/* Copyright (c) 2005 Hewlett-Packard Development Company, L.P. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Common registers are assigned as follows: // // COMMON // // t0 Const Tbl Ptr TPtr // t1 Round Constant TRound // t4 Block residual LenResid // t5 Residual Data DTmp // // {in,out}0 Block 0 Cycle RotateM0 // {in,out}1 Block Value 12 M12 // {in,out}2 Block Value 8 M8 // {in,out}3 Block Value 4 M4 // {in,out}4 Block Value 0 M0 // {in,out}5 Block 1 Cycle RotateM1 // {in,out}6 Block Value 13 M13 // {in,out}7 Block Value 9 M9 // {in,out}8 Block Value 5 M5 // {in,out}9 Block Value 1 M1 // {in,out}10 Block 2 Cycle RotateM2 // {in,out}11 Block Value 14 M14 // {in,out}12 Block Value 10 M10 // {in,out}13 Block Value 6 M6 // {in,out}14 Block Value 2 M2 // {in,out}15 Block 3 Cycle RotateM3 // {in,out}16 Block Value 15 M15 // {in,out}17 Block Value 11 M11 // {in,out}18 Block Value 7 M7 // {in,out}19 Block Value 3 M3 // {in,out}20 Scratch Z // {in,out}21 Scratch Y // {in,out}22 Scratch X // {in,out}23 Scratch W // {in,out}24 Digest A A // {in,out}25 Digest B B // {in,out}26 Digest C C // {in,out}27 Digest D D // {in,out}28 Active Data Ptr DPtr // in28 Dummy Value - // out28 Dummy Value - // bt0 Coroutine Link QUICK_RTN // /// These predicates are used for computing the padding block(s) and /// are shared between the driver and digest co-routines // // pt0 Extra Pad Block pExtra // pt1 Load next word pLoad // pt2 Skip next word pSkip // pt3 Search for Pad pNoPad // pt4 Pad Word 0 pPad0 // pt5 Pad Word 1 pPad1 // pt6 Pad Word 2 pPad2 // pt7 Pad Word 3 pPad3 #define DTmp r19 #define LenResid r18 #define QUICK_RTN b6 #define TPtr r14 #define TRound r15 #define pExtra p6 #define pLoad p7 #define pNoPad p9 #define pPad0 p10 #define pPad1 p11 #define pPad2 p12 #define pPad3 p13 #define pSkip p8 // This two below shall remain constant througout whole routine #define pDataOrder p14 #define pHostOrder p15 #define A_ out24 #define B_ out25 #define C_ out26 #define D_ out27 #define DPtr_ out28 #define M0_ out4 #define M1_ out9 #define M10_ out12 #define M11_ out17 #define M12_ out1 #define M13_ out6 #define M14_ out11 #define M15_ out16 #define M2_ out14 #define M3_ out19 #define M4_ out3 #define M5_ out8 #define M6_ out13 #define M7_ out18 #define M8_ out2 #define M9_ out7 #define RotateM0_ out0 #define RotateM1_ out5 #define RotateM2_ out10 #define RotateM3_ out15 #define W_ out23 #define X_ out22 #define Y_ out21 #define Z_ out20 #define A in24 #define B in25 #define C in26 #define D in27 #define DPtr in28 #define M0 in4 #define M1 in9 #define M10 in12 #define M11 in17 #define M12 in1 #define M13 in6 #define M14 in11 #define M15 in16 #define M2 in14 #define M3 in19 #define M4 in3 #define M5 in8 #define M6 in13 #define M7 in18 #define M8 in2 #define M9 in7 #define RotateM0 in0 #define RotateM1 in5 #define RotateM2 in10 #define RotateM3 in15 #define W in23 #define X in22 #define Y in21 #define Z in20 /* register stack configuration for md5_block_asm_host_order(): */ #define MD5_NINP 3 #define MD5_NLOC 0 #define MD5_NOUT 29 #define MD5_NROT 0 /* register stack configuration for helpers: */ #define _NINPUTS MD5_NOUT #define _NLOCALS 0 #define _NOUTPUT 0 #define _NROTATE 24 /* this must be <= _NINPUTS */ #if defined(_HPUX_SOURCE) && !defined(_LP64) #define ADDP addp4 #else #define ADDP add #endif #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) #define HOST_IS_BIG_ENDIAN #endif // Macros for getting the left and right portions of little-endian words #define GETLW(dst, src, align) dep.z dst = src, 32 - 8 * align, 8 * align #define GETRW(dst, src, align) extr.u dst = src, 8 * align, 32 - 8 * align // MD5 driver // // Reads an input block, then calls the digest block // subroutine and adds the results to the accumulated // digest. It allocates 32 outs which the subroutine // uses as it's inputs and rotating // registers. Initializes the round constant pointer and // takes care of saving/restoring ar.lc // /// INPUT // // in0 Context Ptr CtxPtr0 // in1 Input Data Ptr DPtrIn // in2 Integral Blocks BlockCount // rp Return Address - // /// CODE // // v2 Input Align InAlign // t0 Shared w/digest - // t1 Shared w/digest - // t2 Shared w/digest - // t3 Shared w/digest - // t4 Shared w/digest - // t5 Shared w/digest - // t6 PFS Save PFSSave // t7 ar.lc Save LCSave // t8 Saved PR PRSave // t9 2nd CtxPtr CtxPtr1 // t10 Table Base CTable // t11 Table[0] CTable0 // t13 Accumulator A AccumA // t14 Accumulator B AccumB // t15 Accumulator C AccumC // t16 Accumulator D AccumD // pt0 Shared w/digest - // pt1 Shared w/digest - // pt2 Shared w/digest - // pt3 Shared w/digest - // pt4 Shared w/digest - // pt5 Shared w/digest - // pt6 Shared w/digest - // pt7 Shared w/digest - // pt8 Not Aligned pOff // pt8 Blocks Left pAgain #define AccumA r27 #define AccumB r28 #define AccumC r29 #define AccumD r30 #define CTable r24 #define CTable0 r25 #define CtxPtr0 in0 #define CtxPtr1 r23 #define DPtrIn in1 #define BlockCount in2 #define InAlign r10 #define LCSave r21 #define PFSSave r20 #define PRSave r22 #define pAgain p63 #define pOff p63 .text /* md5_block_asm_host_order(MD5_CTX *c, const void *data, size_t num) where: c: a pointer to a structure of this type: typedef struct MD5state_st { MD5_LONG A,B,C,D; MD5_LONG Nl,Nh; MD5_LONG data[MD5_LBLOCK]; unsigned int num; } MD5_CTX; data: a pointer to the input data (may be misaligned) num: the number of 16-byte blocks to hash (i.e., the length of DATA is 16*NUM. */ .type md5_block_asm_data_order, @function .global md5_block_asm_data_order .align 32 .proc md5_block_asm_data_order md5_block_asm_data_order: { .mib cmp.eq pDataOrder,pHostOrder = r0,r0 br.sptk.many .md5_block };; .endp md5_block_asm_data_order .type md5_block_asm_host_order, @function .global md5_block_asm_host_order .proc md5_block_asm_host_order md5_block_asm_host_order: .prologue { .mib cmp.eq pHostOrder,pDataOrder = r0,r0 };; .md5_block: { .mmi .save ar.pfs, PFSSave alloc PFSSave = ar.pfs, MD5_NINP, MD5_NLOC, MD5_NOUT, MD5_NROT ADDP CtxPtr1 = 8, CtxPtr0 mov CTable = ip } { .mmi ADDP DPtrIn = 0, DPtrIn ADDP CtxPtr0 = 0, CtxPtr0 .save ar.lc, LCSave mov LCSave = ar.lc } ;; .pred.rel "mutex",pDataOrder,pHostOrder { .mmi (pDataOrder) add CTable = .md5_tbl_data_order#-.md5_block#, CTable (pHostOrder) add CTable = .md5_tbl_host_order#-.md5_block#, CTable and InAlign = 0x3, DPtrIn } { .mmi ld4 AccumA = [CtxPtr0], 4 ld4 AccumC = [CtxPtr1], 4 .save pr, PRSave mov PRSave = pr .body } ;; { .mmi ld4 AccumB = [CtxPtr0] ld4 AccumD = [CtxPtr1] dep DPtr_ = 0, DPtrIn, 0, 2 } ;; #ifdef HOST_IS_BIG_ENDIAN (pDataOrder) rum psr.be;; // switch to little-endian #endif { .mmb ld4 CTable0 = [CTable], 4 cmp.ne pOff, p0 = 0, InAlign (pOff) br.cond.spnt.many .md5_unaligned } ;; // The FF load/compute loop rotates values three times, so that // loading into M12 here produces the M0 value, M13 -> M1, etc. .md5_block_loop0: { .mmi ld4 M12_ = [DPtr_], 4 mov TPtr = CTable mov TRound = CTable0 } ;; { .mmi ld4 M13_ = [DPtr_], 4 mov A_ = AccumA mov B_ = AccumB } ;; { .mmi ld4 M14_ = [DPtr_], 4 mov C_ = AccumC mov D_ = AccumD } ;; { .mmb ld4 M15_ = [DPtr_], 4 add BlockCount = -1, BlockCount br.call.sptk.many QUICK_RTN = md5_digest_block0 } ;; // Now, we add the new digest values and do some clean-up // before checking if there's another full block to process { .mmi add AccumA = AccumA, A_ add AccumB = AccumB, B_ cmp.ne pAgain, p0 = 0, BlockCount } { .mib add AccumC = AccumC, C_ add AccumD = AccumD, D_ (pAgain) br.cond.dptk.many .md5_block_loop0 } ;; .md5_exit: #ifdef HOST_IS_BIG_ENDIAN (pDataOrder) sum psr.be;; // switch back to big-endian mode #endif { .mmi st4 [CtxPtr0] = AccumB, -4 st4 [CtxPtr1] = AccumD, -4 mov pr = PRSave, 0x1ffff ;; } { .mmi st4 [CtxPtr0] = AccumA st4 [CtxPtr1] = AccumC mov ar.lc = LCSave } ;; { .mib mov ar.pfs = PFSSave br.ret.sptk.few rp } ;; #define MD5UNALIGNED(offset) \ .md5_process##offset: \ { .mib ; \ nop 0x0 ; \ GETRW(DTmp, DTmp, offset) ; \ } ;; \ .md5_block_loop##offset: \ { .mmi ; \ ld4 Y_ = [DPtr_], 4 ; \ mov TPtr = CTable ; \ mov TRound = CTable0 ; \ } ;; \ { .mmi ; \ ld4 M13_ = [DPtr_], 4 ; \ mov A_ = AccumA ; \ mov B_ = AccumB ; \ } ;; \ { .mii ; \ ld4 M14_ = [DPtr_], 4 ; \ GETLW(W_, Y_, offset) ; \ mov C_ = AccumC ; \ } \ { .mmi ; \ mov D_ = AccumD ;; \ or M12_ = W_, DTmp ; \ GETRW(DTmp, Y_, offset) ; \ } \ { .mib ; \ ld4 M15_ = [DPtr_], 4 ; \ add BlockCount = -1, BlockCount ; \ br.call.sptk.many QUICK_RTN = md5_digest_block##offset; \ } ;; \ { .mmi ; \ add AccumA = AccumA, A_ ; \ add AccumB = AccumB, B_ ; \ cmp.ne pAgain, p0 = 0, BlockCount ; \ } \ { .mib ; \ add AccumC = AccumC, C_ ; \ add AccumD = AccumD, D_ ; \ (pAgain) br.cond.dptk.many .md5_block_loop##offset ; \ } ;; \ { .mib ; \ nop 0x0 ; \ nop 0x0 ; \ br.cond.sptk.many .md5_exit ; \ } ;; .align 32 .md5_unaligned: // // Because variable shifts are expensive, we special case each of // the four alignements. In practice, this won't hurt too much // since only one working set of code will be loaded. // { .mib ld4 DTmp = [DPtr_], 4 cmp.eq pOff, p0 = 1, InAlign (pOff) br.cond.dpnt.many .md5_process1 } ;; { .mib cmp.eq pOff, p0 = 2, InAlign nop 0x0 (pOff) br.cond.dpnt.many .md5_process2 } ;; MD5UNALIGNED(3) MD5UNALIGNED(1) MD5UNALIGNED(2) .endp md5_block_asm_host_order // MD5 Perform the F function and load // // Passed the first 4 words (M0 - M3) and initial (A, B, C, D) values, // computes the FF() round of functions, then branches to the common // digest code to finish up with GG(), HH, and II(). // // INPUT // // rp Return Address - // // CODE // // v0 PFS bit bucket PFS // v1 Loop Trip Count LTrip // pt0 Load next word pMore /* For F round: */ #define LTrip r9 #define PFS r8 #define pMore p6 /* For GHI rounds: */ #define T r9 #define U r10 #define V r11 #define COMPUTE(a, b, s, M, R) \ { \ .mii ; \ ld4 TRound = [TPtr], 4 ; \ dep.z Y = Z, 32, 32 ;; \ shrp Z = Z, Y, 64 - s ; \ } ;; \ { \ .mmi ; \ add a = Z, b ; \ mov R = M ; \ nop 0x0 ; \ } ;; #define LOOP(a, b, s, M, R, label) \ { .mii ; \ ld4 TRound = [TPtr], 4 ; \ dep.z Y = Z, 32, 32 ;; \ shrp Z = Z, Y, 64 - s ; \ } ;; \ { .mib ; \ add a = Z, b ; \ mov R = M ; \ br.ctop.sptk.many label ; \ } ;; // G(B, C, D) = (B & D) | (C & ~D) #define G(a, b, c, d, M) \ { .mmi ; \ add Z = M, TRound ; \ and Y = b, d ; \ andcm X = c, d ; \ } ;; \ { .mii ; \ add Z = Z, a ; \ or Y = Y, X ;; \ add Z = Z, Y ; \ } ;; // H(B, C, D) = B ^ C ^ D #define H(a, b, c, d, M) \ { .mmi ; \ add Z = M, TRound ; \ xor Y = b, c ; \ nop 0x0 ; \ } ;; \ { .mii ; \ add Z = Z, a ; \ xor Y = Y, d ;; \ add Z = Z, Y ; \ } ;; // I(B, C, D) = C ^ (B | ~D) // // However, since we have an andcm operator, we use the fact that // // Y ^ Z == ~Y ^ ~Z // // to rewrite the expression as // // I(B, C, D) = ~C ^ (~B & D) #define I(a, b, c, d, M) \ { .mmi ; \ add Z = M, TRound ; \ andcm Y = d, b ; \ andcm X = -1, c ; \ } ;; \ { .mii ; \ add Z = Z, a ; \ xor Y = Y, X ;; \ add Z = Z, Y ; \ } ;; #define GG4(label) \ G(A, B, C, D, M0) \ COMPUTE(A, B, 5, M0, RotateM0) \ G(D, A, B, C, M1) \ COMPUTE(D, A, 9, M1, RotateM1) \ G(C, D, A, B, M2) \ COMPUTE(C, D, 14, M2, RotateM2) \ G(B, C, D, A, M3) \ LOOP(B, C, 20, M3, RotateM3, label) #define HH4(label) \ H(A, B, C, D, M0) \ COMPUTE(A, B, 4, M0, RotateM0) \ H(D, A, B, C, M1) \ COMPUTE(D, A, 11, M1, RotateM1) \ H(C, D, A, B, M2) \ COMPUTE(C, D, 16, M2, RotateM2) \ H(B, C, D, A, M3) \ LOOP(B, C, 23, M3, RotateM3, label) #define II4(label) \ I(A, B, C, D, M0) \ COMPUTE(A, B, 6, M0, RotateM0) \ I(D, A, B, C, M1) \ COMPUTE(D, A, 10, M1, RotateM1) \ I(C, D, A, B, M2) \ COMPUTE(C, D, 15, M2, RotateM2) \ I(B, C, D, A, M3) \ LOOP(B, C, 21, M3, RotateM3, label) #define FFLOAD(a, b, c, d, M, N, s) \ { .mii ; \ (pMore) ld4 N = [DPtr], 4 ; \ add Z = M, TRound ; \ and Y = c, b ; \ } \ { .mmi ; \ andcm X = d, b ;; \ add Z = Z, a ; \ or Y = Y, X ; \ } ;; \ { .mii ; \ ld4 TRound = [TPtr], 4 ; \ add Z = Z, Y ;; \ dep.z Y = Z, 32, 32 ; \ } ;; \ { .mii ; \ nop 0x0 ; \ shrp Z = Z, Y, 64 - s ;; \ add a = Z, b ; \ } ;; #define FFLOOP(a, b, c, d, M, N, s, dest) \ { .mii ; \ (pMore) ld4 N = [DPtr], 4 ; \ add Z = M, TRound ; \ and Y = c, b ; \ } \ { .mmi ; \ andcm X = d, b ;; \ add Z = Z, a ; \ or Y = Y, X ; \ } ;; \ { .mii ; \ ld4 TRound = [TPtr], 4 ; \ add Z = Z, Y ;; \ dep.z Y = Z, 32, 32 ; \ } ;; \ { .mii ; \ nop 0x0 ; \ shrp Z = Z, Y, 64 - s ;; \ add a = Z, b ; \ } \ { .mib ; \ cmp.ne pMore, p0 = 0, LTrip ; \ add LTrip = -1, LTrip ; \ br.ctop.dptk.many dest ; \ } ;; .type md5_digest_block0, @function .align 32 .proc md5_digest_block0 .prologue md5_digest_block0: .altrp QUICK_RTN .body { .mmi alloc PFS = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE mov LTrip = 2 mov ar.lc = 3 } ;; { .mii cmp.eq pMore, p0 = r0, r0 mov ar.ec = 0 nop 0x0 } ;; .md5_FF_round0: FFLOAD(A, B, C, D, M12, RotateM0, 7) FFLOAD(D, A, B, C, M13, RotateM1, 12) FFLOAD(C, D, A, B, M14, RotateM2, 17) FFLOOP(B, C, D, A, M15, RotateM3, 22, .md5_FF_round0) // // !!! Fall through to md5_digest_GHI // .endp md5_digest_block0 .type md5_digest_GHI, @function .align 32 .proc md5_digest_GHI .prologue .regstk _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE md5_digest_GHI: .altrp QUICK_RTN .body // // The following sequence shuffles the block counstants round for the // next round: // // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 // 1 6 11 0 5 10 14 4 9 14 3 8 13 2 7 12 // { .mmi mov Z = M0 mov Y = M15 mov ar.lc = 3 } { .mmi mov X = M2 mov W = M9 mov V = M4 } ;; { .mmi mov M0 = M1 mov M15 = M12 mov ar.ec = 1 } { .mmi mov M2 = M11 mov M9 = M14 mov M4 = M5 } ;; { .mmi mov M1 = M6 mov M12 = M13 mov U = M3 } { .mmi mov M11 = M8 mov M14 = M7 mov M5 = M10 } ;; { .mmi mov M6 = Y mov M13 = X mov M3 = Z } { .mmi mov M8 = W mov M7 = V mov M10 = U } ;; .md5_GG_round: GG4(.md5_GG_round) // The following sequence shuffles the block constants round for the // next round: // // 1 6 11 0 5 10 14 4 9 14 3 8 13 2 7 12 // 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2 { .mmi mov Z = M0 mov Y = M1 mov ar.lc = 3 } { .mmi mov X = M3 mov W = M5 mov V = M6 } ;; { .mmi mov M0 = M4 mov M1 = M11 mov ar.ec = 1 } { .mmi mov M3 = M9 mov U = M8 mov T = M13 } ;; { .mmi mov M4 = Z mov M11 = Y mov M5 = M7 } { .mmi mov M6 = M14 mov M8 = M12 mov M13 = M15 } ;; { .mmi mov M7 = W mov M14 = V nop 0x0 } { .mmi mov M9 = X mov M12 = U mov M15 = T } ;; .md5_HH_round: HH4(.md5_HH_round) // The following sequence shuffles the block constants round for the // next round: // // 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2 // 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9 { .mmi mov Z = M0 mov Y = M15 mov ar.lc = 3 } { .mmi mov X = M10 mov W = M1 mov V = M4 } ;; { .mmi mov M0 = M9 mov M15 = M12 mov ar.ec = 1 } { .mmi mov M10 = M11 mov M1 = M6 mov M4 = M13 } ;; { .mmi mov M9 = M14 mov M12 = M5 mov U = M3 } { .mmi mov M11 = M8 mov M6 = M7 mov M13 = M2 } ;; { .mmi mov M14 = Y mov M5 = X mov M3 = Z } { .mmi mov M8 = W mov M7 = V mov M2 = U } ;; .md5_II_round: II4(.md5_II_round) { .mib nop 0x0 nop 0x0 br.ret.sptk.many QUICK_RTN } ;; .endp md5_digest_GHI #define FFLOADU(a, b, c, d, M, P, N, s, offset) \ { .mii ; \ (pMore) ld4 N = [DPtr], 4 ; \ add Z = M, TRound ; \ and Y = c, b ; \ } \ { .mmi ; \ andcm X = d, b ;; \ add Z = Z, a ; \ or Y = Y, X ; \ } ;; \ { .mii ; \ ld4 TRound = [TPtr], 4 ; \ GETLW(W, P, offset) ; \ add Z = Z, Y ; \ } ;; \ { .mii ; \ or W = W, DTmp ; \ dep.z Y = Z, 32, 32 ;; \ shrp Z = Z, Y, 64 - s ; \ } ;; \ { .mii ; \ add a = Z, b ; \ GETRW(DTmp, P, offset) ; \ mov P = W ; \ } ;; #define FFLOOPU(a, b, c, d, M, P, N, s, offset) \ { .mii ; \ (pMore) ld4 N = [DPtr], 4 ; \ add Z = M, TRound ; \ and Y = c, b ; \ } \ { .mmi ; \ andcm X = d, b ;; \ add Z = Z, a ; \ or Y = Y, X ; \ } ;; \ { .mii ; \ ld4 TRound = [TPtr], 4 ; \ (pMore) GETLW(W, P, offset) ; \ add Z = Z, Y ; \ } ;; \ { .mii ; \ (pMore) or W = W, DTmp ; \ dep.z Y = Z, 32, 32 ;; \ shrp Z = Z, Y, 64 - s ; \ } ;; \ { .mii ; \ add a = Z, b ; \ (pMore) GETRW(DTmp, P, offset) ; \ (pMore) mov P = W ; \ } \ { .mib ; \ cmp.ne pMore, p0 = 0, LTrip ; \ add LTrip = -1, LTrip ; \ br.ctop.sptk.many .md5_FF_round##offset ; \ } ;; #define MD5FBLOCK(offset) \ .type md5_digest_block##offset, @function ; \ \ .align 32 ; \ .proc md5_digest_block##offset ; \ .prologue ; \ .altrp QUICK_RTN ; \ .body ; \ md5_digest_block##offset: \ { .mmi ; \ alloc PFS = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE ; \ mov LTrip = 2 ; \ mov ar.lc = 3 ; \ } ;; \ { .mii ; \ cmp.eq pMore, p0 = r0, r0 ; \ mov ar.ec = 0 ; \ nop 0x0 ; \ } ;; \ \ .pred.rel "mutex", pLoad, pSkip ; \ .md5_FF_round##offset: \ FFLOADU(A, B, C, D, M12, M13, RotateM0, 7, offset) \ FFLOADU(D, A, B, C, M13, M14, RotateM1, 12, offset) \ FFLOADU(C, D, A, B, M14, M15, RotateM2, 17, offset) \ FFLOOPU(B, C, D, A, M15, RotateM0, RotateM3, 22, offset) \ \ { .mib ; \ nop 0x0 ; \ nop 0x0 ; \ br.cond.sptk.many md5_digest_GHI ; \ } ;; \ .endp md5digestBlock ## offset MD5FBLOCK(1) MD5FBLOCK(2) MD5FBLOCK(3) .align 64 .type md5_constants, @object md5_constants: .md5_tbl_data_order: // To ensure little-endian data // order, code as bytes. data1 0x78, 0xa4, 0x6a, 0xd7 // 0 data1 0x56, 0xb7, 0xc7, 0xe8 // 1 data1 0xdb, 0x70, 0x20, 0x24 // 2 data1 0xee, 0xce, 0xbd, 0xc1 // 3 data1 0xaf, 0x0f, 0x7c, 0xf5 // 4 data1 0x2a, 0xc6, 0x87, 0x47 // 5 data1 0x13, 0x46, 0x30, 0xa8 // 6 data1 0x01, 0x95, 0x46, 0xfd // 7 data1 0xd8, 0x98, 0x80, 0x69 // 8 data1 0xaf, 0xf7, 0x44, 0x8b // 9 data1 0xb1, 0x5b, 0xff, 0xff // 10 data1 0xbe, 0xd7, 0x5c, 0x89 // 11 data1 0x22, 0x11, 0x90, 0x6b // 12 data1 0x93, 0x71, 0x98, 0xfd // 13 data1 0x8e, 0x43, 0x79, 0xa6 // 14 data1 0x21, 0x08, 0xb4, 0x49 // 15 data1 0x62, 0x25, 0x1e, 0xf6 // 16 data1 0x40, 0xb3, 0x40, 0xc0 // 17 data1 0x51, 0x5a, 0x5e, 0x26 // 18 data1 0xaa, 0xc7, 0xb6, 0xe9 // 19 data1 0x5d, 0x10, 0x2f, 0xd6 // 20 data1 0x53, 0x14, 0x44, 0x02 // 21 data1 0x81, 0xe6, 0xa1, 0xd8 // 22 data1 0xc8, 0xfb, 0xd3, 0xe7 // 23 data1 0xe6, 0xcd, 0xe1, 0x21 // 24 data1 0xd6, 0x07, 0x37, 0xc3 // 25 data1 0x87, 0x0d, 0xd5, 0xf4 // 26 data1 0xed, 0x14, 0x5a, 0x45 // 27 data1 0x05, 0xe9, 0xe3, 0xa9 // 28 data1 0xf8, 0xa3, 0xef, 0xfc // 29 data1 0xd9, 0x02, 0x6f, 0x67 // 30 data1 0x8a, 0x4c, 0x2a, 0x8d // 31 data1 0x42, 0x39, 0xfa, 0xff // 32 data1 0x81, 0xf6, 0x71, 0x87 // 33 data1 0x22, 0x61, 0x9d, 0x6d // 34 data1 0x0c, 0x38, 0xe5, 0xfd // 35 data1 0x44, 0xea, 0xbe, 0xa4 // 36 data1 0xa9, 0xcf, 0xde, 0x4b // 37 data1 0x60, 0x4b, 0xbb, 0xf6 // 38 data1 0x70, 0xbc, 0xbf, 0xbe // 39 data1 0xc6, 0x7e, 0x9b, 0x28 // 40 data1 0xfa, 0x27, 0xa1, 0xea // 41 data1 0x85, 0x30, 0xef, 0xd4 // 42 data1 0x05, 0x1d, 0x88, 0x04 // 43 data1 0x39, 0xd0, 0xd4, 0xd9 // 44 data1 0xe5, 0x99, 0xdb, 0xe6 // 45 data1 0xf8, 0x7c, 0xa2, 0x1f // 46 data1 0x65, 0x56, 0xac, 0xc4 // 47 data1 0x44, 0x22, 0x29, 0xf4 // 48 data1 0x97, 0xff, 0x2a, 0x43 // 49 data1 0xa7, 0x23, 0x94, 0xab // 50 data1 0x39, 0xa0, 0x93, 0xfc // 51 data1 0xc3, 0x59, 0x5b, 0x65 // 52 data1 0x92, 0xcc, 0x0c, 0x8f // 53 data1 0x7d, 0xf4, 0xef, 0xff // 54 data1 0xd1, 0x5d, 0x84, 0x85 // 55 data1 0x4f, 0x7e, 0xa8, 0x6f // 56 data1 0xe0, 0xe6, 0x2c, 0xfe // 57 data1 0x14, 0x43, 0x01, 0xa3 // 58 data1 0xa1, 0x11, 0x08, 0x4e // 59 data1 0x82, 0x7e, 0x53, 0xf7 // 60 data1 0x35, 0xf2, 0x3a, 0xbd // 61 data1 0xbb, 0xd2, 0xd7, 0x2a // 62 data1 0x91, 0xd3, 0x86, 0xeb // 63 .md5_tbl_host_order: // OS data order, might as well // be little-endian. data4 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee // 0 data4 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 // 4 data4 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be // 8 data4 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 // 12 data4 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa // 16 data4 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 // 20 data4 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed // 24 data4 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a // 28 data4 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c // 32 data4 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 // 36 data4 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 // 40 data4 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 // 44 data4 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 // 48 data4 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 // 52 data4 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 // 56 data4 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 // 60 .size md5_constants#,64*4*2