+    if (!ec_point_is_compat(point, group)) {
         ECerr(EC_F_EC_POINT_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS);
         return 0;
     }
@@ -891,7 +985,7 @@ int EC_POINTs_make_affine(const EC_GROUP *group, size_t num,
         return 0;
     }
     for (i = 0; i < num; i++) {
-        if (group->meth != points[i]->meth) {
+        if (!ec_point_is_compat(points[i], group)) {
             ECerr(EC_F_EC_POINTS_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS);
             return 0;
         }
@@ -909,11 +1003,38 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                   size_t num, const EC_POINT *points[],
                   const BIGNUM *scalars[], BN_CTX *ctx)
 {
-    if (group->meth->mul == 0)
+    int ret = 0;
+    size_t i = 0;
+    BN_CTX *new_ctx = NULL;
+
+    if ((scalar == NULL) && (num == 0)) {
+        return EC_POINT_set_to_infinity(group, r);
+    }
+
+    if (!ec_point_is_compat(r, group)) {
+        ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
+        return 0;
+    }
+    for (i = 0; i < num; i++) {
+        if (!ec_point_is_compat(points[i], group)) {
+            ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
+            return 0;
+        }
+    }
+
+    if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) {
+        ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
+        return 0;
+    }
+
+    if (group->meth->mul != NULL)
+        ret = group->meth->mul(group, r, scalar, num, points, scalars, ctx);
+    else
         /* use default */
-        return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
+        ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
 
-    return group->meth->mul(group, r, scalar, num, points, scalars, ctx);
+    BN_CTX_free(new_ctx);
+    return ret;
 }
 
 int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
@@ -961,7 +1082,7 @@ int EC_GROUP_have_precompute_mult(const EC_GROUP *group)
  * ec_precompute_mont_data sets |group->mont_data| from |group->order| and
  * returns one on success. On error it returns zero.
  */
-int ec_precompute_mont_data(EC_GROUP *group)
+static int ec_precompute_mont_data(EC_GROUP *group)
 {
     BN_CTX *ctx = BN_CTX_new();
     int ret = 0;
@@ -1006,3 +1127,83 @@ int ec_group_simple_order_bits(const EC_GROUP *group)
         return 0;
     return BN_num_bits(group->order);
 }
+
+static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r,
+                                    const BIGNUM *x, BN_CTX *ctx)
+{
+    BIGNUM *e = NULL;
+    BN_CTX *new_ctx = NULL;
+    int ret = 0;
+
+    if (group->mont_data == NULL)
+        return 0;
+
+    if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
+        return 0;
+
+    BN_CTX_start(ctx);
+    if ((e = BN_CTX_get(ctx)) == NULL)
+        goto err;
+
+    /*-
+     * We want inverse in constant time, therefore we utilize the fact
+     * order must be prime and use Fermats Little Theorem instead.
+     */
+    if (!BN_set_word(e, 2))
+        goto err;
+    if (!BN_sub(e, group->order, e))
+        goto err;
+    /*-
+     * Exponent e is public.
+     * No need for scatter-gather or BN_FLG_CONSTTIME.
+     */
+    if (!BN_mod_exp_mont(r, x, e, group->order, ctx, group->mont_data))
+        goto err;
+
+    ret = 1;
+
+ err:
+    BN_CTX_end(ctx);
+    BN_CTX_free(new_ctx);
+    return ret;
+}
+
+/*-
+ * Default behavior, if group->meth->field_inverse_mod_ord is NULL:
+ * - When group->order is even, this function returns an error.
+ * - When group->order is otherwise composite, the correctness
+ *   of the output is not guaranteed.
+ * - When x is outside the range [1, group->order), the correctness
+ *   of the output is not guaranteed.
+ * - Otherwise, this function returns the multiplicative inverse in the
+ *   range [1, group->order).
+ *
+ * EC_METHODs must implement their own field_inverse_mod_ord for
+ * other functionality.
+ */
+int ec_group_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
+                            const BIGNUM *x, BN_CTX *ctx)
+{
+    if (group->meth->field_inverse_mod_ord != NULL)
+        return group->meth->field_inverse_mod_ord(group, res, x, ctx);
+    else
+        return ec_field_inverse_mod_ord(group, res, x, ctx);
+}
+
+/*-
+ * Coordinate blinding for EC_POINT.
+ *
+ * The underlying EC_METHOD can optionally implement this function:
+ * underlying implementations should return 0 on errors, or 1 on
+ * success.
+ *
+ * This wrapper returns 1 in case the underlying EC_METHOD does not
+ * support coordinate blinding.
+ */
+int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx)
+{
+    if (group->meth->blind_coordinates == NULL)
+        return 1; /* ignore if not implemented */
+
+    return group->meth->blind_coordinates(group, p, ctx);
+}