Support EVP_PKEY_sign() and EVP_PKEY_verify() for EdDSA
[openssl.git] / apps / speed.c
index 0c996f070c4895490436f14a15b8330d26cd8205..66271fddd9dbc7e35cd20bb7b436390277db92ec 100644 (file)
@@ -1,5 +1,6 @@
 /*
- * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  *
  * Licensed under the OpenSSL license (the "License").  You may not use
  * this file except in compliance with the License.  You can obtain a copy
@@ -7,23 +8,8 @@
  * https://www.openssl.org/source/license.html
  */
 
-/* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * Portions of the attached software ("Contribution") are developed by
- * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
- *
- * The Contribution is licensed pursuant to the OpenSSL open source
- * license provided above.
- *
- * The ECDH and ECDSA speed test software is originally written by
- * Sumit Gupta of Sun Microsystems Laboratories.
- *
- */
-
 #undef SECONDS
 #define SECONDS                 3
-#define PRIME_SECONDS   10
 #define RSA_SECONDS             10
 #define DSA_SECONDS             10
 #define ECDSA_SECONDS   10
@@ -34,6 +20,7 @@
 #include <string.h>
 #include <math.h>
 #include "apps.h"
+#include "progs.h"
 #include <openssl/crypto.h>
 #include <openssl/rand.h>
 #include <openssl/err.h>
 # define NO_FORK
 #endif
 
-#undef BUFSIZE
-#define BUFSIZE (1024*16+1)
 #define MAX_MISALIGNMENT 63
 
-#define ALGOR_NUM       30
-#define SIZE_NUM        6
-#define PRIME_NUM       3
+#define ALGOR_NUM       31
 #define RSA_NUM         7
 #define DSA_NUM         3
 
-#define EC_NUM          17
+#define EC_NUM          18
 #define MAX_ECDH_SIZE   256
 #define MISALIGN        64
 
+typedef struct openssl_speed_sec_st {
+    int sym;
+    int rsa;
+    int dsa;
+    int ecdsa;
+    int ecdh;
+} openssl_speed_sec_t;
+
 static volatile int run = 0;
 
 static int mr = 0;
 static int usertime = 1;
 
-typedef void *(*kdf_fn) (
-        const void *in, size_t inlen, void *out, size_t *xoutlen);
-
 typedef struct loopargs_st {
     ASYNC_JOB *inprogress_job;
     ASYNC_WAIT_CTX *wait_ctx;
@@ -154,6 +142,7 @@ typedef struct loopargs_st {
     unsigned char *buf2;
     unsigned char *buf_malloc;
     unsigned char *buf2_malloc;
+    unsigned char *key;
     unsigned int siglen;
 #ifndef OPENSSL_NO_RSA
     RSA *rsa_key[RSA_NUM];
@@ -163,12 +152,10 @@ typedef struct loopargs_st {
 #endif
 #ifndef OPENSSL_NO_EC
     EC_KEY *ecdsa[EC_NUM];
-    EC_KEY *ecdh_a[EC_NUM];
-    EC_KEY *ecdh_b[EC_NUM];
+    EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
     unsigned char *secret_a;
     unsigned char *secret_b;
-    size_t      outlen;
-    kdf_fn      kdf;
+    size_t outlen[EC_NUM];
 #endif
     EVP_CIPHER_CTX *ctx;
     HMAC_CTX *hctx;
@@ -212,7 +199,9 @@ static int AES_cbc_256_encrypt_loop(void *args);
 static int AES_ige_192_encrypt_loop(void *args);
 static int AES_ige_256_encrypt_loop(void *args);
 static int CRYPTO_gcm128_aad_loop(void *args);
+static int RAND_bytes_loop(void *args);
 static int EVP_Update_loop(void *args);
+static int EVP_Update_loop_ccm(void *args);
 static int EVP_Digest_loop(void *args);
 #ifndef OPENSSL_NO_RSA
 static int RSA_sign_loop(void *args);
@@ -225,19 +214,26 @@ static int DSA_verify_loop(void *args);
 #ifndef OPENSSL_NO_EC
 static int ECDSA_sign_loop(void *args);
 static int ECDSA_verify_loop(void *args);
-static int ECDH_compute_key_loop(void *args);
 #endif
-static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);
+static int run_benchmark(int async_jobs, int (*loop_function) (void *),
+                         loopargs_t * loopargs);
 
 static double Time_F(int s);
-static void print_message(const char *s, long num, int length);
+static void print_message(const char *s, long num, int length, int tm);
 static void pkey_print_message(const char *str, const char *str2,
                                long num, int bits, int sec);
 static void print_result(int alg, int run_no, int count, double time_used);
 #ifndef NO_FORK
-static int do_multi(int multi);
+static int do_multi(int multi, int size_num);
 #endif
 
+static const int lengths_list[] = {
+    16, 64, 256, 1024, 8 * 1024, 16 * 1024
+};
+static int lengths_single = 0;
+
+static const int *lengths = lengths_list;
+
 static const char *names[ALGOR_NUM] = {
     "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
     "des cbc", "des ede3", "idea cbc", "seed cbc",
@@ -245,14 +241,11 @@ static const char *names[ALGOR_NUM] = {
     "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
     "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
     "evp", "sha256", "sha512", "whirlpool",
-    "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
+    "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
+    "rand"
 };
 
-static double results[ALGOR_NUM][SIZE_NUM];
-
-static const int lengths[SIZE_NUM] = {
-    16, 64, 256, 1024, 8 * 1024, 16 * 1024
-};
+static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)];
 
 #ifndef OPENSSL_NO_RSA
 static double rsa_results[RSA_NUM][2];
@@ -265,11 +258,6 @@ static double ecdsa_results[EC_NUM][2];
 static double ecdh_results[EC_NUM][1];
 #endif
 
-#if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC)
-static const char rnd_seed[] =
-    "string to make the random number generator think it has entropy";
-#endif
-
 #ifdef SIGALRM
 # if defined(__STDC__) || defined(sgi) || defined(_AIX)
 #  define SIGRETTYPE void
@@ -293,7 +281,8 @@ static SIGRETTYPE sig_done(int sig)
 # if !defined(SIGALRM)
 #  define SIGALRM
 # endif
-static unsigned int lapse, schlock;
+static unsigned int lapse;
+static volatile unsigned int schlock;
 static void alarm_win32(unsigned int secs)
 {
     lapse = secs * 1000;
@@ -345,9 +334,10 @@ static double Time_F(int s)
 }
 #endif
 
-static void multiblock_speed(const EVP_CIPHER *evp_cipher);
+static void multiblock_speed(const EVP_CIPHER *evp_cipher,
+                             const openssl_speed_sec_t *seconds);
 
-static int found(const char *name, const OPT_PAIR * pairs, int *result)
+static int found(const char *name, const OPT_PAIR *pairs, int *result)
 {
     for (; pairs->name; pairs++)
         if (strcmp(name, pairs->name) == 0) {
@@ -360,10 +350,11 @@ static int found(const char *name, const OPT_PAIR * pairs, int *result)
 typedef enum OPTION_choice {
     OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
     OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
-    OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
+    OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM,
+    OPT_PRIMES, OPT_SECONDS, OPT_BYTES
 } OPTION_CHOICE;
 
-OPTIONS speed_options[] = {
+const OPTIONS speed_options[] = {
     {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
     {OPT_HELP_STR, 1, '-', "Valid options are:\n"},
     {"help", OPT_HELP, '-', "Display this summary"},
@@ -372,7 +363,7 @@ OPTIONS speed_options[] = {
      "Time decryption instead of encryption (only EVP)"},
     {"mr", OPT_MR, '-', "Produce machine readable output"},
     {"mb", OPT_MB, '-',
-        "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"},
+     "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"},
     {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
     {"elapsed", OPT_ELAPSED, '-',
      "Measure time in real time instead of CPU user time"},
@@ -380,11 +371,18 @@ OPTIONS speed_options[] = {
     {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
 #endif
 #ifndef OPENSSL_NO_ASYNC
-    {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"},
+    {"async_jobs", OPT_ASYNCJOBS, 'p',
+     "Enable async mode and start pnum jobs"},
 #endif
+    OPT_R_OPTIONS,
 #ifndef OPENSSL_NO_ENGINE
     {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
 #endif
+    {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
+    {"seconds", OPT_SECONDS, 'p',
+     "Run benchmarks for pnum seconds"},
+    {"bytes", OPT_BYTES, 'p',
+     "Run cipher, digest and rand benchmarks on pnum bytes"},
     {NULL},
 };
 
@@ -418,6 +416,7 @@ OPTIONS speed_options[] = {
 #define D_IGE_192_AES   27
 #define D_IGE_256_AES   28
 #define D_GHASH         29
+#define D_RAND          30
 static OPT_PAIR doit_choices[] = {
 #ifndef OPENSSL_NO_MD2
     {"md2", D_MD2},
@@ -430,8 +429,6 @@ static OPT_PAIR doit_choices[] = {
 #endif
 #ifndef OPENSSL_NO_MD5
     {"md5", D_MD5},
-#endif
-#ifndef OPENSSL_NO_MD5
     {"hmac", D_HMAC},
 #endif
     {"sha1", D_SHA1},
@@ -485,6 +482,7 @@ static OPT_PAIR doit_choices[] = {
     {"cast5", D_CBC_CAST},
 #endif
     {"ghash", D_GHASH},
+    {"rand", D_RAND},
     {NULL}
 };
 
@@ -535,6 +533,7 @@ static OPT_PAIR rsa_choices[] = {
 #define R_EC_B409    14
 #define R_EC_B571    15
 #define R_EC_X25519  16
+#define R_EC_X448    17
 #ifndef OPENSSL_NO_EC
 static OPT_PAIR ecdsa_choices[] = {
     {"ecdsap160", R_EC_P160},
@@ -555,6 +554,7 @@ static OPT_PAIR ecdsa_choices[] = {
     {"ecdsab571", R_EC_B571},
     {NULL}
 };
+
 static OPT_PAIR ecdh_choices[] = {
     {"ecdhp160", R_EC_P160},
     {"ecdhp192", R_EC_P192},
@@ -573,6 +573,7 @@ static OPT_PAIR ecdh_choices[] = {
     {"ecdhb409", R_EC_B409},
     {"ecdhb571", R_EC_B571},
     {"ecdhx25519", R_EC_X25519},
+    {"ecdhx448", R_EC_X448},
     {NULL}
 };
 #endif
@@ -583,24 +584,24 @@ static OPT_PAIR ecdh_choices[] = {
 #else
 # define COND(unused_cond) (run && count<0x7fffffff)
 # define COUNT(d) (count)
-#endif                         /* SIGALRM */
+#endif                          /* SIGALRM */
 
 static int testnum;
 
 /* Nb of iterations to do per algorithm and key-size */
-static long c[ALGOR_NUM][SIZE_NUM];
+static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)];
 
 #ifndef OPENSSL_NO_MD2
 static int EVP_Digest_MD2_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char md2[MD2_DIGEST_LENGTH];
     int count;
 
     for (count = 0; COND(c[D_MD2][testnum]); count++) {
         if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
-                NULL))
+                        NULL))
             return -1;
     }
     return count;
@@ -610,14 +611,14 @@ static int EVP_Digest_MD2_loop(void *args)
 #ifndef OPENSSL_NO_MDC2
 static int EVP_Digest_MDC2_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char mdc2[MDC2_DIGEST_LENGTH];
     int count;
 
     for (count = 0; COND(c[D_MDC2][testnum]); count++) {
         if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
-                NULL))
+                        NULL))
             return -1;
     }
     return count;
@@ -627,14 +628,14 @@ static int EVP_Digest_MDC2_loop(void *args)
 #ifndef OPENSSL_NO_MD4
 static int EVP_Digest_MD4_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char md4[MD4_DIGEST_LENGTH];
     int count;
 
     for (count = 0; COND(c[D_MD4][testnum]); count++) {
         if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
-                NULL))
+                        NULL))
             return -1;
     }
     return count;
@@ -644,7 +645,7 @@ static int EVP_Digest_MD4_loop(void *args)
 #ifndef OPENSSL_NO_MD5
 static int MD5_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char md5[MD5_DIGEST_LENGTH];
     int count;
@@ -655,7 +656,7 @@ static int MD5_loop(void *args)
 
 static int HMAC_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     HMAC_CTX *hctx = tempargs->hctx;
     unsigned char hmac[MD5_DIGEST_LENGTH];
@@ -672,7 +673,7 @@ static int HMAC_loop(void *args)
 
 static int SHA1_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char sha[SHA_DIGEST_LENGTH];
     int count;
@@ -683,7 +684,7 @@ static int SHA1_loop(void *args)
 
 static int SHA256_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char sha256[SHA256_DIGEST_LENGTH];
     int count;
@@ -694,7 +695,7 @@ static int SHA256_loop(void *args)
 
 static int SHA512_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char sha512[SHA512_DIGEST_LENGTH];
     int count;
@@ -706,7 +707,7 @@ static int SHA512_loop(void *args)
 #ifndef OPENSSL_NO_WHIRLPOOL
 static int WHIRLPOOL_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
     int count;
@@ -719,13 +720,13 @@ static int WHIRLPOOL_loop(void *args)
 #ifndef OPENSSL_NO_RMD160
 static int EVP_Digest_RMD160_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
     int count;
     for (count = 0; COND(c[D_RMD160][testnum]); count++) {
         if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
-                NULL, EVP_ripemd160(), NULL))
+                        NULL, EVP_ripemd160(), NULL))
             return -1;
     }
     return count;
@@ -736,7 +737,7 @@ static int EVP_Digest_RMD160_loop(void *args)
 static RC4_KEY rc4_ks;
 static int RC4_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     int count;
     for (count = 0; COND(c[D_RC4][testnum]); count++)
@@ -752,24 +753,23 @@ static DES_key_schedule sch2;
 static DES_key_schedule sch3;
 static int DES_ncbc_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     int count;
     for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
         DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
-                &DES_iv, DES_ENCRYPT);
+                         &DES_iv, DES_ENCRYPT);
     return count;
 }
 
 static int DES_ede3_cbc_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     int count;
     for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
         DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
-                &sch, &sch2, &sch3,
-                &DES_iv, DES_ENCRYPT);
+                             &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
     return count;
 }
 #endif
@@ -780,82 +780,76 @@ static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
 static AES_KEY aes_ks1, aes_ks2, aes_ks3;
 static int AES_cbc_128_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     int count;
     for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
         AES_cbc_encrypt(buf, buf,
-                (size_t)lengths[testnum], &aes_ks1,
-                iv, AES_ENCRYPT);
+                        (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
     return count;
 }
 
 static int AES_cbc_192_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     int count;
     for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
         AES_cbc_encrypt(buf, buf,
-                (size_t)lengths[testnum], &aes_ks2,
-                iv, AES_ENCRYPT);
+                        (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
     return count;
 }
 
 static int AES_cbc_256_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     int count;
     for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
         AES_cbc_encrypt(buf, buf,
-                (size_t)lengths[testnum], &aes_ks3,
-                iv, AES_ENCRYPT);
+                        (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
     return count;
 }
 
 static int AES_ige_128_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     int count;
     for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
         AES_ige_encrypt(buf, buf2,
-                (size_t)lengths[testnum], &aes_ks1,
-                iv, AES_ENCRYPT);
+                        (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
     return count;
 }
 
 static int AES_ige_192_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     int count;
     for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
         AES_ige_encrypt(buf, buf2,
-                (size_t)lengths[testnum], &aes_ks2,
-                iv, AES_ENCRYPT);
+                        (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
     return count;
 }
 
 static int AES_ige_256_encrypt_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     int count;
     for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
         AES_ige_encrypt(buf, buf2,
-                (size_t)lengths[testnum], &aes_ks3,
-                iv, AES_ENCRYPT);
+                        (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
     return count;
 }
 
 static int CRYPTO_gcm128_aad_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
     int count;
@@ -864,34 +858,85 @@ static int CRYPTO_gcm128_aad_loop(void *args)
     return count;
 }
 
+static int RAND_bytes_loop(void *args)
+{
+    loopargs_t *tempargs = *(loopargs_t **) args;
+    unsigned char *buf = tempargs->buf;
+    int count;
+
+    for (count = 0; COND(c[D_RAND][testnum]); count++)
+        RAND_bytes(buf, lengths[testnum]);
+    return count;
+}
+
 static long save_count = 0;
 static int decrypt = 0;
 static int EVP_Update_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     EVP_CIPHER_CTX *ctx = tempargs->ctx;
-    int outl, count;
+    int outl, count, rc;
 #ifndef SIGALRM
     int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
 #endif
-    if (decrypt)
-        for (count = 0; COND(nb_iter); count++)
-            EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
-    else
-        for (count = 0; COND(nb_iter); count++)
-            EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+    if (decrypt) {
+        for (count = 0; COND(nb_iter); count++) {
+            rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+            if (rc != 1)
+                EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
+        }
+    } else {
+        for (count = 0; COND(nb_iter); count++) {
+            rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+            if (rc != 1)
+                EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
+        }
+    }
     if (decrypt)
         EVP_DecryptFinal_ex(ctx, buf, &outl);
     else
         EVP_EncryptFinal_ex(ctx, buf, &outl);
     return count;
 }
+/*
+ * CCM does not support streaming. For the purpose of performance measurement,
+ * each message is encrypted using the same (key,iv)-pair. Do not use this
+ * code in your application.
+ */
+static int EVP_Update_loop_ccm(void *args)
+{
+    loopargs_t *tempargs = *(loopargs_t **) args;
+    unsigned char *buf = tempargs->buf;
+    EVP_CIPHER_CTX *ctx = tempargs->ctx;
+    int outl, count;
+    unsigned char tag[12];
+#ifndef SIGALRM
+    int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
+#endif
+    if (decrypt) {
+        for (count = 0; COND(nb_iter); count++) {
+            EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
+            EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag);
+            EVP_DecryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
+            EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+            EVP_DecryptFinal_ex(ctx, buf, &outl);
+        }
+    } else {
+        for (count = 0; COND(nb_iter); count++) {
+            EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
+            EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
+            EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+            EVP_EncryptFinal_ex(ctx, buf, &outl);
+        }
+    }
+    return count;
+}
 
 static const EVP_MD *evp_md = NULL;
 static int EVP_Digest_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char md[EVP_MAX_MD_SIZE];
     int count;
@@ -911,7 +956,7 @@ static long rsa_c[RSA_NUM][2];  /* # RSA iteration test */
 
 static int RSA_sign_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     unsigned int *rsa_num = &tempargs->siglen;
@@ -931,14 +976,15 @@ static int RSA_sign_loop(void *args)
 
 static int RSA_verify_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     unsigned int rsa_num = tempargs->siglen;
     RSA **rsa_key = tempargs->rsa_key;
     int ret, count;
     for (count = 0; COND(rsa_c[testnum][1]); count++) {
-        ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
+        ret =
+            RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
         if (ret <= 0) {
             BIO_printf(bio_err, "RSA verify failure\n");
             ERR_print_errors(bio_err);
@@ -954,7 +1000,7 @@ static int RSA_verify_loop(void *args)
 static long dsa_c[DSA_NUM][2];
 static int DSA_sign_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     DSA **dsa_key = tempargs->dsa_key;
@@ -974,7 +1020,7 @@ static int DSA_sign_loop(void *args)
 
 static int DSA_verify_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     unsigned char *buf2 = tempargs->buf2;
     DSA **dsa_key = tempargs->dsa_key;
@@ -997,15 +1043,14 @@ static int DSA_verify_loop(void *args)
 static long ecdsa_c[EC_NUM][2];
 static int ECDSA_sign_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     EC_KEY **ecdsa = tempargs->ecdsa;
     unsigned char *ecdsasig = tempargs->buf2;
     unsigned int *ecdsasiglen = &tempargs->siglen;
     int ret, count;
     for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
-        ret = ECDSA_sign(0, buf, 20,
-                ecdsasig, ecdsasiglen, ecdsa[testnum]);
+        ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
         if (ret == 0) {
             BIO_printf(bio_err, "ECDSA sign failure\n");
             ERR_print_errors(bio_err);
@@ -1018,15 +1063,14 @@ static int ECDSA_sign_loop(void *args)
 
 static int ECDSA_verify_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
+    loopargs_t *tempargs = *(loopargs_t **) args;
     unsigned char *buf = tempargs->buf;
     EC_KEY **ecdsa = tempargs->ecdsa;
     unsigned char *ecdsasig = tempargs->buf2;
     unsigned int ecdsasiglen = tempargs->siglen;
     int ret, count;
     for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
-        ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
-                ecdsa[testnum]);
+        ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
         if (ret != 1) {
             BIO_printf(bio_err, "ECDSA verify failure\n");
             ERR_print_errors(bio_err);
@@ -1040,38 +1084,24 @@ static int ECDSA_verify_loop(void *args)
 /* ******************************************************************** */
 static long ecdh_c[EC_NUM][1];
 
-static int ECDH_compute_key_loop(void *args)
+static int ECDH_EVP_derive_key_loop(void *args)
 {
-    loopargs_t *tempargs = (loopargs_t *)args;
-    EC_KEY **ecdh_a = tempargs->ecdh_a;
-    EC_KEY **ecdh_b = tempargs->ecdh_b;
-    unsigned char *secret_a = tempargs->secret_a;
+    loopargs_t *tempargs = *(loopargs_t **) args;
+    EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
+    unsigned char *derived_secret = tempargs->secret_a;
     int count;
-    size_t outlen = tempargs->outlen;
-    kdf_fn kdf = tempargs->kdf;
+    size_t *outlen = &(tempargs->outlen[testnum]);
 
-    for (count = 0; COND(ecdh_c[testnum][0]); count++) {
-        ECDH_compute_key(secret_a, outlen,
-                EC_KEY_get0_public_key(ecdh_b[testnum]),
-                ecdh_a[testnum], kdf);
-    }
-    return count;
-}
+    for (count = 0; COND(ecdh_c[testnum][0]); count++)
+        EVP_PKEY_derive(ctx, derived_secret, outlen);
 
-static const size_t KDF1_SHA1_len = 20;
-static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
-                       size_t *outlen)
-{
-    if (*outlen < SHA_DIGEST_LENGTH)
-        return NULL;
-    *outlen = SHA_DIGEST_LENGTH;
-    return SHA1(in, inlen, out);
+    return count;
 }
-#endif      /* ndef OPENSSL_NO_EC */
 
+#endif                          /* OPENSSL_NO_EC */
 
 static int run_benchmark(int async_jobs,
-                         int (*loop_function)(void *), loopargs_t *loopargs)
+                         int (*loop_function) (void *), loopargs_t * loopargs)
 {
     int job_op_count = 0;
     int total_op_count = 0;
@@ -1083,13 +1113,16 @@ static int run_benchmark(int async_jobs,
     run = 1;
 
     if (async_jobs == 0) {
-        return loop_function((void *)loopargs);
+        return loop_function((void *)&loopargs);
     }
 
     for (i = 0; i < async_jobs && !error; i++) {
+        loopargs_t *looparg_item = loopargs + i;
+
+        /* Copy pointer content (looparg_t item address) into async context */
         ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
                               &job_op_count, loop_function,
-                              (void *)(loopargs + i), sizeof(loopargs_t));
+                              (void *)&looparg_item, sizeof(looparg_item));
         switch (ret) {
         case ASYNC_PAUSE:
             ++num_inprogress;
@@ -1124,14 +1157,16 @@ static int run_benchmark(int async_jobs,
             if (loopargs[i].inprogress_job == NULL)
                 continue;
 
-            if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
-                    || num_job_fds > 1) {
+            if (!ASYNC_WAIT_CTX_get_all_fds
+                (loopargs[i].wait_ctx, NULL, &num_job_fds)
+                || num_job_fds > 1) {
                 BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
                 ERR_print_errors(bio_err);
                 error = 1;
                 break;
             }
-            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
+            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
+                                       &num_job_fds);
             FD_SET(job_fd, &waitfdset);
             if (job_fd > max_fd)
                 max_fd = job_fd;
@@ -1139,9 +1174,9 @@ static int run_benchmark(int async_jobs,
 
         if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
             BIO_printf(bio_err,
-                    "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
-                    "Decrease the value of async_jobs\n",
-                    max_fd, FD_SETSIZE);
+                       "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
+                       "Decrease the value of async_jobs\n",
+                       max_fd, FD_SETSIZE);
             ERR_print_errors(bio_err);
             error = 1;
             break;
@@ -1166,14 +1201,16 @@ static int run_benchmark(int async_jobs,
             if (loopargs[i].inprogress_job == NULL)
                 continue;
 
-            if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
-                    || num_job_fds > 1) {
+            if (!ASYNC_WAIT_CTX_get_all_fds
+                (loopargs[i].wait_ctx, NULL, &num_job_fds)
+                || num_job_fds > 1) {
                 BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
                 ERR_print_errors(bio_err);
                 error = 1;
                 break;
             }
-            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
+            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
+                                       &num_job_fds);
 
 #if defined(OPENSSL_SYS_UNIX)
             if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
@@ -1185,9 +1222,10 @@ static int run_benchmark(int async_jobs,
                 continue;
 #endif
 
-            ret = ASYNC_start_job(&loopargs[i].inprogress_job, 
-                    loopargs[i].wait_ctx, &job_op_count, loop_function, 
-                    (void *)(loopargs + i), sizeof(loopargs_t));
+            ret = ASYNC_start_job(&loopargs[i].inprogress_job,
+                                  loopargs[i].wait_ctx, &job_op_count,
+                                  loop_function, (void *)(loopargs + i),
+                                  sizeof(loopargs_t));
             switch (ret) {
             case ASYNC_PAUSE:
                 break;
@@ -1217,13 +1255,13 @@ static int run_benchmark(int async_jobs,
 
 int speed_main(int argc, char **argv)
 {
+    ENGINE *e = NULL;
+    int (*loopfunc)(void *args);
     loopargs_t *loopargs = NULL;
     int async_init = 0;
     int loopargs_len = 0;
     char *prog;
-#ifndef OPENSSL_NO_ENGINE
     const char *engine_id = NULL;
-#endif
     const EVP_CIPHER *evp_cipher = NULL;
     double d = 0.0;
     OPTION_CHOICE o;
@@ -1231,14 +1269,20 @@ int speed_main(int argc, char **argv)
     int doit[ALGOR_NUM] = { 0 };
     int ret = 1, i, k, misalign = 0;
     long count = 0;
+    int size_num = OSSL_NELEM(lengths_list);
+    int keylen;
+    int buflen;
 #ifndef NO_FORK
     int multi = 0;
 #endif
-    int async_jobs = 0;
+    unsigned int async_jobs = 0;
 #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
     || !defined(OPENSSL_NO_EC)
     long rsa_count = 1;
 #endif
+#ifndef OPENSSL_NO_EC
+    size_t loop;
+#endif
 
     /* What follows are the buffers and key material. */
 #ifndef OPENSSL_NO_RC5
@@ -1313,6 +1357,7 @@ int speed_main(int argc, char **argv)
         sizeof(test15360)
     };
     int rsa_doit[RSA_NUM] = { 0 };
+    int primes = RSA_DEFAULT_PRIME_NUM;
 #endif
 #ifndef OPENSSL_NO_DSA
     static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
@@ -1334,7 +1379,7 @@ int speed_main(int argc, char **argv)
         NID_sect233r1, NID_sect283r1, NID_sect409r1,
         NID_sect571r1,
         /* Other */
-        NID_X25519
+        NID_X25519, NID_X448
     };
     static const char *test_curves_names[EC_NUM] = {
         /* Prime Curves */
@@ -1346,7 +1391,7 @@ int speed_main(int argc, char **argv)
         "nistb233", "nistb283", "nistb409",
         "nistb571",
         /* Other */
-        "X25519"
+        "X25519", "X448"
     };
     static const int test_curves_bits[EC_NUM] = {
         160, 192, 224,
@@ -1354,12 +1399,15 @@ int speed_main(int argc, char **argv)
         163, 233, 283,
         409, 571, 163,
         233, 283, 409,
-        571, 253 /* X25519 */
+        571, 253, 448
     };
 
     int ecdsa_doit[EC_NUM] = { 0 };
     int ecdh_doit[EC_NUM] = { 0 };
-#endif  /* ndef OPENSSL_NO_EC */
+#endif                          /* ndef OPENSSL_NO_EC */
+
+    openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
+                                    ECDSA_SECONDS, ECDH_SECONDS };
 
     prog = opt_init(argc, argv, speed_options);
     while ((o = opt_next()) != OPT_EOF) {
@@ -1377,6 +1425,7 @@ int speed_main(int argc, char **argv)
             usertime = 0;
             break;
         case OPT_EVP:
+            evp_md = NULL;
             evp_cipher = EVP_get_cipherbyname(opt_arg());
             if (evp_cipher == NULL)
                 evp_md = EVP_get_digestbyname(opt_arg());
@@ -1397,9 +1446,7 @@ int speed_main(int argc, char **argv)
              * initialised by each child process, not by the parent.
              * So store the name here and run setup_engine() later on.
              */
-#ifndef OPENSSL_NO_ENGINE
             engine_id = opt_arg();
-#endif
             break;
         case OPT_MULTI:
 #ifndef NO_FORK
@@ -1415,6 +1462,12 @@ int speed_main(int argc, char **argv)
                            prog);
                 goto opterr;
             }
+            if (async_jobs > 99999) {
+                BIO_printf(bio_err,
+                           "%s: too many async_jobs\n",
+                           prog);
+                goto opterr;
+            }
 #endif
             break;
         case OPT_MISALIGN:
@@ -1438,13 +1491,30 @@ int speed_main(int argc, char **argv)
             goto end;
 #endif
             break;
+        case OPT_R_CASES:
+            if (!opt_rand(o))
+                goto end;
+            break;
+        case OPT_PRIMES:
+            if (!opt_int(opt_arg(), &primes))
+                goto end;
+            break;
+        case OPT_SECONDS:
+            seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
+                        = seconds.ecdh = atoi(opt_arg());
+            break;
+        case OPT_BYTES:
+            lengths_single = atoi(opt_arg());
+            lengths = &lengths_single;
+            size_num = 1;
+            break;
         }
     }
     argc = opt_num_rest();
     argv = opt_rest();
 
     /* Remaining arguments are algorithms. */
-    for ( ; *argv; argv++) {
+    for (; *argv; argv++) {
         if (found(*argv, doit_choices, &i)) {
             doit[i] = 1;
             continue;
@@ -1460,12 +1530,8 @@ int speed_main(int argc, char **argv)
             continue;
         }
 #ifndef OPENSSL_NO_RSA
-# ifndef RSA_NULL
-        if (strcmp(*argv, "openssl") == 0) {
-            RSA_set_default_method(RSA_PKCS1_OpenSSL());
+        if (strcmp(*argv, "openssl") == 0)
             continue;
-        }
-# endif
         if (strcmp(*argv, "rsa") == 0) {
             rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
                 rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
@@ -1490,21 +1556,19 @@ int speed_main(int argc, char **argv)
         }
 #endif
         if (strcmp(*argv, "aes") == 0) {
-            doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
-                doit[D_CBC_256_AES] = 1;
+            doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
             continue;
         }
 #ifndef OPENSSL_NO_CAMELLIA
         if (strcmp(*argv, "camellia") == 0) {
-            doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
-                doit[D_CBC_256_CML] = 1;
+            doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
             continue;
         }
 #endif
 #ifndef OPENSSL_NO_EC
         if (strcmp(*argv, "ecdsa") == 0) {
-            for (i = 0; i < EC_NUM; i++)
-                ecdsa_doit[i] = 1;
+            for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++)
+                ecdsa_doit[ecdsa_choices[loop].retval] = 1;
             continue;
         }
         if (found(*argv, ecdsa_choices, &i)) {
@@ -1512,8 +1576,8 @@ int speed_main(int argc, char **argv)
             continue;
         }
         if (strcmp(*argv, "ecdh") == 0) {
-            for (i = 0; i < EC_NUM; i++)
-                ecdh_doit[i] = 1;
+            for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++)
+                ecdh_doit[ecdh_choices[loop].retval] = 1;
             continue;
         }
         if (found(*argv, ecdh_choices, &i)) {
@@ -1535,7 +1599,8 @@ int speed_main(int argc, char **argv)
     }
 
     loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
-    loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
+    loopargs =
+        app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
     memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
 
     for (i = 0; i < loopargs_len; i++) {
@@ -1547,8 +1612,12 @@ int speed_main(int argc, char **argv)
             }
         }
 
-        loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
-        loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+        buflen = lengths[size_num - 1] + MAX_MISALIGNMENT + 1;
+        loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
+        loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
+        memset(loopargs[i].buf_malloc, 0, buflen);
+        memset(loopargs[i].buf2_malloc, 0, buflen);
+
         /* Align the start of buffers on a 64 byte boundary */
         loopargs[i].buf = loopargs[i].buf_malloc + misalign;
         loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
@@ -1559,29 +1628,31 @@ int speed_main(int argc, char **argv)
     }
 
 #ifndef NO_FORK
-    if (multi && do_multi(multi))
+    if (multi && do_multi(multi, size_num))
         goto show_res;
 #endif
 
     /* Initialize the engine after the fork */
-    (void)setup_engine(engine_id, 0);
+    e = setup_engine(engine_id, 0);
 
     /* No parameters; turn on everything. */
     if ((argc == 0) && !doit[D_EVP]) {
         for (i = 0; i < ALGOR_NUM; i++)
             if (i != D_EVP)
                 doit[i] = 1;
+#ifndef OPENSSL_NO_RSA
         for (i = 0; i < RSA_NUM; i++)
             rsa_doit[i] = 1;
+#endif
 #ifndef OPENSSL_NO_DSA
         for (i = 0; i < DSA_NUM; i++)
             dsa_doit[i] = 1;
 #endif
 #ifndef OPENSSL_NO_EC
-        for (i = 0; i < EC_NUM; i++)
-            ecdsa_doit[i] = 1;
-        for (i = 0; i < EC_NUM; i++)
-            ecdh_doit[i] = 1;
+        for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++)
+            ecdsa_doit[ecdsa_choices[loop].retval] = 1;
+        for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++)
+            ecdh_doit[ecdh_choices[loop].retval] = 1;
 #endif
     }
     for (i = 0; i < ALGOR_NUM; i++)
@@ -1595,14 +1666,19 @@ int speed_main(int argc, char **argv)
 
 #ifndef OPENSSL_NO_RSA
     for (i = 0; i < loopargs_len; i++) {
+        if (primes > RSA_DEFAULT_PRIME_NUM) {
+            /* for multi-prime RSA, skip this */
+            break;
+        }
         for (k = 0; k < RSA_NUM; k++) {
             const unsigned char *p;
 
             p = rsa_data[k];
-            loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
+            loopargs[i].rsa_key[k] =
+                d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
             if (loopargs[i].rsa_key[k] == NULL) {
-                BIO_printf(bio_err, "internal error loading RSA key number %d\n",
-                        k);
+                BIO_printf(bio_err,
+                           "internal error loading RSA key number %d\n", k);
                 goto end;
             }
         }
@@ -1610,9 +1686,9 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_DSA
     for (i = 0; i < loopargs_len; i++) {
-        loopargs[i].dsa_key[0] = get_dsa512();
-        loopargs[i].dsa_key[1] = get_dsa1024();
-        loopargs[i].dsa_key[2] = get_dsa2048();
+        loopargs[i].dsa_key[0] = get_dsa(512);
+        loopargs[i].dsa_key[1] = get_dsa(1024);
+        loopargs[i].dsa_key[2] = get_dsa(2048);
     }
 #endif
 #ifndef OPENSSL_NO_DES
@@ -1692,8 +1768,9 @@ int speed_main(int argc, char **argv)
     c[D_IGE_192_AES][0] = count;
     c[D_IGE_256_AES][0] = count;
     c[D_GHASH][0] = count;
+    c[D_RAND][0] = count;
 
-    for (i = 1; i < SIZE_NUM; i++) {
+    for (i = 1; i < size_num; i++) {
         long l0, l1;
 
         l0 = (long)lengths[0];
@@ -1710,6 +1787,7 @@ int speed_main(int argc, char **argv)
         c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
         c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
         c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
+        c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1;
 
         l0 = (long)lengths[i - 1];
 
@@ -1743,7 +1821,7 @@ int speed_main(int argc, char **argv)
             rsa_doit[i] = 0;
         else {
             if (rsa_c[i][0] == 0) {
-                rsa_c[i][0] = 1;            /* Set minimum iteration Nb to 1. */
+                rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
                 rsa_c[i][1] = 20;
             }
         }
@@ -1760,7 +1838,7 @@ int speed_main(int argc, char **argv)
             dsa_doit[i] = 0;
         else {
             if (dsa_c[i][0] == 0) {
-                dsa_c[i][0] = 1;            /* Set minimum iteration Nb to 1. */
+                dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
                 dsa_c[i][1] = 1;
             }
         }
@@ -1849,17 +1927,18 @@ int speed_main(int argc, char **argv)
 # else
 /* not worth fixing */
 #  error "You cannot disable DES on systems without SIGALRM."
-# endif                        /* OPENSSL_NO_DES */
+# endif                         /* OPENSSL_NO_DES */
 #else
 # ifndef _WIN32
     signal(SIGALRM, sig_done);
 # endif
-#endif                         /* SIGALRM */
+#endif                          /* SIGALRM */
 
 #ifndef OPENSSL_NO_MD2
     if (doit[D_MD2]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
             d = Time_F(STOP);
@@ -1869,8 +1948,9 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_MDC2
     if (doit[D_MDC2]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
             d = Time_F(STOP);
@@ -1881,8 +1961,9 @@ int speed_main(int argc, char **argv)
 
 #ifndef OPENSSL_NO_MD4
     if (doit[D_MD4]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
             d = Time_F(STOP);
@@ -1893,19 +1974,18 @@ int speed_main(int argc, char **argv)
 
 #ifndef OPENSSL_NO_MD5
     if (doit[D_MD5]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, MD5_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_MD5, testnum, count, d);
         }
     }
-#endif
 
-#ifndef OPENSSL_NO_MD5
     if (doit[D_HMAC]) {
-        char hmac_key[] = "This is a key...";
+        static const char hmac_key[] = "This is a key...";
         int len = strlen(hmac_key);
 
         for (i = 0; i < loopargs_len; i++) {
@@ -1917,8 +1997,9 @@ int speed_main(int argc, char **argv)
 
             HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
         }
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, HMAC_loop, loopargs);
             d = Time_F(STOP);
@@ -1930,8 +2011,9 @@ int speed_main(int argc, char **argv)
     }
 #endif
     if (doit[D_SHA1]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, SHA1_loop, loopargs);
             d = Time_F(STOP);
@@ -1939,8 +2021,9 @@ int speed_main(int argc, char **argv)
         }
     }
     if (doit[D_SHA256]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_SHA256], c[D_SHA256][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, SHA256_loop, loopargs);
             d = Time_F(STOP);
@@ -1948,19 +2031,20 @@ int speed_main(int argc, char **argv)
         }
     }
     if (doit[D_SHA512]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_SHA512], c[D_SHA512][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, SHA512_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_SHA512, testnum, count, d);
         }
     }
-
 #ifndef OPENSSL_NO_WHIRLPOOL
     if (doit[D_WHIRLPOOL]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
             d = Time_F(STOP);
@@ -1971,8 +2055,9 @@ int speed_main(int argc, char **argv)
 
 #ifndef OPENSSL_NO_RMD160
     if (doit[D_RMD160]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_RMD160], c[D_RMD160][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
             d = Time_F(STOP);
@@ -1982,8 +2067,9 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_RC4
     if (doit[D_RC4]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum],
+                          seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, RC4_loop, loopargs);
             d = Time_F(STOP);
@@ -1993,8 +2079,9 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_DES
     if (doit[D_CBC_DES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
             d = Time_F(STOP);
@@ -2003,10 +2090,12 @@ int speed_main(int argc, char **argv)
     }
 
     if (doit[D_EDE3_DES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_EDE3_DES, testnum, count, d);
         }
@@ -2014,74 +2103,83 @@ int speed_main(int argc, char **argv)
 #endif
 
     if (doit[D_CBC_128_AES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_CBC_128_AES, testnum, count, d);
         }
     }
     if (doit[D_CBC_192_AES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_CBC_192_AES, testnum, count, d);
         }
     }
     if (doit[D_CBC_256_AES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_CBC_256_AES, testnum, count, d);
         }
     }
 
     if (doit[D_IGE_128_AES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_IGE_128_AES, testnum, count, d);
         }
     }
     if (doit[D_IGE_192_AES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_IGE_192_AES, testnum, count, d);
         }
     }
     if (doit[D_IGE_256_AES]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             Time_F(START);
-            count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
+            count =
+                run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
             d = Time_F(STOP);
             print_result(D_IGE_256_AES, testnum, count, d);
         }
     }
     if (doit[D_GHASH]) {
         for (i = 0; i < loopargs_len; i++) {
-            loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
-            CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
+            loopargs[i].gcm_ctx =
+                CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
+            CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
+                                (unsigned char *)"0123456789ab", 12);
         }
 
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_GHASH], c[D_GHASH][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
             d = Time_F(STOP);
@@ -2090,16 +2188,16 @@ int speed_main(int argc, char **argv)
         for (i = 0; i < loopargs_len; i++)
             CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
     }
-
 #ifndef OPENSSL_NO_CAMELLIA
     if (doit[D_CBC_128_CML]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_128_CML]);
+            doit[D_CBC_128_CML] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
             print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
-                          lengths[testnum]);
-            if (async_jobs > 0) {
-                BIO_printf(bio_err, "Async mode is not supported, exiting...");
-                exit(1);
-            }
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
                 Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
@@ -2110,9 +2208,14 @@ int speed_main(int argc, char **argv)
         }
     }
     if (doit[D_CBC_192_CML]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_192_CML]);
+            doit[D_CBC_192_CML] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
             print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
-                          lengths[testnum]);
+                          lengths[testnum], seconds.sym);
             if (async_jobs > 0) {
                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
                 exit(1);
@@ -2127,13 +2230,14 @@ int speed_main(int argc, char **argv)
         }
     }
     if (doit[D_CBC_256_CML]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_256_CML]);
+            doit[D_CBC_256_CML] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
             print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
-                          lengths[testnum]);
-            if (async_jobs > 0) {
-                BIO_printf(bio_err, "Async mode is not supported, exiting...");
-                exit(1);
-            }
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
                 Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
@@ -2146,12 +2250,14 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_IDEA
     if (doit[D_CBC_IDEA]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
-            if (async_jobs > 0) {
-                BIO_printf(bio_err, "Async mode is not supported, exiting...");
-                exit(1);
-            }
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_IDEA]);
+            doit[D_CBC_IDEA] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
+            print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
                 IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
@@ -2164,12 +2270,14 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_SEED
     if (doit[D_CBC_SEED]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
-            if (async_jobs > 0) {
-                BIO_printf(bio_err, "Async mode is not supported, exiting...");
-                exit(1);
-            }
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_SEED]);
+            doit[D_CBC_SEED] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
+            print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
                 SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
@@ -2181,8 +2289,14 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_RC2
     if (doit[D_CBC_RC2]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_RC2]);
+            doit[D_CBC_RC2] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
+            print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
+                          lengths[testnum], seconds.sym);
             if (async_jobs > 0) {
                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
                 exit(1);
@@ -2199,8 +2313,14 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_RC5
     if (doit[D_CBC_RC5]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_RC5]);
+            doit[D_CBC_RC5] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
+            print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
+                          lengths[testnum], seconds.sym);
             if (async_jobs > 0) {
                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
                 exit(1);
@@ -2217,12 +2337,14 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_BF
     if (doit[D_CBC_BF]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
-            if (async_jobs > 0) {
-                BIO_printf(bio_err, "Async mode is not supported, exiting...");
-                exit(1);
-            }
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_BF]);
+            doit[D_CBC_BF] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
+            print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
                 BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
@@ -2235,12 +2357,14 @@ int speed_main(int argc, char **argv)
 #endif
 #ifndef OPENSSL_NO_CAST
     if (doit[D_CBC_CAST]) {
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
-            print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
-            if (async_jobs > 0) {
-                BIO_printf(bio_err, "Async mode is not supported, exiting...");
-                exit(1);
-            }
+        if (async_jobs > 0) {
+            BIO_printf(bio_err, "Async mode is not supported with %s\n",
+                       names[D_CBC_CAST]);
+            doit[D_CBC_CAST] = 0;
+        }
+        for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
+            print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
+                          lengths[testnum], seconds.sym);
             Time_F(START);
             for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
                 CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
@@ -2251,9 +2375,18 @@ int speed_main(int argc, char **argv)
         }
     }
 #endif
+    if (doit[D_RAND]) {
+        for (testnum = 0; testnum < size_num; testnum++) {
+            print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
+                          seconds.sym);
+            Time_F(START);
+            count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
+            d = Time_F(STOP);
+            print_result(D_RAND, testnum, count, d);
+        }
+    }
 
     if (doit[D_EVP]) {
-#ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
         if (multiblock && evp_cipher) {
             if (!
                 (EVP_CIPHER_flags(evp_cipher) &
@@ -2266,12 +2399,11 @@ int speed_main(int argc, char **argv)
                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
                 exit(1);
             }
-            multiblock_speed(evp_cipher);
+            multiblock_speed(evp_cipher, &seconds);
             ret = 0;
             goto end;
         }
-#endif
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             if (evp_cipher) {
 
                 names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
@@ -2279,19 +2411,33 @@ int speed_main(int argc, char **argv)
                  * -O3 -fschedule-insns messes up an optimization here!
                  * names[D_EVP] somehow becomes NULL
                  */
-                print_message(names[D_EVP], save_count, lengths[testnum]);
+                print_message(names[D_EVP], save_count, lengths[testnum],
+                              seconds.sym);
 
                 for (k = 0; k < loopargs_len; k++) {
                     loopargs[k].ctx = EVP_CIPHER_CTX_new();
-                    if (decrypt)
-                        EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
-                    else
-                        EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+                    EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL,
+                                      iv, decrypt ? 0 : 1);
+
                     EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
+
+                    keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx);
+                    loopargs[k].key = app_malloc(keylen, "evp_cipher key");
+                    EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
+                    EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
+                                      loopargs[k].key, NULL, -1);
+                    OPENSSL_clear_free(loopargs[k].key, keylen);
+                }
+                switch (EVP_CIPHER_mode(evp_cipher)) {
+                case EVP_CIPH_CCM_MODE:
+                    loopfunc = EVP_Update_loop_ccm;
+                    break;
+                default:
+                    loopfunc = EVP_Update_loop;
                 }
 
                 Time_F(START);
-                count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
+                count = run_benchmark(async_jobs, loopfunc, loopargs);
                 d = Time_F(STOP);
                 for (k = 0; k < loopargs_len; k++) {
                     EVP_CIPHER_CTX_free(loopargs[k].ctx);
@@ -2299,7 +2445,8 @@ int speed_main(int argc, char **argv)
             }
             if (evp_md) {
                 names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
-                print_message(names[D_EVP], save_count, lengths[testnum]);
+                print_message(names[D_EVP], save_count, lengths[testnum],
+                              seconds.sym);
                 Time_F(START);
                 count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
                 d = Time_F(STOP);
@@ -2317,6 +2464,34 @@ int speed_main(int argc, char **argv)
         if (!rsa_doit[testnum])
             continue;
         for (i = 0; i < loopargs_len; i++) {
+            if (primes > 2) {
+                /* we haven't set keys yet,  generate multi-prime RSA keys */
+                BIGNUM *bn = BN_new();
+
+                if (bn == NULL)
+                    goto end;
+                if (!BN_set_word(bn, RSA_F4)) {
+                    BN_free(bn);
+                    goto end;
+                }
+
+                BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n",
+                           rsa_choices[testnum].name);
+
+                loopargs[i].rsa_key[testnum] = RSA_new();
+                if (loopargs[i].rsa_key[testnum] == NULL) {
+                    BN_free(bn);
+                    goto end;
+                }
+
+                if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
+                                                  rsa_bits[testnum],
+                                                  primes, bn, NULL)) {
+                    BN_free(bn);
+                    goto end;
+                }
+                BN_free(bn);
+            }
             st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
                           &loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
             if (st == 0)
@@ -2329,7 +2504,8 @@ int speed_main(int argc, char **argv)
             rsa_count = 1;
         } else {
             pkey_print_message("private", "rsa",
-                               rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
+                               rsa_c[testnum][0], rsa_bits[testnum],
+                               seconds.rsa);
             /* RSA_blinding_on(rsa_key[testnum],NULL); */
             Time_F(START);
             count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
@@ -2338,7 +2514,7 @@ int speed_main(int argc, char **argv)
                        mr ? "+R1:%ld:%d:%.2f\n"
                        : "%ld %d bit private RSA's in %.2fs\n",
                        count, rsa_bits[testnum], d);
-            rsa_results[testnum][0] = d / (double)count;
+            rsa_results[testnum][0] = (double)count / d;
             rsa_count = count;
         }
 
@@ -2355,7 +2531,8 @@ int speed_main(int argc, char **argv)
             rsa_doit[testnum] = 0;
         } else {
             pkey_print_message("public", "rsa",
-                               rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
+                               rsa_c[testnum][1], rsa_bits[testnum],
+                               seconds.rsa);
             Time_F(START);
             count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
             d = Time_F(STOP);
@@ -2363,7 +2540,7 @@ int speed_main(int argc, char **argv)
                        mr ? "+R2:%ld:%d:%.2f\n"
                        : "%ld %d bit public RSA's in %.2fs\n",
                        count, rsa_bits[testnum], d);
-            rsa_results[testnum][1] = d / (double)count;
+            rsa_results[testnum][1] = (double)count / d;
         }
 
         if (rsa_count <= 1) {
@@ -2372,15 +2549,12 @@ int speed_main(int argc, char **argv)
                 rsa_doit[testnum] = 0;
         }
     }
-#endif
+#endif                          /* OPENSSL_NO_RSA */
 
     for (i = 0; i < loopargs_len; i++)
         RAND_bytes(loopargs[i].buf, 36);
 
 #ifndef OPENSSL_NO_DSA
-    if (RAND_status() != 1) {
-        RAND_seed(rnd_seed, sizeof rnd_seed);
-    }
     for (testnum = 0; testnum < DSA_NUM; testnum++) {
         int st = 0;
         if (!dsa_doit[testnum])
@@ -2401,7 +2575,8 @@ int speed_main(int argc, char **argv)
             rsa_count = 1;
         } else {
             pkey_print_message("sign", "dsa",
-                               dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
+                               dsa_c[testnum][0], dsa_bits[testnum],
+                               seconds.dsa);
             Time_F(START);
             count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
             d = Time_F(STOP);
@@ -2409,7 +2584,7 @@ int speed_main(int argc, char **argv)
                        mr ? "+R3:%ld:%d:%.2f\n"
                        : "%ld %d bit DSA signs in %.2fs\n",
                        count, dsa_bits[testnum], d);
-            dsa_results[testnum][0] = d / (double)count;
+            dsa_results[testnum][0] = (double)count / d;
             rsa_count = count;
         }
 
@@ -2426,7 +2601,8 @@ int speed_main(int argc, char **argv)
             dsa_doit[testnum] = 0;
         } else {
             pkey_print_message("verify", "dsa",
-                               dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
+                               dsa_c[testnum][1], dsa_bits[testnum],
+                               seconds.dsa);
             Time_F(START);
             count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
             d = Time_F(STOP);
@@ -2434,7 +2610,7 @@ int speed_main(int argc, char **argv)
                        mr ? "+R4:%ld:%d:%.2f\n"
                        : "%ld %d bit DSA verify in %.2fs\n",
                        count, dsa_bits[testnum], d);
-            dsa_results[testnum][1] = d / (double)count;
+            dsa_results[testnum][1] = (double)count / d;
         }
 
         if (rsa_count <= 1) {
@@ -2443,19 +2619,17 @@ int speed_main(int argc, char **argv)
                 dsa_doit[testnum] = 0;
         }
     }
-#endif
+#endif                          /* OPENSSL_NO_DSA */
 
 #ifndef OPENSSL_NO_EC
-    if (RAND_status() != 1) {
-        RAND_seed(rnd_seed, sizeof rnd_seed);
-    }
     for (testnum = 0; testnum < EC_NUM; testnum++) {
         int st = 1;
 
         if (!ecdsa_doit[testnum])
             continue;           /* Ignore Curve */
         for (i = 0; i < loopargs_len; i++) {
-            loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+            loopargs[i].ecdsa[testnum] =
+                EC_KEY_new_by_curve_name(test_curves[testnum]);
             if (loopargs[i].ecdsa[testnum] == NULL) {
                 st = 0;
                 break;
@@ -2471,7 +2645,8 @@ int speed_main(int argc, char **argv)
                 /* Perform ECDSA signature test */
                 EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
                 st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
-                                &loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
+                                &loopargs[i].siglen,
+                                loopargs[i].ecdsa[testnum]);
                 if (st == 0)
                     break;
             }
@@ -2483,7 +2658,8 @@ int speed_main(int argc, char **argv)
             } else {
                 pkey_print_message("sign", "ecdsa",
                                    ecdsa_c[testnum][0],
-                                   test_curves_bits[testnum], ECDSA_SECONDS);
+                                   test_curves_bits[testnum],
+                                   seconds.ecdsa);
                 Time_F(START);
                 count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
                 d = Time_F(STOP);
@@ -2492,14 +2668,15 @@ int speed_main(int argc, char **argv)
                            mr ? "+R5:%ld:%d:%.2f\n" :
                            "%ld %d bit ECDSA signs in %.2fs \n",
                            count, test_curves_bits[testnum], d);
-                ecdsa_results[testnum][0] = d / (double)count;
+                ecdsa_results[testnum][0] = (double)count / d;
                 rsa_count = count;
             }
 
             /* Perform ECDSA verification test */
             for (i = 0; i < loopargs_len; i++) {
                 st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
-                                  loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
+                                  loopargs[i].siglen,
+                                  loopargs[i].ecdsa[testnum]);
                 if (st != 1)
                     break;
             }
@@ -2511,7 +2688,8 @@ int speed_main(int argc, char **argv)
             } else {
                 pkey_print_message("verify", "ecdsa",
                                    ecdsa_c[testnum][1],
-                                   test_curves_bits[testnum], ECDSA_SECONDS);
+                                   test_curves_bits[testnum],
+                                   seconds.ecdsa);
                 Time_F(START);
                 count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
                 d = Time_F(STOP);
@@ -2519,7 +2697,7 @@ int speed_main(int argc, char **argv)
                            mr ? "+R6:%ld:%d:%.2f\n"
                            : "%ld %d bit ECDSA verify in %.2fs\n",
                            count, test_curves_bits[testnum], d);
-                ecdsa_results[testnum][1] = d / (double)count;
+                ecdsa_results[testnum][1] = (double)count / d;
             }
 
             if (rsa_count <= 1) {
@@ -2530,93 +2708,159 @@ int speed_main(int argc, char **argv)
         }
     }
 
-    if (RAND_status() != 1) {
-        RAND_seed(rnd_seed, sizeof rnd_seed);
-    }
     for (testnum = 0; testnum < EC_NUM; testnum++) {
         int ecdh_checks = 1;
 
         if (!ecdh_doit[testnum])
             continue;
+
         for (i = 0; i < loopargs_len; i++) {
-            loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
-            loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
-            if (loopargs[i].ecdh_a[testnum] == NULL ||
-                loopargs[i].ecdh_b[testnum] == NULL) {
-                ecdh_checks = 0;
-                break;
+            EVP_PKEY_CTX *kctx = NULL;
+            EVP_PKEY_CTX *test_ctx = NULL;
+            EVP_PKEY_CTX *ctx = NULL;
+            EVP_PKEY *key_A = NULL;
+            EVP_PKEY *key_B = NULL;
+            size_t outlen;
+            size_t test_outlen;
+
+            /* Ensure that the error queue is empty */
+            if (ERR_peek_error()) {
+                BIO_printf(bio_err,
+                           "WARNING: the error queue contains previous unhandled errors.\n");
+                ERR_print_errors(bio_err);
             }
-        }
-        if (ecdh_checks == 0) {
-            BIO_printf(bio_err, "ECDH failure.\n");
-            ERR_print_errors(bio_err);
-            rsa_count = 1;
-        } else {
-            for (i = 0; i < loopargs_len; i++) {
-                /* generate two ECDH key pairs */
-                if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) ||
-                        !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) {
-                    BIO_printf(bio_err, "ECDH key generation failure.\n");
+
+            /* Let's try to create a ctx directly from the NID: this works for
+             * curves like Curve25519 that are not implemented through the low
+             * level EC interface.
+             * If this fails we try creating a EVP_PKEY_EC generic param ctx,
+             * then we set the curve by NID before deriving the actual keygen
+             * ctx for that specific curve. */
+            kctx = EVP_PKEY_CTX_new_id(test_curves[testnum], NULL); /* keygen ctx from NID */
+            if (!kctx) {
+                EVP_PKEY_CTX *pctx = NULL;
+                EVP_PKEY *params = NULL;
+
+                /* If we reach this code EVP_PKEY_CTX_new_id() failed and a
+                 * "int_ctx_new:unsupported algorithm" error was added to the
+                 * error queue.
+                 * We remove it from the error queue as we are handling it. */
+                unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
+                if (error == ERR_peek_last_error() && /* oldest and latest errors match */
+                    /* check that the error origin matches */
+                    ERR_GET_LIB(error) == ERR_LIB_EVP &&
+                    ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW &&
+                    ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
+                    ERR_get_error(); /* pop error from queue */
+                if (ERR_peek_error()) {
+                    BIO_printf(bio_err,
+                               "Unhandled error in the error queue during ECDH init.\n");
                     ERR_print_errors(bio_err);
+                    rsa_count = 1;
+                    break;
+                }
+
+                if (            /* Create the context for parameter generation */
+                       !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
+                       /* Initialise the parameter generation */
+                       !EVP_PKEY_paramgen_init(pctx) ||
+                       /* Set the curve by NID */
+                       !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
+                                                               test_curves
+                                                               [testnum]) ||
+                       /* Create the parameter object params */
+                       !EVP_PKEY_paramgen(pctx, &params)) {
                     ecdh_checks = 0;
+                    BIO_printf(bio_err, "ECDH EC params init failure.\n");
+                    ERR_print_errors(bio_err);
                     rsa_count = 1;
-                } else {
-                    int secret_size_a, secret_size_b;
-                    /*
-                     * If field size is not more than 24 octets, then use SHA-1
-                     * hash of result; otherwise, use result (see section 4.8 of
-                     * draft-ietf-tls-ecc-03.txt).
-                     */
-                    int field_size = EC_GROUP_get_degree(
-                            EC_KEY_get0_group(loopargs[i].ecdh_a[testnum]));
-
-                    if (field_size <= 24 * 8) {                 /* 192 bits */
-                        loopargs[i].outlen = KDF1_SHA1_len;
-                        loopargs[i].kdf = KDF1_SHA1;
-                    } else {
-                        loopargs[i].outlen = (field_size + 7) / 8;
-                        loopargs[i].kdf = NULL;
-                    }
-                    secret_size_a =
-                        ECDH_compute_key(loopargs[i].secret_a, loopargs[i].outlen,
-                                EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]),
-                                loopargs[i].ecdh_a[testnum], loopargs[i].kdf);
-                    secret_size_b =
-                        ECDH_compute_key(loopargs[i].secret_b, loopargs[i].outlen,
-                                EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]),
-                                loopargs[i].ecdh_b[testnum], loopargs[i].kdf);
-                    if (secret_size_a != secret_size_b)
-                        ecdh_checks = 0;
-                    else
-                        ecdh_checks = 1;
-
-                    for (k = 0; k < secret_size_a && ecdh_checks == 1; k++) {
-                        if (loopargs[i].secret_a[k] != loopargs[i].secret_b[k])
-                            ecdh_checks = 0;
-                    }
-
-                    if (ecdh_checks == 0) {
-                        BIO_printf(bio_err, "ECDH computations don't match.\n");
-                        ERR_print_errors(bio_err);
-                        rsa_count = 1;
-                        break;
-                    }
+                    break;
                 }
+                /* Create the context for the key generation */
+                kctx = EVP_PKEY_CTX_new(params, NULL);
+
+                EVP_PKEY_free(params);
+                params = NULL;
+                EVP_PKEY_CTX_free(pctx);
+                pctx = NULL;
             }
-            if (ecdh_checks != 0) {
-                pkey_print_message("", "ecdh",
-                        ecdh_c[testnum][0],
-                        test_curves_bits[testnum], ECDH_SECONDS);
-                Time_F(START);
-                count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs);
-                d = Time_F(STOP);
-                BIO_printf(bio_err,
-                        mr ? "+R7:%ld:%d:%.2f\n" :
-                        "%ld %d-bit ECDH ops in %.2fs\n", count,
-                        test_curves_bits[testnum], d);
-                ecdh_results[testnum][0] = d / (double)count;
-                rsa_count = count;
+            if (kctx == NULL ||      /* keygen ctx is not null */
+                !EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) {
+                ecdh_checks = 0;
+                BIO_printf(bio_err, "ECDH keygen failure.\n");
+                ERR_print_errors(bio_err);
+                rsa_count = 1;
+                break;
+            }
+
+            if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
+                !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
+                !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
+                !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
+                !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
+                !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
+                outlen == 0 ||  /* ensure outlen is a valid size */
+                outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
+                ecdh_checks = 0;
+                BIO_printf(bio_err, "ECDH key generation failure.\n");
+                ERR_print_errors(bio_err);
+                rsa_count = 1;
+                break;
+            }
+
+            /* Here we perform a test run, comparing the output of a*B and b*A;
+             * we try this here and assume that further EVP_PKEY_derive calls
+             * never fail, so we can skip checks in the actually benchmarked
+             * code, for maximum performance. */
+            if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
+                !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
+                !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
+                !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
+                !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
+                !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
+                test_outlen != outlen /* compare output length */ ) {
+                ecdh_checks = 0;
+                BIO_printf(bio_err, "ECDH computation failure.\n");
+                ERR_print_errors(bio_err);
+                rsa_count = 1;
+                break;
+            }
+
+            /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
+            if (CRYPTO_memcmp(loopargs[i].secret_a,
+                              loopargs[i].secret_b, outlen)) {
+                ecdh_checks = 0;
+                BIO_printf(bio_err, "ECDH computations don't match.\n");
+                ERR_print_errors(bio_err);
+                rsa_count = 1;
+                break;
             }
+
+            loopargs[i].ecdh_ctx[testnum] = ctx;
+            loopargs[i].outlen[testnum] = outlen;
+
+            EVP_PKEY_free(key_A);
+            EVP_PKEY_free(key_B);
+            EVP_PKEY_CTX_free(kctx);
+            kctx = NULL;
+            EVP_PKEY_CTX_free(test_ctx);
+            test_ctx = NULL;
+        }
+        if (ecdh_checks != 0) {
+            pkey_print_message("", "ecdh",
+                               ecdh_c[testnum][0],
+                               test_curves_bits[testnum],
+                               seconds.ecdh);
+            Time_F(START);
+            count =
+                run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
+            d = Time_F(STOP);
+            BIO_printf(bio_err,
+                       mr ? "+R7:%ld:%d:%.2f\n" :
+                       "%ld %d-bit ECDH ops in %.2fs\n", count,
+                       test_curves_bits[testnum], d);
+            ecdh_results[testnum][0] = (double)count / d;
+            rsa_count = count;
         }
 
         if (rsa_count <= 1) {
@@ -2625,7 +2869,7 @@ int speed_main(int argc, char **argv)
                 ecdh_doit[testnum] = 0;
         }
     }
-#endif
+#endif                          /* OPENSSL_NO_EC */
 #ifndef NO_FORK
  show_res:
 #endif
@@ -2661,7 +2905,7 @@ int speed_main(int argc, char **argv)
                 ("The 'numbers' are in 1000s of bytes per second processed.\n");
             printf("type        ");
         }
-        for (testnum = 0; testnum < SIZE_NUM; testnum++)
+        for (testnum = 0; testnum < size_num; testnum++)
             printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
         printf("\n");
     }
@@ -2673,7 +2917,7 @@ int speed_main(int argc, char **argv)
             printf("+F:%d:%s", k, names[k]);
         else
             printf("%-13s", names[k]);
-        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+        for (testnum = 0; testnum < size_num; testnum++) {
             if (results[k][testnum] > 10000 && !mr)
                 printf(" %11.2fk", results[k][testnum] / 1e3);
             else
@@ -2695,8 +2939,8 @@ int speed_main(int argc, char **argv)
                    k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
         else
             printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
-                   rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
-                   1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
+                   rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
+                   rsa_results[k][0], rsa_results[k][1]);
     }
 #endif
 #ifndef OPENSSL_NO_DSA
@@ -2713,8 +2957,8 @@ int speed_main(int argc, char **argv)
                    k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
         else
             printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
-                   dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
-                   1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
+                   dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
+                   dsa_results[k][0], dsa_results[k][1]);
     }
 #endif
 #ifndef OPENSSL_NO_EC
@@ -2735,8 +2979,8 @@ int speed_main(int argc, char **argv)
             printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
                    test_curves_bits[k],
                    test_curves_names[k],
-                   ecdsa_results[k][0], ecdsa_results[k][1],
-                   1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
+                   1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
+                   ecdsa_results[k][0], ecdsa_results[k][1]);
     }
 
     testnum = 1;
@@ -2756,7 +3000,7 @@ int speed_main(int argc, char **argv)
             printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
                    test_curves_bits[k],
                    test_curves_names[k],
-                   ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
+                   1.0 / ecdh_results[k][0], ecdh_results[k][0]);
     }
 #endif
 
@@ -2779,8 +3023,7 @@ int speed_main(int argc, char **argv)
 #ifndef OPENSSL_NO_EC
         for (k = 0; k < EC_NUM; k++) {
             EC_KEY_free(loopargs[i].ecdsa[k]);
-            EC_KEY_free(loopargs[i].ecdh_a[k]);
-            EC_KEY_free(loopargs[i].ecdh_b[k]);
+            EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
         }
         OPENSSL_free(loopargs[i].secret_a);
         OPENSSL_free(loopargs[i].secret_b);
@@ -2796,17 +3039,18 @@ int speed_main(int argc, char **argv)
         ASYNC_cleanup_thread();
     }
     OPENSSL_free(loopargs);
-    return (ret);
+    release_engine(e);
+    return ret;
 }
 
-static void print_message(const char *s, long num, int length)
+static void print_message(const char *s, long num, int length, int tm)
 {
 #ifdef SIGALRM
     BIO_printf(bio_err,
                mr ? "+DT:%s:%d:%d\n"
-               : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
+               : "Doing %s for %ds on %d size blocks: ", s, tm, length);
     (void)BIO_flush(bio_err);
-    alarm(SECONDS);
+    alarm(tm);
 #else
     BIO_printf(bio_err,
                mr ? "+DN:%s:%ld:%d\n"
@@ -2853,7 +3097,7 @@ static char *sstrsep(char **string, const char *delim)
     if (**string == 0)
         return NULL;
 
-    memset(isdelim, 0, sizeof isdelim);
+    memset(isdelim, 0, sizeof(isdelim));
     isdelim[0] = 1;
 
     while (*delim) {
@@ -2873,7 +3117,7 @@ static char *sstrsep(char **string, const char *delim)
     return token;
 }
 
-static int do_multi(int multi)
+static int do_multi(int multi, int size_num)
 {
     int n;
     int fd[2];
@@ -2914,13 +3158,14 @@ static int do_multi(int multi)
         char *p;
 
         f = fdopen(fds[n], "r");
-        while (fgets(buf, sizeof buf, f)) {
+        while (fgets(buf, sizeof(buf), f)) {
             p = strchr(buf, '\n');
             if (p)
                 *p = '\0';
             if (buf[0] != '+') {
-                BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
-                        buf, n);
+                BIO_printf(bio_err,
+                           "Don't understand line '%s' from child %d\n", buf,
+                           n);
                 continue;
             }
             printf("Got: %s from %d\n", buf, n);
@@ -2931,7 +3176,7 @@ static int do_multi(int multi)
                 p = buf + 3;
                 alg = atoi(sstrsep(&p, sep));
                 sstrsep(&p, sep);
-                for (j = 0; j < SIZE_NUM; ++j)
+                for (j = 0; j < size_num; ++j)
                     results[alg][j] += atof(sstrsep(&p, sep));
             } else if (strncmp(buf, "+F2:", 4) == 0) {
                 int k;
@@ -2942,16 +3187,10 @@ static int do_multi(int multi)
                 sstrsep(&p, sep);
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
-                else
-                    rsa_results[k][0] = d;
+                rsa_results[k][0] += d;
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
-                else
-                    rsa_results[k][1] = d;
+                rsa_results[k][1] += d;
             }
 # ifndef OPENSSL_NO_DSA
             else if (strncmp(buf, "+F3:", 4) == 0) {
@@ -2963,16 +3202,10 @@ static int do_multi(int multi)
                 sstrsep(&p, sep);
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
-                else
-                    dsa_results[k][0] = d;
+                dsa_results[k][0] += d;
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
-                else
-                    dsa_results[k][1] = d;
+                dsa_results[k][1] += d;
             }
 # endif
 # ifndef OPENSSL_NO_EC
@@ -2985,23 +3218,11 @@ static int do_multi(int multi)
                 sstrsep(&p, sep);
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    ecdsa_results[k][0] =
-                        1 / (1 / ecdsa_results[k][0] + 1 / d);
-                else
-                    ecdsa_results[k][0] = d;
+                ecdsa_results[k][0] += d;
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    ecdsa_results[k][1] =
-                        1 / (1 / ecdsa_results[k][1] + 1 / d);
-                else
-                    ecdsa_results[k][1] = d;
-            }
-# endif
-
-# ifndef OPENSSL_NO_EC
-            else if (strncmp(buf, "+F5:", 4) == 0) {
+                ecdsa_results[k][1] += d;
+            } else if (strncmp(buf, "+F5:", 4) == 0) {
                 int k;
                 double d;
 
@@ -3010,18 +3231,15 @@ static int do_multi(int multi)
                 sstrsep(&p, sep);
 
                 d = atof(sstrsep(&p, sep));
-                if (n)
-                    ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
-                else
-                    ecdh_results[k][0] = d;
-
+                ecdh_results[k][0] += d;
             }
 # endif
 
             else if (strncmp(buf, "+H:", 3) == 0) {
                 ;
             } else
-                BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
+                BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
+                           n);
         }
 
         fclose(f);
@@ -3031,26 +3249,39 @@ static int do_multi(int multi)
 }
 #endif
 
-static void multiblock_speed(const EVP_CIPHER *evp_cipher)
+static void multiblock_speed(const EVP_CIPHER *evp_cipher,
+                             const openssl_speed_sec_t *seconds)
 {
-    static int mblengths[] =
+    static const int mblengths_list[] =
         { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
-    int j, count, num = OSSL_NELEM(mblengths);
+    const int *mblengths = mblengths_list;
+    int j, count, keylen, num = OSSL_NELEM(mblengths_list);
     const char *alg_name;
-    unsigned char *inp, *out, no_key[32], no_iv[16];
+    unsigned char *inp, *out, *key, no_key[32], no_iv[16];
     EVP_CIPHER_CTX *ctx;
     double d = 0.0;
 
+    if (lengths_single) {
+        mblengths = &lengths_single;
+        num = 1;
+    }
+
     inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
     out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
     ctx = EVP_CIPHER_CTX_new();
-    EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
-    EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
-                        no_key);
+    EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv);
+
+    keylen = EVP_CIPHER_CTX_key_length(ctx);
+    key = app_malloc(keylen, "evp_cipher key");
+    EVP_CIPHER_CTX_rand_key(ctx, key);
+    EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL);
+    OPENSSL_clear_free(key, keylen);
+
+    EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
     alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
 
     for (j = 0; j < num; j++) {
-        print_message(alg_name, 0, mblengths[j]);
+        print_message(alg_name, 0, mblengths[j], seconds->sym);
         Time_F(START);
         for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
             unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
@@ -3083,8 +3314,8 @@ static void multiblock_speed(const EVP_CIPHER *evp_cipher)
 
                 RAND_bytes(out, 16);
                 len += 16;
-                aad[11] = len >> 8;
-                aad[12] = len;
+                aad[11] = (unsigned char)(len >> 8);
+                aad[12] = (unsigned char)(len);
                 pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
                                           EVP_AEAD_TLS1_AAD_LEN, aad);
                 EVP_Cipher(ctx, out, inp, len + pad);