OPENSSL INSTALLATION -------------------- [This document describes installation on the main supported operating systems, currently the Linux/Unix family, OpenVMS and Windows. Installation on DOS (with djgpp), MacOS (before MacOS X) is described in INSTALL.DJGPP or INSTALL.MacOS, respectively.] To install OpenSSL, you will need: * make * Perl 5 with core modules (please read README.PERL) * The perl module Text::Template (please read README.PERL) * an ANSI C compiler * a development environment in the form of development libraries and C header files * a supported operating system For additional platform specific requirements and other details, please read one of these: * NOTES.VMS (OpenVMS) * NOTES.WIN (any Windows except for Windows CE) Quick Start ----------- If you want to just get on with it, do: on Unix: $ ./config $ make $ make test $ make install on OpenVMS: $ @config $ mms $ mms test $ mms install on Windows (only pick one of the targets for configuration): $ perl Configure { VC-WIN32 | VC-WIN64A | VC-WIN64I | VC-CE } $ nmake $ nmake test $ nmake install [If any of these steps fails, see section Installation in Detail below.] This will build and install OpenSSL in the default location, which is: Unix: normal installation directories under /usr/local OpenVMS: SYS$COMMON:[OPENSSL-'version'...], where 'version' is the OpenSSL version number with underscores instead of periods. Windows: C:\Program Files\OpenSSL or C:\Program Files (x86)\OpenSSL If you want to install it anywhere else, run config like this: On Unix: $ ./config --prefix=/opt/openssl --openssldir=/usr/local/ssl On OpenVMS: $ @config --prefix=PROGRAM:[INSTALLS] --openssldir=SYS$MANAGER:[OPENSSL] Configuration Options --------------------- There are several options to ./config (or ./Configure) to customize the build (note that for Windows, the defaults for --prefix and --openssldir depend in what configuration is used and what Windows implementation OpenSSL is built on. More notes on this in NOTES.WIN): --prefix=DIR The top of the installation directory tree. Defaults are: Unix: /usr/local Windows: C:\Program Files\OpenSSL or C:\Program Files (x86)\OpenSSL OpenVMS: SYS$COMMON:[OPENSSL-'version'] --openssldir=DIR Directory for OpenSSL configuration files, and also the default certificate and key store. Defaults are: Unix: /usr/local/ssl Windows: C:\Program Files\Common Files\SSL or C:\Program Files (x86)\Common Files\SSL OpenVMS: SYS$COMMON:[OPENSSL-COMMON] --api=x.y.z Don't build with support for deprecated APIs below the specified version number. For example "--api=1.1.0" will remove support for all APIS that were deprecated in OpenSSL version 1.1.0 or below. no-afalgeng Don't build the AFALG engine. This option will be forced if on a platform that does not support AFALG. no-asm Do not use assembler code. On some platforms a small amount of assembler code may still be used. no-async Do not build support for async operations. no-autoalginit Don't automatically load all supported ciphers and digests. Typically OpenSSL will make available all of its supported ciphers and digests. For a statically linked application this may be undesirable if small executable size is an objective. This only affects libcrypto. Ciphers and digests will have to be loaded manually using EVP_add_cipher() and EVP_add_digest() if this option is used. This option will force a non-shared build. no-autoerrinit Don't automatically load all libcrypto/libssl error strings. Typically OpenSSL will automatically load human readable error strings. For a statically linked application this may be undesirable if small executable size is an objective. no-capieng Don't build the CAPI engine. This option will be forced if on a platform that does not support CAPI. no-cms Don't build support for CMS features no-comp Don't build support for SSL/TLS compression. If this option is left enabled (the default), then compression will only work if the zlib or zlib-dynamic options are also chosen. enable-crypto-mdebug Build support for debugging memory allocated via OPENSSL_malloc() or OPENSSL_zalloc(). enable-crypto-mdebug-backtrace As for crypto-mdebug, but additionally provide backtrace information for allocated memory. no-ct Don't build support for Certificate Transparency. no-deprecated Don't build with support for any deprecated APIs. This is the same as using "--api" and supplying the latest version number. no-dgram Don't build support for datagram based BIOs. Selecting this option will also force the disabling of DTLS. no-dso Don't build support for loading Dynamic Shared Objects. no-dynamic-engine Don't build the dynamically loaded engines. This only has an effect in a "shared" build no-ec Don't build support for Elliptic Curves. no-ec2m Don't build support for binary Elliptic Curves enable-ec_nistp_64_gcc_128 Enable support for optimised implementations of some commonly used NIST elliptic curves. This is only supported on some platforms. enable-egd Build support for gathering entropy from EGD (Entropy Gathering Daemon). no-engine Don't build support for loading engines. no-err Don't compile in any error strings. no-filenames Don't compile in filename and line number information (e.g. for errors and memory allocation). no-gost Don't build support for GOST based ciphersuites. Note that if this feature is enabled then GOST ciphersuites are only available if the GOST algorithms are also available through loading an externally supplied engine. enable-heartbeats Build support for DTLS heartbeats. no-hw-padlock Don't build the padlock engine. no-makedepend Don't generate dependencies. no-multiblock Don't build support for writing multiple records in one go in libssl (Note: this is a different capability to the pipelining functionality). no-nextprotoneg Don't build support for the NPN TLS extension. no-ocsp Don't build support for OCSP. no-pic Don't build with support for Position Independent Code. no-posix-io Don't use POSIX IO capabilities. no-psk Don't build support for Pre-Shared Key based ciphersuites. no-rdrand Don't use hardware RDRAND capabilities. no-rfc3779 Don't build support for RFC3779 ("X.509 Extensions for IP Addresses and AS Identifiers") sctp Build support for SCTP no-shared Do not create shared libraries, only static ones. See "Note on shared libraries" below. no-sock Don't build support for socket BIOs no-srp Don't build support for SRP or SRP based ciphersuites. no-srtp Don't build SRTP support no-sse2 Exclude SSE2 code paths. Normally SSE2 extension is detected at run-time, but the decision whether or not the machine code will be executed is taken solely on CPU capability vector. This means that if you happen to run OS kernel which does not support SSE2 extension on Intel P4 processor, then your application might be exposed to "illegal instruction" exception. There might be a way to enable support in kernel, e.g. FreeBSD kernel can be compiled with CPU_ENABLE_SSE, and there is a way to disengage SSE2 code pathes upon application start-up, but if you aim for wider "audience" running such kernel, consider no-sse2. Both the 386 and no-asm options imply no-sse2. enable-ssl-trace Build with the SSL Trace capabilities (adds the "-trace" option to s_client and s_server). no-static-engine Don't build the statically linked engines. This only has an impact when not built "shared". no-stdio Don't use any C "stdio" features. Only libcrypto and libssl can be built in this way. Using this option will suppress building the command line applications. Additionally since the OpenSSL tests also use the command line applications the tests will also be skipped. no-threads Don't try to build with support for multi-threaded applications. threads Build with support for multi-threaded applications. Most platforms will enable this by default. However if on a platform where this is not the case then this will usually require additional system-dependent options! See "Note on multi-threading" below. no-ts Don't build Time Stamping Authority support. no-ui Don't build with the "UI" capability (i.e. the set of features enabling text based prompts). enable-unit-test Enable additional unit test APIs. This should not typically be used in production deployments. enable-weak-ssl-ciphers Build support for SSL/TLS ciphers that are considered "weak" (e.g. RC4 based ciphersuites). zlib Build with support for zlib compression/decompression. zlib-dynamic Like "zlib", but has OpenSSL load the zlib library dynamically when needed. This is only supported on systems where loading of shared libraries is supported. 386 On Intel hardware, use the 80386 instruction set only (the default x86 code is more efficient, but requires at least a 486). Note: Use compiler flags for any other CPU specific configuration, e.g. "-m32" to build x86 code on an x64 system. no- Don't build support for negotiating the specified SSL/TLS protocol (one of ssl, ssl3, tls, tls1, tls1_1, tls1_2, dtls, dtls1 or dtls1_2). If "no-tls" is selected then all of tls1, tls1_1 and tls1_2 are disabled. Similarly "no-dtls" will disable dtls1 and dtls1_2. The "no-ssl" option is synonymous with "no-ssl3". Note this only affects version negotiation. OpenSSL will still provide the methods for applications to explicitly select the individual protocol versions. no--method As for no- but in addition do not build the methods for applications to explicitly select individual protocol versions. enable- Build with support for the specified algorithm, where is one of: md2 or rc5. no- Build without support for the specified algorithm, where is one of: bf, blake2, camellia, cast, chacha, cmac, des, dh, dsa, ecdh, ecdsa, idea, md4, md5, mdc2, ocb, ploy1305, rc2, rc4, rmd160, scrypt, seed or whirlpool. The "ripemd" algorithm is deprecated and if used is synonymous with rmd160. -Dxxx, -lxxx, -Lxxx, -fxxx, -mXXX, -Kxxx These system specific options will be passed through to the compiler to allow you to define preprocessor symbols, specify additional libraries, library directories or other compiler options. Installation in Detail ---------------------- 1a. Configure OpenSSL for your operation system automatically: NOTE: This is not available on Windows. $ ./config [options] # Unix or $ @config [options] ! OpenVMS For the remainder of this text, the Unix form will be used in all examples, please use the appropriate form for your platform. This guesses at your operating system (and compiler, if necessary) and configures OpenSSL based on this guess. Run ./config -t to see if it guessed correctly. If you want to use a different compiler, you are cross-compiling for another platform, or the ./config guess was wrong for other reasons, go to step 1b. Otherwise go to step 2. On some systems, you can include debugging information as follows: $ ./config -d [options] 1b. Configure OpenSSL for your operating system manually OpenSSL knows about a range of different operating system, hardware and compiler combinations. To see the ones it knows about, run $ ./Configure # Unix or $ perl Configure # All other platforms For the remainder of this text, the Unix form will be used in all examples, please use the appropriate form for your platform. Pick a suitable name from the list that matches your system. For most operating systems there is a choice between using "cc" or "gcc". When you have identified your system (and if necessary compiler) use this name as the argument to Configure. For example, a "linux-elf" user would run: $ ./Configure linux-elf [options] If your system isn't listed, you will have to create a configuration file named Configurations/{something}.conf and add the correct configuration for your system. See the available configs as examples and read Configurations/README and Configurations/README.design for more information. The generic configurations "cc" or "gcc" should usually work on 32 bit Unix-like systems. Configure creates a build file ("Makefile" on Unix and "descrip.mms" on OpenVMS) from a suitable template in Configurations, and defines various macros in crypto/opensslconf.h (generated from crypto/opensslconf.h.in). 1c. Configure OpenSSL for building outside of the source tree. OpenSSL can be configured to build in a build directory separate from the directory with the source code. It's done by placing yourself in some other directory and invoking the configuration commands from there. Unix example: $ mkdir /var/tmp/openssl-build $ cd /var/tmp/openssl-build $ /PATH/TO/OPENSSL/SOURCE/config [options] or $ /PATH/TO/OPENSSL/SOURCE/Configure [target] [options] OpenVMS example: $ set default sys$login: $ create/dir [.tmp.openssl-build] $ set default [.tmp.openssl-build] $ @[PATH.TO.OPENSSL.SOURCE]config {options} or $ @[PATH.TO.OPENSSL.SOURCE]Configure {target} {options} Windows example: $ C: $ mkdir \temp-openssl $ cd \temp-openssl $ perl d:\PATH\TO\OPENSSL\SOURCE\Configure {target} {options} Paths can be relative just as well as absolute. Configure will do its best to translate them to relative paths whenever possible. 2. Build OpenSSL by running: $ make # Unix $ mms ! (or mmk) OpenVMS $ nmake # Windows This will build the OpenSSL libraries (libcrypto.a and libssl.a on Unix, corresponding on other platforms) and the OpenSSL binary ("openssl"). The libraries will be built in the top-level directory, and the binary will be in the "apps" subdirectory. If the build fails, look at the output. There may be reasons for the failure that aren't problems in OpenSSL itself (like missing standard headers). If it is a problem with OpenSSL itself, please report the problem to (note that your message will be recorded in the request tracker publicly readable at https://www.openssl.org/community/index.html#bugs and will be forwarded to a public mailing list). Please check out the request tracker. Maybe the bug was already reported or has already been fixed. [If you encounter assembler error messages, try the "no-asm" configuration option as an immediate fix.] Compiling parts of OpenSSL with gcc and others with the system compiler will result in unresolved symbols on some systems. 3. After a successful build, the libraries should be tested. Run: $ make test # Unix $ mms test ! OpenVMS $ nmake test # Windows If some tests fail, look at the output. There may be reasons for the failure that isn't a problem in OpenSSL itself (like a malfunction with Perl). You may want increased verbosity, that can be accomplished like this: $ make VERBOSE=1 test # Unix $ mms /macro=(VERBOSE=1) test ! OpenVMS $ nmake VERBOSE=1 test # Windows If you want to run just one or a few specific tests, you can use the make variable TESTS to specify them, like this: $ make TESTS='test_rsa test_dsa' test # Unix $ mms/macro="TESTS=test_rsa test_dsa" test ! OpenVMS $ nmake TESTS='test_rsa test_dsa' test # Windows And of course, you can combine (Unix example shown): $ make VERBOSE=1 TESTS='test_rsa test_dsa' test You can find the list of available tests like this: $ make list-tests # Unix $ mms list-tests ! OpenVMS $ nmake list-tests # Windows Have a look at the manual for the perl module Test::Harness to see what other HARNESS_* variables there are. If you find a problem with OpenSSL itself, try removing any compiler optimization flags from the CFLAGS line in Makefile and run "make clean; make" or corresponding. Please send a bug reports to . 4. If everything tests ok, install OpenSSL with $ make install # Unix $ mms install ! OpenVMS This will install all the software components in this directory tree under PREFIX (the directory given with --prefix or its default): Unix: bin/ Contains the openssl binary and a few other utility scripts. include/openssl Contains the header files needed if you want to build your own programs that use libcrypto or libssl. lib Contains the OpenSSL library files. lib/engines Contains the OpenSSL dynamically loadable engines. share/man/{man1,man3,man5,man7} Contains the OpenSSL man-pages. share/doc/openssl/html/{man1,man3,man5,man7} Contains the HTML rendition of the man-pages. OpenVMS ('arch' is replaced with the architecture name, "Alpha" or "ia64"): [.EXE.'arch'] Contains the openssl binary and a few other utility scripts. [.include.openssl] Contains the header files needed if you want to build your own programs that use libcrypto or libssl. [.LIB.'arch'] Contains the OpenSSL library files. [.ENGINES.'arch'] Contains the OpenSSL dynamically loadable engines. [.SYS$STARTUP] Contains startup, login and shutdown scripts. These define appropriate logical names and command symbols. Additionally, install will add the following directories under OPENSSLDIR (the directory given with --openssldir or its default) for you convenience: certs Initially empty, this is the default location for certificate files. private Initially empty, this is the default location for private key files. misc Various scripts. Package builders who want to configure the library for standard locations, but have the package installed somewhere else so that it can easily be packaged, can use $ make DESTDIR=/tmp/package-root install # Unix $ mms/macro="DESTDIR=TMP:[PACKAGE-ROOT]" install ! OpenVMS The specified destination directory will be prepended to all installation target paths. Compatibility issues with previous OpenSSL versions: * COMPILING existing applications OpenSSL 1.1 hides a number of structures that were previously open. This includes all internal libssl structures and a number of EVP types. Accessor functions have been added to allow controlled access to the structures' data. This means that some software needs to be rewritten to adapt to the new ways of doing things. This often amounts to allocating an instance of a structure explicitly where you could previously allocate them on the stack as automatic variables, and using the provided accessor functions where you would previously access a structure's field directly. Some APIs have changed as well. However, older APIs have been preserved when possible. Note on multi-threading ----------------------- For some systems, the OpenSSL Configure script knows what compiler options are needed to generate a library that is suitable for multi-threaded applications. On these systems, support for multi-threading is enabled by default; use the "no-threads" option to disable (this should never be necessary). On other systems, to enable support for multi-threading, you will have to specify at least two options: "threads", and a system-dependent option. (The latter is "-D_REENTRANT" on various systems.) The default in this case, obviously, is not to include support for multi-threading (but you can still use "no-threads" to suppress an annoying warning message from the Configure script.) OpenSSL provides built-in support for two threading models: pthreads (found on most UNIX/Linux systems), and Windows threads. No other threading models are supported. If your platform does not provide pthreads or Windows threads then you should Configure with the "no-threads" option. Note on shared libraries ------------------------ For most systems the OpenSSL Configure script knows what is needed to build shared libraries for libcrypto and libssl. On these systems the shared libraries will be created by default. This can be suppressed and only static libraries created by using the "no-shared" option. On systems where OpenSSL does not know how to build shared libraries the "no-shared" option will be forced and only static libraries will be created. Note on random number generation -------------------------------- Availability of cryptographically secure random numbers is required for secret key generation. OpenSSL provides several options to seed the internal PRNG. If not properly seeded, the internal PRNG will refuse to deliver random bytes and a "PRNG not seeded error" will occur. On systems without /dev/urandom (or similar) device, it may be necessary to install additional support software to obtain random seed. Please check out the manual pages for RAND_add(), RAND_bytes(), RAND_egd(), and the FAQ for more information.