Change array representation of binary polynomials to make GF2m part of
[openssl.git] / crypto / bn / bn_gf2m.c
index fb3a8a9c7752b7ff8727b1c6921cdc519af25c4f..e962e4f799c5c5081027405b5574bf4b7d10a4e8 100644 (file)
@@ -121,74 +121,12 @@ static const BN_ULONG SQR_tb[16] =
     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
 #endif
-#ifdef SIXTEEN_BIT
-#define SQR1(w) \
-    SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
-#define SQR0(w) \
-    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
-#endif
-#ifdef EIGHT_BIT
-#define SQR1(w) \
-    SQR_tb[(w) >>  4 & 0xF]
-#define SQR0(w) \
-    SQR_tb[(w)       & 15]
-#endif
 
 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
  * result is a polynomial r with degree < 2 * BN_BITS - 1
  * The caller MUST ensure that the variables have the right amount
  * of space allocated.
  */
-#ifdef EIGHT_BIT
-static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
-       {
-       register BN_ULONG h, l, s;
-       BN_ULONG tab[4], top1b = a >> 7;
-       register BN_ULONG a1, a2;
-
-       a1 = a & (0x7F); a2 = a1 << 1;
-
-       tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
-
-       s = tab[b      & 0x3]; l  = s;
-       s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
-       s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
-       s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
-       
-       /* compensate for the top bit of a */
-
-       if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } 
-
-       *r1 = h; *r0 = l;
-       } 
-#endif
-#ifdef SIXTEEN_BIT
-static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
-       {
-       register BN_ULONG h, l, s;
-       BN_ULONG tab[4], top1b = a >> 15; 
-       register BN_ULONG a1, a2;
-
-       a1 = a & (0x7FFF); a2 = a1 << 1;
-
-       tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
-
-       s = tab[b      & 0x3]; l  = s;
-       s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
-       s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
-       s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
-       s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
-       s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
-       s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
-       s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
-
-       /* compensate for the top bit of a */
-
-       if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } 
-
-       *r1 = h; *r0 = l;
-       } 
-#endif
 #ifdef THIRTY_TWO_BIT
 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
        {
@@ -228,7 +166,7 @@ static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const
        BN_ULONG tab[16], top3b = a >> 61;
        register BN_ULONG a1, a2, a4, a8;
 
-       a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
+       a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
 
        tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
        tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
@@ -320,7 +258,7 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
 
 
 /* Performs modular reduction of a and store result in r.  r could be a. */
-int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
+int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
        {
        int j, k;
        int n, dN, d0, d1;
@@ -329,8 +267,11 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
        bn_check_top(a);
 
        if (!p[0])
+               {
                /* reduction mod 1 => return 0 */
-               return BN_zero(r);
+               BN_zero(r);
+               return 1;
+               }
 
        /* Since the algorithm does reduction in the r value, if a != r, copy
         * the contents of a into r so we can do reduction in r. 
@@ -414,11 +355,11 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
 int    BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
        {
        int ret = 0;
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
        bn_check_top(a);
        bn_check_top(p);
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -436,7 +377,7 @@ err:
 /* Compute the product of two polynomials a and b, reduce modulo p, and store
  * the result in r.  r could be a or b; a could be b.
  */
-int    BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
        {
        int zlen, i, j, k, ret = 0;
        BIGNUM *s;
@@ -492,12 +433,12 @@ err:
 int    BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
        {
        int ret = 0;
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
        bn_check_top(a);
        bn_check_top(b);
        bn_check_top(p);
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -513,7 +454,7 @@ err:
 
 
 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
-int    BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
        {
        int i, ret = 0;
        BIGNUM *s;
@@ -548,12 +489,12 @@ err:
 int    BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        {
        int ret = 0;
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
 
        bn_check_top(a);
        bn_check_top(p);
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -590,7 +531,6 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        if (v == NULL) goto err;
 
        if (!BN_one(b)) goto err;
-       if (!BN_zero(c)) goto err;
        if (!BN_GF2m_mod(u, a, p)) goto err;
        if (!BN_copy(v, p)) goto err;
 
@@ -636,7 +576,7 @@ err:
  * function is only provided for convenience; for best performance, use the 
  * BN_GF2m_mod_inv function.
  */
-int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
        {
        BIGNUM *field;
        int ret = 0;
@@ -709,7 +649,6 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
        if (!BN_GF2m_mod(u, y, p)) goto err;
        if (!BN_GF2m_mod(a, x, p)) goto err;
        if (!BN_copy(b, p)) goto err;
-       if (!BN_zero(v)) goto err;
        
        while (!BN_is_odd(a))
                {
@@ -763,7 +702,7 @@ err:
  * function is only provided for convenience; for best performance, use the 
  * BN_GF2m_mod_div function.
  */
-int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
        {
        BIGNUM *field;
        int ret = 0;
@@ -788,7 +727,7 @@ err:
  * the result in r.  r could be a.
  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
  */
-int    BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
        {
        int ret = 0, i, n;
        BIGNUM *u;
@@ -834,12 +773,12 @@ err:
 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
        {
        int ret = 0;
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
        bn_check_top(a);
        bn_check_top(b);
        bn_check_top(p);
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
@@ -857,7 +796,7 @@ err:
  * the result in r.  r could be a.
  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
  */
-int    BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
+int    BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
        {
        int ret = 0;
        BIGNUM *u;
@@ -865,13 +804,15 @@ int       BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_
        bn_check_top(a);
 
        if (!p[0])
+               {
                /* reduction mod 1 => return 0 */
-               return BN_zero(r);
+               BN_zero(r);
+               return 1;
+               }
 
        BN_CTX_start(ctx);
        if ((u = BN_CTX_get(ctx)) == NULL) goto err;
        
-       if (!BN_zero(u)) goto err;
        if (!BN_set_bit(u, p[0] - 1)) goto err;
        ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
        bn_check_top(r);
@@ -891,15 +832,15 @@ err:
 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        {
        int ret = 0;
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
        bn_check_top(a);
        bn_check_top(p);
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
                {
-               BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
+               BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
                goto err;
                }
        ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
@@ -912,7 +853,7 @@ err:
 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
  */
-int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
        {
        int ret = 0, count = 0;
        unsigned int j;
@@ -921,8 +862,11 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
        bn_check_top(a_);
 
        if (!p[0])
+               {
                /* reduction mod 1 => return 0 */
-               return BN_zero(r);
+               BN_zero(r);
+               return 1;
+               }
 
        BN_CTX_start(ctx);
        a = BN_CTX_get(ctx);
@@ -934,7 +878,8 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
        
        if (BN_is_zero(a))
                {
-               ret = BN_zero(r);
+               BN_zero(r);
+               ret = 1;
                goto err;
                }
 
@@ -960,7 +905,7 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
                        {
                        if (!BN_rand(rho, p[0], 0, 0)) goto err;
                        if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
-                       if (!BN_zero(z)) goto err;
+                       BN_zero(z);
                        if (!BN_copy(w, rho)) goto err;
                        for (j = 1; j <= p[0] - 1; j++)
                                {
@@ -981,7 +926,11 @@ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p
        
        if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
        if (!BN_GF2m_add(w, z, w)) goto err;
-       if (BN_GF2m_cmp(w, a)) goto err;
+       if (BN_GF2m_cmp(w, a))
+               {
+               BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
+               goto err;
+               }
 
        if (!BN_copy(r, z)) goto err;
        bn_check_top(r);
@@ -1002,11 +951,11 @@ err:
 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
        {
        int ret = 0;
-       const int max = BN_num_bits(p);
-       unsigned int *arr=NULL;
+       const int max = BN_num_bits(p) + 1;
+       int *arr=NULL;
        bn_check_top(a);
        bn_check_top(p);
-       if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
+       if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
                                                max)) == NULL) goto err;
        ret = BN_GF2m_poly2arr(p, arr, max);
        if (!ret || ret > max)
@@ -1022,20 +971,17 @@ err:
        }
 
 /* Convert the bit-string representation of a polynomial
- * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
- * of integers corresponding to the bits with non-zero coefficient.
+ * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding 
+ * to the bits with non-zero coefficient.  Array is terminated with -1.
  * Up to max elements of the array will be filled.  Return value is total
- * number of coefficients that would be extracted if array was large enough.
+ * number of array elements that would be filled if array was large enough.
  */
-int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
+int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
        {
        int i, j, k = 0;
        BN_ULONG mask;
 
-       if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
-               /* a_0 == 0 => return error (the unsigned int array
-                * must be terminated by 0)
-                */
+       if (BN_is_zero(a))
                return 0;
 
        for (i = a->top - 1; i >= 0; i--)
@@ -1055,23 +1001,28 @@ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
                        }
                }
 
+       if (k < max) {
+               p[k] = -1;
+               k++;
+       }
+
        return k;
        }
 
 /* Convert the coefficient array representation of a polynomial to a 
- * bit-string.  The array must be terminated by 0.
+ * bit-string.  The array must be terminated by -1.
  */
-int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
+int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
        {
        int i;
 
        bn_check_top(a);
        BN_zero(a);
-       for (i = 0; p[i] != 0; i++)
+       for (i = 0; p[i] != -1; i++)
                {
-               BN_set_bit(a, p[i]);
+               if (BN_set_bit(a, p[i]) == 0)
+                       return 0;
                }
-       BN_set_bit(a, 0);
        bn_check_top(a);
 
        return 1;