/** * The Whirlpool hashing function. * *

* References * *

* The Whirlpool algorithm was developed by * Paulo S. L. M. Barreto and * Vincent Rijmen. * * See * P.S.L.M. Barreto, V. Rijmen, * ``The Whirlpool hashing function,'' * NESSIE submission, 2000 (tweaked version, 2001), * * * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and * Vincent Rijmen. Lookup "reference implementations" on * * * ============================================================================= * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * OpenSSL-specific implementation notes. * * WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect * number of *bytes* as input length argument. Bit-oriented routine * as specified by authors is called WHIRLPOOL_BitUpdate[!] and * does not have one-stroke counterpart. * * WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially * to serve WHIRLPOOL_Update. This is done for performance. * * Unlike authors' reference implementation, block processing * routine whirlpool_block is designed to operate on multi-block * input. This is done for performance. */ #include "wp_locl.h" #include int WHIRLPOOL_Init(WHIRLPOOL_CTX *c) { memset(c, 0, sizeof(*c)); return (1); } int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes) { /* * Well, largest suitable chunk size actually is * (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not * to care about excessive calls to WHIRLPOOL_BitUpdate... */ size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4); const unsigned char *inp = _inp; while (bytes >= chunk) { WHIRLPOOL_BitUpdate(c, inp, chunk * 8); bytes -= chunk; inp += chunk; } if (bytes) WHIRLPOOL_BitUpdate(c, inp, bytes * 8); return (1); } void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits) { size_t n; unsigned int bitoff = c->bitoff, bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7; const unsigned char *inp = _inp; /* * This 256-bit increment procedure relies on the size_t being natural * size of CPU register, so that we don't have to mask the value in order * to detect overflows. */ c->bitlen[0] += bits; if (c->bitlen[0] < bits) { /* overflow */ n = 1; do { c->bitlen[n]++; } while (c->bitlen[n] == 0 && ++n < (WHIRLPOOL_COUNTER / sizeof(size_t))); } #ifndef OPENSSL_SMALL_FOOTPRINT reconsider: if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */ while (bits) { if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) { whirlpool_block(c, inp, n); inp += n * WHIRLPOOL_BBLOCK / 8; bits %= WHIRLPOOL_BBLOCK; } else { unsigned int byteoff = bitoff / 8; bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */ if (bits >= bitrem) { bits -= bitrem; bitrem /= 8; memcpy(c->data + byteoff, inp, bitrem); inp += bitrem; whirlpool_block(c, c->data, 1); bitoff = 0; } else { memcpy(c->data + byteoff, inp, bits / 8); bitoff += (unsigned int)bits; bits = 0; } c->bitoff = bitoff; } } } else /* bit-oriented loop */ #endif { /*- inp | +-------+-------+------- ||||||||||||||||||||| +-------+-------+------- +-------+-------+-------+-------+------- |||||||||||||| c->data +-------+-------+-------+-------+------- | c->bitoff/8 */ while (bits) { unsigned int byteoff = bitoff / 8; unsigned char b; #ifndef OPENSSL_SMALL_FOOTPRINT if (bitrem == inpgap) { c->data[byteoff++] |= inp[0] & (0xff >> inpgap); inpgap = 8 - inpgap; bitoff += inpgap; bitrem = 0; /* bitoff%8 */ bits -= inpgap; inpgap = 0; /* bits%8 */ inp++; if (bitoff == WHIRLPOOL_BBLOCK) { whirlpool_block(c, c->data, 1); bitoff = 0; } c->bitoff = bitoff; goto reconsider; } else #endif if (bits >= 8) { b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap))); b &= 0xff; if (bitrem) c->data[byteoff++] |= b >> bitrem; else c->data[byteoff++] = b; bitoff += 8; bits -= 8; inp++; if (bitoff >= WHIRLPOOL_BBLOCK) { whirlpool_block(c, c->data, 1); byteoff = 0; bitoff %= WHIRLPOOL_BBLOCK; } if (bitrem) c->data[byteoff] = b << (8 - bitrem); } else { /* remaining less than 8 bits */ b = (inp[0] << inpgap) & 0xff; if (bitrem) c->data[byteoff++] |= b >> bitrem; else c->data[byteoff++] = b; bitoff += (unsigned int)bits; if (bitoff == WHIRLPOOL_BBLOCK) { whirlpool_block(c, c->data, 1); byteoff = 0; bitoff %= WHIRLPOOL_BBLOCK; } if (bitrem) c->data[byteoff] = b << (8 - bitrem); bits = 0; } c->bitoff = bitoff; } } } int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c) { unsigned int bitoff = c->bitoff, byteoff = bitoff / 8; size_t i, j, v; unsigned char *p; bitoff %= 8; if (bitoff) c->data[byteoff] |= 0x80 >> bitoff; else c->data[byteoff] = 0x80; byteoff++; /* pad with zeros */ if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) { if (byteoff < WHIRLPOOL_BBLOCK / 8) memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff); whirlpool_block(c, c->data, 1); byteoff = 0; } if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) memset(&c->data[byteoff], 0, (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff); /* smash 256-bit c->bitlen in big-endian order */ p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */ for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++) for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8) *p-- = (unsigned char)(v & 0xff); whirlpool_block(c, c->data, 1); if (md) { memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH); memset(c, 0, sizeof(*c)); return (1); } return (0); } unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md) { WHIRLPOOL_CTX ctx; static unsigned char m[WHIRLPOOL_DIGEST_LENGTH]; if (md == NULL) md = m; WHIRLPOOL_Init(&ctx); WHIRLPOOL_Update(&ctx, inp, bytes); WHIRLPOOL_Final(md, &ctx); return (md); }