avoid potential infinite loop in final reduction round of BN_GF2m_mod_arr()
[openssl.git] / crypto / bn / bn_gf2m.c
index 1cdad7473b464aafe3ffef5f63b7caa1ec73bea7..f7551dacd91d08372b2f85f5bea5d4e4dbba37c9 100644 (file)
@@ -121,74 +121,12 @@ static const BN_ULONG SQR_tb[16] =
     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
 #endif
-#ifdef SIXTEEN_BIT
-#define SQR1(w) \
-    SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
-#define SQR0(w) \
-    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
-#endif
-#ifdef EIGHT_BIT
-#define SQR1(w) \
-    SQR_tb[(w) >>  4 & 0xF]
-#define SQR0(w) \
-    SQR_tb[(w)       & 15]
-#endif
 
 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
  * result is a polynomial r with degree < 2 * BN_BITS - 1
  * The caller MUST ensure that the variables have the right amount
  * of space allocated.
  */
-#ifdef EIGHT_BIT
-static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
-       {
-       register BN_ULONG h, l, s;
-       BN_ULONG tab[4], top1b = a >> 7;
-       register BN_ULONG a1, a2;
-
-       a1 = a & (0x7F); a2 = a1 << 1;
-
-       tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
-
-       s = tab[b      & 0x3]; l  = s;
-       s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
-       s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
-       s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
-       
-       /* compensate for the top bit of a */
-
-       if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } 
-
-       *r1 = h; *r0 = l;
-       } 
-#endif
-#ifdef SIXTEEN_BIT
-static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
-       {
-       register BN_ULONG h, l, s;
-       BN_ULONG tab[4], top1b = a >> 15; 
-       register BN_ULONG a1, a2;
-
-       a1 = a & (0x7FFF); a2 = a1 << 1;
-
-       tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
-
-       s = tab[b      & 0x3]; l  = s;
-       s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
-       s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
-       s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
-       s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
-       s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
-       s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
-       s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
-
-       /* compensate for the top bit of a */
-
-       if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } 
-
-       *r1 = h; *r0 = l;
-       } 
-#endif
 #ifdef THIRTY_TWO_BIT
 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
        {
@@ -228,7 +166,7 @@ static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const
        BN_ULONG tab[16], top3b = a >> 61;
        register BN_ULONG a1, a2, a4, a8;
 
-       a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
+       a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
 
        tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
        tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
@@ -288,6 +226,9 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
        int i;
        const BIGNUM *at, *bt;
 
+       bn_check_top(a);
+       bn_check_top(b);
+
        if (a->top < b->top) { at = b; bt = a; }
        else { at = a; bt = b; }
 
@@ -317,15 +258,20 @@ int       BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
 
 
 /* Performs modular reduction of a and store result in r.  r could be a. */
-int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
+int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
        {
        int j, k;
        int n, dN, d0, d1;
        BN_ULONG zz, *z;
-       
+
+       bn_check_top(a);
+
        if (!p[0])
+               {
                /* reduction mod 1 => return 0 */
-               return BN_zero(r);
+               BN_zero(r);
+               return 1;
+               }
 
        /* Since the algorithm does reduction in the r value, if a != r, copy
         * the contents of a into r so we can do reduction in r. 
@@ -376,7 +322,11 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
                if (zz == 0) break;
                d1 = BN_BITS2 - d0;
                
-               if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
+               /* clear up the top d1 bits */
+               if (d0)
+                       z[dN] = (z[dN] << d1) >> d1;
+               else
+                       z[dN] = 0;
                z[0] ^= zz; /* reduction t^0 component */
 
                for (k = 1; p[k] != 0; k++)
@@ -397,7 +347,6 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
                }
 
        bn_correct_top(r);
-       
        return 1;
        }
 
@@ -409,9 +358,12 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
  */
 int    BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
        {
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL, ret = 0;
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       int ret = 0;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
+       bn_check_top(a);
+       bn_check_top(p);
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -420,7 +372,7 @@ int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
                }
        ret = BN_GF2m_mod_arr(r, a, arr);
        bn_check_top(r);
-  err:
+err:
        if (arr) OPENSSL_free(arr);
        return ret;
        }
@@ -429,17 +381,19 @@ int       BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
 /* Compute the product of two polynomials a and b, reduce modulo p, and store
  * the result in r.  r could be a or b; a could be b.
  */
-int    BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
        {
        int zlen, i, j, k, ret = 0;
        BIGNUM *s;
        BN_ULONG x1, x0, y1, y0, zz[4];
-       
+
+       bn_check_top(a);
+       bn_check_top(b);
+
        if (a == b)
                {
                return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
                }
-       
 
        BN_CTX_start(ctx);
        if ((s = BN_CTX_get(ctx)) == NULL) goto err;
@@ -468,10 +422,9 @@ int        BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig
                ret = 1;
        bn_check_top(r);
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
-       
        }
 
 /* Compute the product of two polynomials a and b, reduce modulo p, and store
@@ -483,9 +436,13 @@ int        BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig
  */
 int    BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
        {
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL, ret = 0;
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       int ret = 0;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
+       bn_check_top(a);
+       bn_check_top(b);
+       bn_check_top(p);
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -494,18 +451,19 @@ int       BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p
                }
        ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
        bn_check_top(r);
-  err:
+err:
        if (arr) OPENSSL_free(arr);
        return ret;
        }
 
 
 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
-int    BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
        {
        int i, ret = 0;
        BIGNUM *s;
-       
+
+       bn_check_top(a);
        BN_CTX_start(ctx);
        if ((s = BN_CTX_get(ctx)) == NULL) return 0;
        if (!bn_wexpand(s, 2 * a->top)) goto err;
@@ -521,7 +479,7 @@ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_C
        if (!BN_GF2m_mod_arr(r, s, p)) goto err;
        bn_check_top(r);
        ret = 1;
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -534,9 +492,13 @@ int        BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_C
  */
 int    BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        {
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL, ret = 0;
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       int ret = 0;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
+
+       bn_check_top(a);
+       bn_check_top(p);
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -545,7 +507,7 @@ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
                }
        ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
        bn_check_top(r);
-  err:
+err:
        if (arr) OPENSSL_free(arr);
        return ret;
        }
@@ -561,6 +523,9 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        BIGNUM *b, *c, *u, *v, *tmp;
        int ret = 0;
 
+       bn_check_top(a);
+       bn_check_top(p);
+
        BN_CTX_start(ctx);
        
        b = BN_CTX_get(ctx);
@@ -570,7 +535,6 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        if (v == NULL) goto err;
 
        if (!BN_one(b)) goto err;
-       if (!BN_zero(c)) goto err;
        if (!BN_GF2m_mod(u, a, p)) goto err;
        if (!BN_copy(v, p)) goto err;
 
@@ -605,7 +569,7 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        bn_check_top(r);
        ret = 1;
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -616,11 +580,12 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
  * function is only provided for convenience; for best performance, use the 
  * BN_GF2m_mod_inv function.
  */
-int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
        {
        BIGNUM *field;
        int ret = 0;
 
+       bn_check_top(xx);
        BN_CTX_start(ctx);
        if ((field = BN_CTX_get(ctx)) == NULL) goto err;
        if (!BN_GF2m_arr2poly(p, field)) goto err;
@@ -628,7 +593,7 @@ int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_
        ret = BN_GF2m_mod_inv(r, xx, field, ctx);
        bn_check_top(r);
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -642,7 +607,11 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
        {
        BIGNUM *xinv = NULL;
        int ret = 0;
-       
+
+       bn_check_top(y);
+       bn_check_top(x);
+       bn_check_top(p);
+
        BN_CTX_start(ctx);
        xinv = BN_CTX_get(ctx);
        if (xinv == NULL) goto err;
@@ -652,7 +621,7 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
        bn_check_top(r);
        ret = 1;
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -668,6 +637,10 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
        BIGNUM *a, *b, *u, *v;
        int ret = 0;
 
+       bn_check_top(y);
+       bn_check_top(x);
+       bn_check_top(p);
+
        BN_CTX_start(ctx);
        
        a = BN_CTX_get(ctx);
@@ -680,7 +653,6 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
        if (!BN_GF2m_mod(u, y, p)) goto err;
        if (!BN_GF2m_mod(a, x, p)) goto err;
        if (!BN_copy(b, p)) goto err;
-       if (!BN_zero(v)) goto err;
        
        while (!BN_is_odd(a))
                {
@@ -721,7 +693,7 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
        bn_check_top(r);
        ret = 1;
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -734,11 +706,14 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
  * function is only provided for convenience; for best performance, use the 
  * BN_GF2m_mod_div function.
  */
-int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
        {
        BIGNUM *field;
        int ret = 0;
 
+       bn_check_top(yy);
+       bn_check_top(xx);
+
        BN_CTX_start(ctx);
        if ((field = BN_CTX_get(ctx)) == NULL) goto err;
        if (!BN_GF2m_arr2poly(p, field)) goto err;
@@ -746,7 +721,7 @@ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const uns
        ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
        bn_check_top(r);
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -756,17 +731,19 @@ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const uns
  * the result in r.  r could be a.
  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
  */
-int    BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
        {
        int ret = 0, i, n;
        BIGNUM *u;
-       
+
+       bn_check_top(a);
+       bn_check_top(b);
+
        if (BN_is_zero(b))
                return(BN_one(r));
 
        if (BN_abs_is_word(b, 1))
                return (BN_copy(r, a) != NULL);
-       
 
        BN_CTX_start(ctx);
        if ((u = BN_CTX_get(ctx)) == NULL) goto err;
@@ -784,10 +761,8 @@ int        BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig
                }
        if (!BN_copy(r, u)) goto err;
        bn_check_top(r);
-
        ret = 1;
-
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -801,9 +776,13 @@ int        BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsig
  */
 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
        {
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL, ret = 0;
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       int ret = 0;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
+       bn_check_top(a);
+       bn_check_top(b);
+       bn_check_top(p);
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -812,7 +791,7 @@ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p
                }
        ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
        bn_check_top(r);
-  err:
+err:
        if (arr) OPENSSL_free(arr);
        return ret;
        }
@@ -821,24 +800,28 @@ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p
  * the result in r.  r could be a.
  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
  */
-int    BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
        {
        int ret = 0;
        BIGNUM *u;
 
+       bn_check_top(a);
+
        if (!p[0])
+               {
                /* reduction mod 1 => return 0 */
-               return BN_zero(r);
-       
+               BN_zero(r);
+               return 1;
+               }
+
        BN_CTX_start(ctx);
        if ((u = BN_CTX_get(ctx)) == NULL) goto err;
        
-       if (!BN_zero(u)) goto err;
        if (!BN_set_bit(u, p[0] - 1)) goto err;
        ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
        bn_check_top(r);
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -852,18 +835,21 @@ int       BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_
  */
 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        {
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL, ret = 0;
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       int ret = 0;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
+       bn_check_top(a);
+       bn_check_top(p);
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
-               BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
+               BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
                goto err;
                }
        ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
        bn_check_top(r);
-  err:
+err:
        if (arr) OPENSSL_free(arr);
        return ret;
        }
@@ -871,15 +857,19 @@ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
  */
-int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
        {
-       int ret = 0, count = 0;
-       unsigned int j;
+       int ret = 0, count = 0, j;
        BIGNUM *a, *z, *rho, *w, *w2, *tmp;
 
+       bn_check_top(a_);
+
        if (!p[0])
+               {
                /* reduction mod 1 => return 0 */
-               return BN_zero(r);
+               BN_zero(r);
+               return 1;
+               }
 
        BN_CTX_start(ctx);
        a = BN_CTX_get(ctx);
@@ -891,7 +881,8 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
        
        if (BN_is_zero(a))
                {
-               ret = BN_zero(r);
+               BN_zero(r);
+               ret = 1;
                goto err;
                }
 
@@ -917,7 +908,7 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
                        {
                        if (!BN_rand(rho, p[0], 0, 0)) goto err;
                        if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
-                       if (!BN_zero(z)) goto err;
+                       BN_zero(z);
                        if (!BN_copy(w, rho)) goto err;
                        for (j = 1; j <= p[0] - 1; j++)
                                {
@@ -938,14 +929,18 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
        
        if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
        if (!BN_GF2m_add(w, z, w)) goto err;
-       if (BN_GF2m_cmp(w, a)) goto err;
+       if (BN_GF2m_cmp(w, a))
+               {
+               BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
+               goto err;
+               }
 
        if (!BN_copy(r, z)) goto err;
        bn_check_top(r);
 
        ret = 1;
 
-  err:
+err:
        BN_CTX_end(ctx);
        return ret;
        }
@@ -958,9 +953,13 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
  */
 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        {
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL, ret = 0;
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       int ret = 0;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
+       bn_check_top(a);
+       bn_check_top(p);
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
+                                               max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -969,26 +968,23 @@ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *
                }
        ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
        bn_check_top(r);
-  err:
+err:
        if (arr) OPENSSL_free(arr);
        return ret;
        }
 
 /* Convert the bit-string representation of a polynomial
- * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
- * of integers corresponding to the bits with non-zero coefficient.
+ * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding 
+ * to the bits with non-zero coefficient.  Array is terminated with -1.
  * Up to max elements of the array will be filled.  Return value is total
- * number of coefficients that would be extracted if array was large enough.
+ * number of array elements that would be filled if array was large enough.
  */
-int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
+int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
        {
        int i, j, k = 0;
        BN_ULONG mask;
 
-       if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
-               /* a_0 == 0 => return error (the unsigned int array
-                * must be terminated by 0)
-                */
+       if (BN_is_zero(a))
                return 0;
 
        for (i = a->top - 1; i >= 0; i--)
@@ -1008,24 +1004,30 @@ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
                        }
                }
 
+       if (k < max) {
+               p[k] = -1;
+               k++;
+       }
+
        return k;
        }
 
 /* Convert the coefficient array representation of a polynomial to a 
- * bit-string.  The array must be terminated by 0.
+ * bit-string.  The array must be terminated by -1.
  */
-int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
+int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
        {
        int i;
 
+       bn_check_top(a);
        BN_zero(a);
-       for (i = 0; p[i] != 0; i++)
+       for (i = 0; p[i] != -1; i++)
                {
-               BN_set_bit(a, p[i]);
+               if (BN_set_bit(a, p[i]) == 0)
+                       return 0;
                }
-       BN_set_bit(a, 0);
        bn_check_top(a);
-       
+
        return 1;
        }