openssl_strerror_r: Fix handling of GNU strerror_r
[openssl.git] / ssl / record / ssl3_record.c
1 /*
2  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include "../ssl_locl.h"
11 #include "internal/constant_time_locl.h"
12 #include <openssl/rand.h>
13 #include "record_locl.h"
14 #include "internal/cryptlib.h"
15
16 static const unsigned char ssl3_pad_1[48] = {
17     0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
18     0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
19     0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
20     0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
21     0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
22     0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
23 };
24
25 static const unsigned char ssl3_pad_2[48] = {
26     0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
27     0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
28     0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
29     0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
30     0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
31     0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
32 };
33
34 /*
35  * Clear the contents of an SSL3_RECORD but retain any memory allocated
36  */
37 void SSL3_RECORD_clear(SSL3_RECORD *r, size_t num_recs)
38 {
39     unsigned char *comp;
40     size_t i;
41
42     for (i = 0; i < num_recs; i++) {
43         comp = r[i].comp;
44
45         memset(&r[i], 0, sizeof(*r));
46         r[i].comp = comp;
47     }
48 }
49
50 void SSL3_RECORD_release(SSL3_RECORD *r, size_t num_recs)
51 {
52     size_t i;
53
54     for (i = 0; i < num_recs; i++) {
55         OPENSSL_free(r[i].comp);
56         r[i].comp = NULL;
57     }
58 }
59
60 void SSL3_RECORD_set_seq_num(SSL3_RECORD *r, const unsigned char *seq_num)
61 {
62     memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE);
63 }
64
65 /*
66  * Peeks ahead into "read_ahead" data to see if we have a whole record waiting
67  * for us in the buffer.
68  */
69 static int ssl3_record_app_data_waiting(SSL *s)
70 {
71     SSL3_BUFFER *rbuf;
72     size_t left, len;
73     unsigned char *p;
74
75     rbuf = RECORD_LAYER_get_rbuf(&s->rlayer);
76
77     p = SSL3_BUFFER_get_buf(rbuf);
78     if (p == NULL)
79         return 0;
80
81     left = SSL3_BUFFER_get_left(rbuf);
82
83     if (left < SSL3_RT_HEADER_LENGTH)
84         return 0;
85
86     p += SSL3_BUFFER_get_offset(rbuf);
87
88     /*
89      * We only check the type and record length, we will sanity check version
90      * etc later
91      */
92     if (*p != SSL3_RT_APPLICATION_DATA)
93         return 0;
94
95     p += 3;
96     n2s(p, len);
97
98     if (left < SSL3_RT_HEADER_LENGTH + len)
99         return 0;
100
101     return 1;
102 }
103
104 int early_data_count_ok(SSL *s, size_t length, size_t overhead, int send)
105 {
106     uint32_t max_early_data;
107     SSL_SESSION *sess = s->session;
108
109     /*
110      * If we are a client then we always use the max_early_data from the
111      * session/psksession. Otherwise we go with the lowest out of the max early
112      * data set in the session and the configured max_early_data.
113      */
114     if (!s->server && sess->ext.max_early_data == 0) {
115         if (!ossl_assert(s->psksession != NULL
116                          && s->psksession->ext.max_early_data > 0)) {
117             SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_EARLY_DATA_COUNT_OK,
118                      ERR_R_INTERNAL_ERROR);
119             return 0;
120         }
121         sess = s->psksession;
122     }
123
124     if (!s->server)
125         max_early_data = sess->ext.max_early_data;
126     else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED)
127         max_early_data = s->recv_max_early_data;
128     else
129         max_early_data = s->recv_max_early_data < sess->ext.max_early_data
130                          ? s->recv_max_early_data : sess->ext.max_early_data;
131
132     if (max_early_data == 0) {
133         SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
134                  SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA);
135         return 0;
136     }
137
138     /* If we are dealing with ciphertext we need to allow for the overhead */
139     max_early_data += overhead;
140
141     if (s->early_data_count + length > max_early_data) {
142         SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
143                  SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA);
144         return 0;
145     }
146     s->early_data_count += length;
147
148     return 1;
149 }
150
151 /*
152  * MAX_EMPTY_RECORDS defines the number of consecutive, empty records that
153  * will be processed per call to ssl3_get_record. Without this limit an
154  * attacker could send empty records at a faster rate than we can process and
155  * cause ssl3_get_record to loop forever.
156  */
157 #define MAX_EMPTY_RECORDS 32
158
159 #define SSL2_RT_HEADER_LENGTH   2
160 /*-
161  * Call this to get new input records.
162  * It will return <= 0 if more data is needed, normally due to an error
163  * or non-blocking IO.
164  * When it finishes, |numrpipes| records have been decoded. For each record 'i':
165  * rr[i].type    - is the type of record
166  * rr[i].data,   - data
167  * rr[i].length, - number of bytes
168  * Multiple records will only be returned if the record types are all
169  * SSL3_RT_APPLICATION_DATA. The number of records returned will always be <=
170  * |max_pipelines|
171  */
172 /* used only by ssl3_read_bytes */
173 int ssl3_get_record(SSL *s)
174 {
175     int enc_err, rret;
176     int i;
177     size_t more, n;
178     SSL3_RECORD *rr, *thisrr;
179     SSL3_BUFFER *rbuf;
180     SSL_SESSION *sess;
181     unsigned char *p;
182     unsigned char md[EVP_MAX_MD_SIZE];
183     unsigned int version;
184     size_t mac_size;
185     int imac_size;
186     size_t num_recs = 0, max_recs, j;
187     PACKET pkt, sslv2pkt;
188     size_t first_rec_len;
189
190     rr = RECORD_LAYER_get_rrec(&s->rlayer);
191     rbuf = RECORD_LAYER_get_rbuf(&s->rlayer);
192     max_recs = s->max_pipelines;
193     if (max_recs == 0)
194         max_recs = 1;
195     sess = s->session;
196
197     do {
198         thisrr = &rr[num_recs];
199
200         /* check if we have the header */
201         if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) ||
202             (RECORD_LAYER_get_packet_length(&s->rlayer)
203              < SSL3_RT_HEADER_LENGTH)) {
204             size_t sslv2len;
205             unsigned int type;
206
207             rret = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH,
208                                SSL3_BUFFER_get_len(rbuf), 0,
209                                num_recs == 0 ? 1 : 0, &n);
210             if (rret <= 0)
211                 return rret;     /* error or non-blocking */
212             RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY);
213
214             p = RECORD_LAYER_get_packet(&s->rlayer);
215             if (!PACKET_buf_init(&pkt, RECORD_LAYER_get_packet(&s->rlayer),
216                                  RECORD_LAYER_get_packet_length(&s->rlayer))) {
217                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
218                          ERR_R_INTERNAL_ERROR);
219                 return -1;
220             }
221             sslv2pkt = pkt;
222             if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len)
223                     || !PACKET_get_1(&sslv2pkt, &type)) {
224                 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
225                          ERR_R_INTERNAL_ERROR);
226                 return -1;
227             }
228             /*
229              * The first record received by the server may be a V2ClientHello.
230              */
231             if (s->server && RECORD_LAYER_is_first_record(&s->rlayer)
232                     && (sslv2len & 0x8000) != 0
233                     && (type == SSL2_MT_CLIENT_HELLO)) {
234                 /*
235                  *  SSLv2 style record
236                  *
237                  * |num_recs| here will actually always be 0 because
238                  * |num_recs > 0| only ever occurs when we are processing
239                  * multiple app data records - which we know isn't the case here
240                  * because it is an SSLv2ClientHello. We keep it using
241                  * |num_recs| for the sake of consistency
242                  */
243                 thisrr->type = SSL3_RT_HANDSHAKE;
244                 thisrr->rec_version = SSL2_VERSION;
245
246                 thisrr->length = sslv2len & 0x7fff;
247
248                 if (thisrr->length > SSL3_BUFFER_get_len(rbuf)
249                     - SSL2_RT_HEADER_LENGTH) {
250                     SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
251                              SSL_R_PACKET_LENGTH_TOO_LONG);
252                     return -1;
253                 }
254
255                 if (thisrr->length < MIN_SSL2_RECORD_LEN) {
256                     SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
257                              SSL_R_LENGTH_TOO_SHORT);
258                     return -1;
259                 }
260             } else {
261                 /* SSLv3+ style record */
262                 if (s->msg_callback)
263                     s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s,
264                                     s->msg_callback_arg);
265
266                 /* Pull apart the header into the SSL3_RECORD */
267                 if (!PACKET_get_1(&pkt, &type)
268                         || !PACKET_get_net_2(&pkt, &version)
269                         || !PACKET_get_net_2_len(&pkt, &thisrr->length)) {
270                     SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
271                              ERR_R_INTERNAL_ERROR);
272                     return -1;
273                 }
274                 thisrr->type = type;
275                 thisrr->rec_version = version;
276
277                 /*
278                  * Lets check version. In TLSv1.3 we only check this field
279                  * when encryption is occurring (see later check). For the
280                  * ServerHello after an HRR we haven't actually selected TLSv1.3
281                  * yet, but we still treat it as TLSv1.3, so we must check for
282                  * that explicitly
283                  */
284                 if (!s->first_packet && !SSL_IS_TLS13(s)
285                         && s->hello_retry_request != SSL_HRR_PENDING
286                         && version != (unsigned int)s->version) {
287                     if ((s->version & 0xFF00) == (version & 0xFF00)
288                         && !s->enc_write_ctx && !s->write_hash) {
289                         if (thisrr->type == SSL3_RT_ALERT) {
290                             /*
291                              * The record is using an incorrect version number,
292                              * but what we've got appears to be an alert. We
293                              * haven't read the body yet to check whether its a
294                              * fatal or not - but chances are it is. We probably
295                              * shouldn't send a fatal alert back. We'll just
296                              * end.
297                              */
298                             SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
299                                      SSL_R_WRONG_VERSION_NUMBER);
300                             return -1;
301                         }
302                         /*
303                          * Send back error using their minor version number :-)
304                          */
305                         s->version = (unsigned short)version;
306                     }
307                     SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD,
308                              SSL_R_WRONG_VERSION_NUMBER);
309                     return -1;
310                 }
311
312                 if ((version >> 8) != SSL3_VERSION_MAJOR) {
313                     if (RECORD_LAYER_is_first_record(&s->rlayer)) {
314                         /* Go back to start of packet, look at the five bytes
315                          * that we have. */
316                         p = RECORD_LAYER_get_packet(&s->rlayer);
317                         if (strncmp((char *)p, "GET ", 4) == 0 ||
318                             strncmp((char *)p, "POST ", 5) == 0 ||
319                             strncmp((char *)p, "HEAD ", 5) == 0 ||
320                             strncmp((char *)p, "PUT ", 4) == 0) {
321                             SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
322                                      SSL_R_HTTP_REQUEST);
323                             return -1;
324                         } else if (strncmp((char *)p, "CONNE", 5) == 0) {
325                             SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
326                                      SSL_R_HTTPS_PROXY_REQUEST);
327                             return -1;
328                         }
329
330                         /* Doesn't look like TLS - don't send an alert */
331                         SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
332                                  SSL_R_WRONG_VERSION_NUMBER);
333                         return -1;
334                     } else {
335                         SSLfatal(s, SSL_AD_PROTOCOL_VERSION,
336                                  SSL_F_SSL3_GET_RECORD,
337                                  SSL_R_WRONG_VERSION_NUMBER);
338                         return -1;
339                     }
340                 }
341
342                 if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL) {
343                     if (thisrr->type != SSL3_RT_APPLICATION_DATA
344                             && (thisrr->type != SSL3_RT_CHANGE_CIPHER_SPEC
345                                 || !SSL_IS_FIRST_HANDSHAKE(s))
346                             && (thisrr->type != SSL3_RT_ALERT
347                                 || s->statem.enc_read_state
348                                    != ENC_READ_STATE_ALLOW_PLAIN_ALERTS)) {
349                         SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
350                                  SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE);
351                         return -1;
352                     }
353                     if (thisrr->rec_version != TLS1_2_VERSION) {
354                         SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
355                                  SSL_R_WRONG_VERSION_NUMBER);
356                         return -1;
357                     }
358                 }
359
360                 if (thisrr->length >
361                     SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) {
362                     SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
363                              SSL_R_PACKET_LENGTH_TOO_LONG);
364                     return -1;
365                 }
366             }
367
368             /* now s->rlayer.rstate == SSL_ST_READ_BODY */
369         }
370
371         if (SSL_IS_TLS13(s)) {
372             if (thisrr->length > SSL3_RT_MAX_TLS13_ENCRYPTED_LENGTH) {
373                 SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
374                          SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
375                 return -1;
376             }
377         } else {
378             size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH;
379
380 #ifndef OPENSSL_NO_COMP
381             /*
382              * If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH
383              * does not include the compression overhead anyway.
384              */
385             if (s->expand == NULL)
386                 len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD;
387 #endif
388
389             if (thisrr->length > len) {
390                 SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
391                          SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
392                 return -1;
393             }
394         }
395
396         /*
397          * s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data.
398          * Calculate how much more data we need to read for the rest of the
399          * record
400          */
401         if (thisrr->rec_version == SSL2_VERSION) {
402             more = thisrr->length + SSL2_RT_HEADER_LENGTH
403                 - SSL3_RT_HEADER_LENGTH;
404         } else {
405             more = thisrr->length;
406         }
407         if (more > 0) {
408             /* now s->packet_length == SSL3_RT_HEADER_LENGTH */
409
410             rret = ssl3_read_n(s, more, more, 1, 0, &n);
411             if (rret <= 0)
412                 return rret;     /* error or non-blocking io */
413         }
414
415         /* set state for later operations */
416         RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER);
417
418         /*
419          * At this point, s->packet_length == SSL3_RT_HEADER_LENGTH
420          * + thisrr->length, or s->packet_length == SSL2_RT_HEADER_LENGTH
421          * + thisrr->length and we have that many bytes in s->packet
422          */
423         if (thisrr->rec_version == SSL2_VERSION) {
424             thisrr->input =
425                 &(RECORD_LAYER_get_packet(&s->rlayer)[SSL2_RT_HEADER_LENGTH]);
426         } else {
427             thisrr->input =
428                 &(RECORD_LAYER_get_packet(&s->rlayer)[SSL3_RT_HEADER_LENGTH]);
429         }
430
431         /*
432          * ok, we can now read from 's->packet' data into 'thisrr' thisrr->input
433          * points at thisrr->length bytes, which need to be copied into
434          * thisrr->data by either the decryption or by the decompression When
435          * the data is 'copied' into the thisrr->data buffer, thisrr->input will
436          * be pointed at the new buffer
437          */
438
439         /*
440          * We now have - encrypted [ MAC [ compressed [ plain ] ] ]
441          * thisrr->length bytes of encrypted compressed stuff.
442          */
443
444         /* decrypt in place in 'thisrr->input' */
445         thisrr->data = thisrr->input;
446         thisrr->orig_len = thisrr->length;
447
448         /* Mark this record as not read by upper layers yet */
449         thisrr->read = 0;
450
451         num_recs++;
452
453         /* we have pulled in a full packet so zero things */
454         RECORD_LAYER_reset_packet_length(&s->rlayer);
455         RECORD_LAYER_clear_first_record(&s->rlayer);
456     } while (num_recs < max_recs
457              && thisrr->type == SSL3_RT_APPLICATION_DATA
458              && SSL_USE_EXPLICIT_IV(s)
459              && s->enc_read_ctx != NULL
460              && (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx))
461                  & EVP_CIPH_FLAG_PIPELINE)
462              && ssl3_record_app_data_waiting(s));
463
464     if (num_recs == 1
465             && thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC
466             && (SSL_IS_TLS13(s) || s->hello_retry_request != SSL_HRR_NONE)
467             && SSL_IS_FIRST_HANDSHAKE(s)) {
468         /*
469          * CCS messages must be exactly 1 byte long, containing the value 0x01
470          */
471         if (thisrr->length != 1 || thisrr->data[0] != 0x01) {
472             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL3_GET_RECORD,
473                      SSL_R_INVALID_CCS_MESSAGE);
474             return -1;
475         }
476         /*
477          * CCS messages are ignored in TLSv1.3. We treat it like an empty
478          * handshake record
479          */
480         thisrr->type = SSL3_RT_HANDSHAKE;
481         RECORD_LAYER_inc_empty_record_count(&s->rlayer);
482         if (RECORD_LAYER_get_empty_record_count(&s->rlayer)
483             > MAX_EMPTY_RECORDS) {
484             SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
485                      SSL_R_UNEXPECTED_CCS_MESSAGE);
486             return -1;
487         }
488         thisrr->read = 1;
489         RECORD_LAYER_set_numrpipes(&s->rlayer, 1);
490
491         return 1;
492     }
493
494     /*
495      * If in encrypt-then-mac mode calculate mac from encrypted record. All
496      * the details below are public so no timing details can leak.
497      */
498     if (SSL_READ_ETM(s) && s->read_hash) {
499         unsigned char *mac;
500         /* TODO(size_t): convert this to do size_t properly */
501         imac_size = EVP_MD_CTX_size(s->read_hash);
502         if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) {
503                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
504                          ERR_LIB_EVP);
505                 return -1;
506         }
507         mac_size = (size_t)imac_size;
508         for (j = 0; j < num_recs; j++) {
509             thisrr = &rr[j];
510
511             if (thisrr->length < mac_size) {
512                 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
513                          SSL_R_LENGTH_TOO_SHORT);
514                 return -1;
515             }
516             thisrr->length -= mac_size;
517             mac = thisrr->data + thisrr->length;
518             i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ );
519             if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) {
520                 SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD,
521                        SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
522                 return -1;
523             }
524         }
525     }
526
527     first_rec_len = rr[0].length;
528
529     enc_err = s->method->ssl3_enc->enc(s, rr, num_recs, 0);
530
531     /*-
532      * enc_err is:
533      *    0: (in non-constant time) if the record is publicly invalid.
534      *    1: if the padding is valid
535      *    -1: if the padding is invalid
536      */
537     if (enc_err == 0) {
538         if (ossl_statem_in_error(s)) {
539             /* SSLfatal() already got called */
540             return -1;
541         }
542         if (num_recs == 1 && ossl_statem_skip_early_data(s)) {
543             /*
544              * Valid early_data that we cannot decrypt might fail here as
545              * publicly invalid. We treat it like an empty record.
546              */
547
548             thisrr = &rr[0];
549
550             if (!early_data_count_ok(s, thisrr->length,
551                                      EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
552                 /* SSLfatal() already called */
553                 return -1;
554             }
555
556             thisrr->length = 0;
557             thisrr->read = 1;
558             RECORD_LAYER_set_numrpipes(&s->rlayer, 1);
559             RECORD_LAYER_reset_read_sequence(&s->rlayer);
560             return 1;
561         }
562         SSLfatal(s, SSL_AD_DECRYPTION_FAILED, SSL_F_SSL3_GET_RECORD,
563                  SSL_R_BLOCK_CIPHER_PAD_IS_WRONG);
564         return -1;
565     }
566 #ifdef SSL_DEBUG
567     printf("dec %lu\n", (unsigned long)rr[0].length);
568     {
569         size_t z;
570         for (z = 0; z < rr[0].length; z++)
571             printf("%02X%c", rr[0].data[z], ((z + 1) % 16) ? ' ' : '\n');
572     }
573     printf("\n");
574 #endif
575
576     /* r->length is now the compressed data plus mac */
577     if ((sess != NULL) &&
578         (s->enc_read_ctx != NULL) &&
579         (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL)) {
580         /* s->read_hash != NULL => mac_size != -1 */
581         unsigned char *mac = NULL;
582         unsigned char mac_tmp[EVP_MAX_MD_SIZE];
583
584         mac_size = EVP_MD_CTX_size(s->read_hash);
585         if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) {
586             SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
587                      ERR_R_INTERNAL_ERROR);
588             return -1;
589         }
590
591         for (j = 0; j < num_recs; j++) {
592             thisrr = &rr[j];
593             /*
594              * orig_len is the length of the record before any padding was
595              * removed. This is public information, as is the MAC in use,
596              * therefore we can safely process the record in a different amount
597              * of time if it's too short to possibly contain a MAC.
598              */
599             if (thisrr->orig_len < mac_size ||
600                 /* CBC records must have a padding length byte too. */
601                 (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
602                  thisrr->orig_len < mac_size + 1)) {
603                 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
604                          SSL_R_LENGTH_TOO_SHORT);
605                 return -1;
606             }
607
608             if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) {
609                 /*
610                  * We update the length so that the TLS header bytes can be
611                  * constructed correctly but we need to extract the MAC in
612                  * constant time from within the record, without leaking the
613                  * contents of the padding bytes.
614                  */
615                 mac = mac_tmp;
616                 if (!ssl3_cbc_copy_mac(mac_tmp, thisrr, mac_size)) {
617                     SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
618                              ERR_R_INTERNAL_ERROR);
619                     return -1;
620                 }
621                 thisrr->length -= mac_size;
622             } else {
623                 /*
624                  * In this case there's no padding, so |rec->orig_len| equals
625                  * |rec->length| and we checked that there's enough bytes for
626                  * |mac_size| above.
627                  */
628                 thisrr->length -= mac_size;
629                 mac = &thisrr->data[thisrr->length];
630             }
631
632             i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ );
633             if (i == 0 || mac == NULL
634                 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0)
635                 enc_err = -1;
636             if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
637                 enc_err = -1;
638         }
639     }
640
641     if (enc_err < 0) {
642         if (ossl_statem_in_error(s)) {
643             /* We already called SSLfatal() */
644             return -1;
645         }
646         if (num_recs == 1 && ossl_statem_skip_early_data(s)) {
647             /*
648              * We assume this is unreadable early_data - we treat it like an
649              * empty record
650              */
651
652             /*
653              * The record length may have been modified by the mac check above
654              * so we use the previously saved value
655              */
656             if (!early_data_count_ok(s, first_rec_len,
657                                      EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
658                 /* SSLfatal() already called */
659                 return -1;
660             }
661
662             thisrr = &rr[0];
663             thisrr->length = 0;
664             thisrr->read = 1;
665             RECORD_LAYER_set_numrpipes(&s->rlayer, 1);
666             RECORD_LAYER_reset_read_sequence(&s->rlayer);
667             return 1;
668         }
669         /*
670          * A separate 'decryption_failed' alert was introduced with TLS 1.0,
671          * SSL 3.0 only has 'bad_record_mac'.  But unless a decryption
672          * failure is directly visible from the ciphertext anyway, we should
673          * not reveal which kind of error occurred -- this might become
674          * visible to an attacker (e.g. via a logfile)
675          */
676         SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD,
677                  SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
678         return -1;
679     }
680
681     for (j = 0; j < num_recs; j++) {
682         thisrr = &rr[j];
683
684         /* thisrr->length is now just compressed */
685         if (s->expand != NULL) {
686             if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
687                 SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
688                          SSL_R_COMPRESSED_LENGTH_TOO_LONG);
689                 return -1;
690             }
691             if (!ssl3_do_uncompress(s, thisrr)) {
692                 SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_SSL3_GET_RECORD,
693                          SSL_R_BAD_DECOMPRESSION);
694                 return -1;
695             }
696         }
697
698         if (SSL_IS_TLS13(s)
699                 && s->enc_read_ctx != NULL
700                 && thisrr->type != SSL3_RT_ALERT) {
701             size_t end;
702
703             if (thisrr->length == 0
704                     || thisrr->type != SSL3_RT_APPLICATION_DATA) {
705                 SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
706                          SSL_R_BAD_RECORD_TYPE);
707                 return -1;
708             }
709
710             /* Strip trailing padding */
711             for (end = thisrr->length - 1; end > 0 && thisrr->data[end] == 0;
712                  end--)
713                 continue;
714
715             thisrr->length = end;
716             thisrr->type = thisrr->data[end];
717             if (thisrr->type != SSL3_RT_APPLICATION_DATA
718                     && thisrr->type != SSL3_RT_ALERT
719                     && thisrr->type != SSL3_RT_HANDSHAKE) {
720                 SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
721                          SSL_R_BAD_RECORD_TYPE);
722                 return -1;
723             }
724             if (s->msg_callback)
725                 s->msg_callback(0, s->version, SSL3_RT_INNER_CONTENT_TYPE,
726                                 &thisrr->data[end], 1, s, s->msg_callback_arg);
727         }
728
729         /*
730          * TLSv1.3 alert and handshake records are required to be non-zero in
731          * length.
732          */
733         if (SSL_IS_TLS13(s)
734                 && (thisrr->type == SSL3_RT_HANDSHAKE
735                     || thisrr->type == SSL3_RT_ALERT)
736                 && thisrr->length == 0) {
737             SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
738                      SSL_R_BAD_LENGTH);
739             return -1;
740         }
741
742         if (thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH) {
743             SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
744                      SSL_R_DATA_LENGTH_TOO_LONG);
745             return -1;
746         }
747
748         /* If received packet overflows current Max Fragment Length setting */
749         if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session)
750                 && thisrr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) {
751             SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
752                      SSL_R_DATA_LENGTH_TOO_LONG);
753             return -1;
754         }
755
756         thisrr->off = 0;
757         /*-
758          * So at this point the following is true
759          * thisrr->type   is the type of record
760          * thisrr->length == number of bytes in record
761          * thisrr->off    == offset to first valid byte
762          * thisrr->data   == where to take bytes from, increment after use :-).
763          */
764
765         /* just read a 0 length packet */
766         if (thisrr->length == 0) {
767             RECORD_LAYER_inc_empty_record_count(&s->rlayer);
768             if (RECORD_LAYER_get_empty_record_count(&s->rlayer)
769                 > MAX_EMPTY_RECORDS) {
770                 SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
771                          SSL_R_RECORD_TOO_SMALL);
772                 return -1;
773             }
774         } else {
775             RECORD_LAYER_reset_empty_record_count(&s->rlayer);
776         }
777     }
778
779     if (s->early_data_state == SSL_EARLY_DATA_READING) {
780         thisrr = &rr[0];
781         if (thisrr->type == SSL3_RT_APPLICATION_DATA
782                 && !early_data_count_ok(s, thisrr->length, 0, 0)) {
783             /* SSLfatal already called */
784             return -1;
785         }
786     }
787
788     RECORD_LAYER_set_numrpipes(&s->rlayer, num_recs);
789     return 1;
790 }
791
792 int ssl3_do_uncompress(SSL *ssl, SSL3_RECORD *rr)
793 {
794 #ifndef OPENSSL_NO_COMP
795     int i;
796
797     if (rr->comp == NULL) {
798         rr->comp = (unsigned char *)
799             OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
800     }
801     if (rr->comp == NULL)
802         return 0;
803
804     /* TODO(size_t): Convert this call */
805     i = COMP_expand_block(ssl->expand, rr->comp,
806                           SSL3_RT_MAX_PLAIN_LENGTH, rr->data, (int)rr->length);
807     if (i < 0)
808         return 0;
809     else
810         rr->length = i;
811     rr->data = rr->comp;
812 #endif
813     return 1;
814 }
815
816 int ssl3_do_compress(SSL *ssl, SSL3_RECORD *wr)
817 {
818 #ifndef OPENSSL_NO_COMP
819     int i;
820
821     /* TODO(size_t): Convert this call */
822     i = COMP_compress_block(ssl->compress, wr->data,
823                             (int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD),
824                             wr->input, (int)wr->length);
825     if (i < 0)
826         return 0;
827     else
828         wr->length = i;
829
830     wr->input = wr->data;
831 #endif
832     return 1;
833 }
834
835 /*-
836  * ssl3_enc encrypts/decrypts |n_recs| records in |inrecs|.  Will call
837  * SSLfatal() for internal errors, but not otherwise.
838  *
839  * Returns:
840  *   0: (in non-constant time) if the record is publically invalid (i.e. too
841  *       short etc).
842  *   1: if the record's padding is valid / the encryption was successful.
843  *   -1: if the record's padding is invalid or, if sending, an internal error
844  *       occurred.
845  */
846 int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, size_t n_recs, int sending)
847 {
848     SSL3_RECORD *rec;
849     EVP_CIPHER_CTX *ds;
850     size_t l, i;
851     size_t bs, mac_size = 0;
852     int imac_size;
853     const EVP_CIPHER *enc;
854
855     rec = inrecs;
856     /*
857      * We shouldn't ever be called with more than one record in the SSLv3 case
858      */
859     if (n_recs != 1)
860         return 0;
861     if (sending) {
862         ds = s->enc_write_ctx;
863         if (s->enc_write_ctx == NULL)
864             enc = NULL;
865         else
866             enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
867     } else {
868         ds = s->enc_read_ctx;
869         if (s->enc_read_ctx == NULL)
870             enc = NULL;
871         else
872             enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
873     }
874
875     if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
876         memmove(rec->data, rec->input, rec->length);
877         rec->input = rec->data;
878     } else {
879         l = rec->length;
880         /* TODO(size_t): Convert this call */
881         bs = EVP_CIPHER_CTX_block_size(ds);
882
883         /* COMPRESS */
884
885         if ((bs != 1) && sending) {
886             i = bs - (l % bs);
887
888             /* we need to add 'i-1' padding bytes */
889             l += i;
890             /*
891              * the last of these zero bytes will be overwritten with the
892              * padding length.
893              */
894             memset(&rec->input[rec->length], 0, i);
895             rec->length += i;
896             rec->input[l - 1] = (unsigned char)(i - 1);
897         }
898
899         if (!sending) {
900             if (l == 0 || l % bs != 0)
901                 return 0;
902             /* otherwise, rec->length >= bs */
903         }
904
905         /* TODO(size_t): Convert this call */
906         if (EVP_Cipher(ds, rec->data, rec->input, (unsigned int)l) < 1)
907             return -1;
908
909         if (EVP_MD_CTX_md(s->read_hash) != NULL) {
910             /* TODO(size_t): convert me */
911             imac_size = EVP_MD_CTX_size(s->read_hash);
912             if (imac_size < 0) {
913                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_ENC,
914                          ERR_R_INTERNAL_ERROR);
915                 return -1;
916             }
917             mac_size = (size_t)imac_size;
918         }
919         if ((bs != 1) && !sending)
920             return ssl3_cbc_remove_padding(rec, bs, mac_size);
921     }
922     return 1;
923 }
924
925 #define MAX_PADDING 256
926 /*-
927  * tls1_enc encrypts/decrypts |n_recs| in |recs|.  Will call SSLfatal() for
928  * internal errors, but not otherwise.
929  *
930  * Returns:
931  *   0: (in non-constant time) if the record is publically invalid (i.e. too
932  *       short etc).
933  *   1: if the record's padding is valid / the encryption was successful.
934  *   -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
935  *       an internal error occurred.
936  */
937 int tls1_enc(SSL *s, SSL3_RECORD *recs, size_t n_recs, int sending)
938 {
939     EVP_CIPHER_CTX *ds;
940     size_t reclen[SSL_MAX_PIPELINES];
941     unsigned char buf[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
942     int i, pad = 0, ret, tmpr;
943     size_t bs, mac_size = 0, ctr, padnum, loop;
944     unsigned char padval;
945     int imac_size;
946     const EVP_CIPHER *enc;
947
948     if (n_recs == 0) {
949         SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
950                  ERR_R_INTERNAL_ERROR);
951         return 0;
952     }
953
954     if (sending) {
955         if (EVP_MD_CTX_md(s->write_hash)) {
956             int n = EVP_MD_CTX_size(s->write_hash);
957             if (!ossl_assert(n >= 0)) {
958                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
959                          ERR_R_INTERNAL_ERROR);
960                 return -1;
961             }
962         }
963         ds = s->enc_write_ctx;
964         if (s->enc_write_ctx == NULL)
965             enc = NULL;
966         else {
967             int ivlen;
968             enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
969             /* For TLSv1.1 and later explicit IV */
970             if (SSL_USE_EXPLICIT_IV(s)
971                 && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
972                 ivlen = EVP_CIPHER_iv_length(enc);
973             else
974                 ivlen = 0;
975             if (ivlen > 1) {
976                 for (ctr = 0; ctr < n_recs; ctr++) {
977                     if (recs[ctr].data != recs[ctr].input) {
978                         /*
979                          * we can't write into the input stream: Can this ever
980                          * happen?? (steve)
981                          */
982                         SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
983                                  ERR_R_INTERNAL_ERROR);
984                         return -1;
985                     } else if (RAND_bytes(recs[ctr].input, ivlen) <= 0) {
986                         SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
987                                  ERR_R_INTERNAL_ERROR);
988                         return -1;
989                     }
990                 }
991             }
992         }
993     } else {
994         if (EVP_MD_CTX_md(s->read_hash)) {
995             int n = EVP_MD_CTX_size(s->read_hash);
996             if (!ossl_assert(n >= 0)) {
997                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
998                          ERR_R_INTERNAL_ERROR);
999                 return -1;
1000             }
1001         }
1002         ds = s->enc_read_ctx;
1003         if (s->enc_read_ctx == NULL)
1004             enc = NULL;
1005         else
1006             enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
1007     }
1008
1009     if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
1010         for (ctr = 0; ctr < n_recs; ctr++) {
1011             memmove(recs[ctr].data, recs[ctr].input, recs[ctr].length);
1012             recs[ctr].input = recs[ctr].data;
1013         }
1014         ret = 1;
1015     } else {
1016         bs = EVP_CIPHER_block_size(EVP_CIPHER_CTX_cipher(ds));
1017
1018         if (n_recs > 1) {
1019             if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds))
1020                   & EVP_CIPH_FLAG_PIPELINE)) {
1021                 /*
1022                  * We shouldn't have been called with pipeline data if the
1023                  * cipher doesn't support pipelining
1024                  */
1025                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
1026                          SSL_R_PIPELINE_FAILURE);
1027                 return -1;
1028             }
1029         }
1030         for (ctr = 0; ctr < n_recs; ctr++) {
1031             reclen[ctr] = recs[ctr].length;
1032
1033             if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds))
1034                 & EVP_CIPH_FLAG_AEAD_CIPHER) {
1035                 unsigned char *seq;
1036
1037                 seq = sending ? RECORD_LAYER_get_write_sequence(&s->rlayer)
1038                     : RECORD_LAYER_get_read_sequence(&s->rlayer);
1039
1040                 if (SSL_IS_DTLS(s)) {
1041                     /* DTLS does not support pipelining */
1042                     unsigned char dtlsseq[9], *p = dtlsseq;
1043
1044                     s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) :
1045                         DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer), p);
1046                     memcpy(p, &seq[2], 6);
1047                     memcpy(buf[ctr], dtlsseq, 8);
1048                 } else {
1049                     memcpy(buf[ctr], seq, 8);
1050                     for (i = 7; i >= 0; i--) { /* increment */
1051                         ++seq[i];
1052                         if (seq[i] != 0)
1053                             break;
1054                     }
1055                 }
1056
1057                 buf[ctr][8] = recs[ctr].type;
1058                 buf[ctr][9] = (unsigned char)(s->version >> 8);
1059                 buf[ctr][10] = (unsigned char)(s->version);
1060                 buf[ctr][11] = (unsigned char)(recs[ctr].length >> 8);
1061                 buf[ctr][12] = (unsigned char)(recs[ctr].length & 0xff);
1062                 pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD,
1063                                           EVP_AEAD_TLS1_AAD_LEN, buf[ctr]);
1064                 if (pad <= 0) {
1065                     SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
1066                              ERR_R_INTERNAL_ERROR);
1067                     return -1;
1068                 }
1069
1070                 if (sending) {
1071                     reclen[ctr] += pad;
1072                     recs[ctr].length += pad;
1073                 }
1074
1075             } else if ((bs != 1) && sending) {
1076                 padnum = bs - (reclen[ctr] % bs);
1077
1078                 /* Add weird padding of upto 256 bytes */
1079
1080                 if (padnum > MAX_PADDING) {
1081                     SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
1082                              ERR_R_INTERNAL_ERROR);
1083                     return -1;
1084                 }
1085                 /* we need to add 'padnum' padding bytes of value padval */
1086                 padval = (unsigned char)(padnum - 1);
1087                 for (loop = reclen[ctr]; loop < reclen[ctr] + padnum; loop++)
1088                     recs[ctr].input[loop] = padval;
1089                 reclen[ctr] += padnum;
1090                 recs[ctr].length += padnum;
1091             }
1092
1093             if (!sending) {
1094                 if (reclen[ctr] == 0 || reclen[ctr] % bs != 0)
1095                     return 0;
1096             }
1097         }
1098         if (n_recs > 1) {
1099             unsigned char *data[SSL_MAX_PIPELINES];
1100
1101             /* Set the output buffers */
1102             for (ctr = 0; ctr < n_recs; ctr++) {
1103                 data[ctr] = recs[ctr].data;
1104             }
1105             if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS,
1106                                     (int)n_recs, data) <= 0) {
1107                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
1108                          SSL_R_PIPELINE_FAILURE);
1109                 return -1;
1110             }
1111             /* Set the input buffers */
1112             for (ctr = 0; ctr < n_recs; ctr++) {
1113                 data[ctr] = recs[ctr].input;
1114             }
1115             if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_BUFS,
1116                                     (int)n_recs, data) <= 0
1117                 || EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_LENS,
1118                                        (int)n_recs, reclen) <= 0) {
1119                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
1120                          SSL_R_PIPELINE_FAILURE);
1121                 return -1;
1122             }
1123         }
1124
1125         /* TODO(size_t): Convert this call */
1126         tmpr = EVP_Cipher(ds, recs[0].data, recs[0].input,
1127                           (unsigned int)reclen[0]);
1128         if ((EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds))
1129              & EVP_CIPH_FLAG_CUSTOM_CIPHER)
1130             ? (tmpr < 0)
1131             : (tmpr == 0))
1132             return -1;          /* AEAD can fail to verify MAC */
1133
1134         if (sending == 0) {
1135             if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE) {
1136                 for (ctr = 0; ctr < n_recs; ctr++) {
1137                     recs[ctr].data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1138                     recs[ctr].input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1139                     recs[ctr].length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
1140                 }
1141             } else if (EVP_CIPHER_mode(enc) == EVP_CIPH_CCM_MODE) {
1142                 for (ctr = 0; ctr < n_recs; ctr++) {
1143                     recs[ctr].data += EVP_CCM_TLS_EXPLICIT_IV_LEN;
1144                     recs[ctr].input += EVP_CCM_TLS_EXPLICIT_IV_LEN;
1145                     recs[ctr].length -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
1146                 }
1147             }
1148         }
1149
1150         ret = 1;
1151         if (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL) {
1152             imac_size = EVP_MD_CTX_size(s->read_hash);
1153             if (imac_size < 0) {
1154                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
1155                          ERR_R_INTERNAL_ERROR);
1156                 return -1;
1157             }
1158             mac_size = (size_t)imac_size;
1159         }
1160         if ((bs != 1) && !sending) {
1161             int tmpret;
1162             for (ctr = 0; ctr < n_recs; ctr++) {
1163                 tmpret = tls1_cbc_remove_padding(s, &recs[ctr], bs, mac_size);
1164                 /*
1165                  * If tmpret == 0 then this means publicly invalid so we can
1166                  * short circuit things here. Otherwise we must respect constant
1167                  * time behaviour.
1168                  */
1169                 if (tmpret == 0)
1170                     return 0;
1171                 ret = constant_time_select_int(constant_time_eq_int(tmpret, 1),
1172                                                ret, -1);
1173             }
1174         }
1175         if (pad && !sending) {
1176             for (ctr = 0; ctr < n_recs; ctr++) {
1177                 recs[ctr].length -= pad;
1178             }
1179         }
1180     }
1181     return ret;
1182 }
1183
1184 int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending)
1185 {
1186     unsigned char *mac_sec, *seq;
1187     const EVP_MD_CTX *hash;
1188     unsigned char *p, rec_char;
1189     size_t md_size;
1190     size_t npad;
1191     int t;
1192
1193     if (sending) {
1194         mac_sec = &(ssl->s3->write_mac_secret[0]);
1195         seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer);
1196         hash = ssl->write_hash;
1197     } else {
1198         mac_sec = &(ssl->s3->read_mac_secret[0]);
1199         seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer);
1200         hash = ssl->read_hash;
1201     }
1202
1203     t = EVP_MD_CTX_size(hash);
1204     if (t < 0)
1205         return 0;
1206     md_size = t;
1207     npad = (48 / md_size) * md_size;
1208
1209     if (!sending &&
1210         EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1211         ssl3_cbc_record_digest_supported(hash)) {
1212         /*
1213          * This is a CBC-encrypted record. We must avoid leaking any
1214          * timing-side channel information about how many blocks of data we
1215          * are hashing because that gives an attacker a timing-oracle.
1216          */
1217
1218         /*-
1219          * npad is, at most, 48 bytes and that's with MD5:
1220          *   16 + 48 + 8 (sequence bytes) + 1 + 2 = 75.
1221          *
1222          * With SHA-1 (the largest hash speced for SSLv3) the hash size
1223          * goes up 4, but npad goes down by 8, resulting in a smaller
1224          * total size.
1225          */
1226         unsigned char header[75];
1227         size_t j = 0;
1228         memcpy(header + j, mac_sec, md_size);
1229         j += md_size;
1230         memcpy(header + j, ssl3_pad_1, npad);
1231         j += npad;
1232         memcpy(header + j, seq, 8);
1233         j += 8;
1234         header[j++] = rec->type;
1235         header[j++] = (unsigned char)(rec->length >> 8);
1236         header[j++] = (unsigned char)(rec->length & 0xff);
1237
1238         /* Final param == is SSLv3 */
1239         if (ssl3_cbc_digest_record(hash,
1240                                    md, &md_size,
1241                                    header, rec->input,
1242                                    rec->length + md_size, rec->orig_len,
1243                                    mac_sec, md_size, 1) <= 0)
1244             return 0;
1245     } else {
1246         unsigned int md_size_u;
1247         /* Chop the digest off the end :-) */
1248         EVP_MD_CTX *md_ctx = EVP_MD_CTX_new();
1249
1250         if (md_ctx == NULL)
1251             return 0;
1252
1253         rec_char = rec->type;
1254         p = md;
1255         s2n(rec->length, p);
1256         if (EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0
1257             || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0
1258             || EVP_DigestUpdate(md_ctx, ssl3_pad_1, npad) <= 0
1259             || EVP_DigestUpdate(md_ctx, seq, 8) <= 0
1260             || EVP_DigestUpdate(md_ctx, &rec_char, 1) <= 0
1261             || EVP_DigestUpdate(md_ctx, md, 2) <= 0
1262             || EVP_DigestUpdate(md_ctx, rec->input, rec->length) <= 0
1263             || EVP_DigestFinal_ex(md_ctx, md, NULL) <= 0
1264             || EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0
1265             || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0
1266             || EVP_DigestUpdate(md_ctx, ssl3_pad_2, npad) <= 0
1267             || EVP_DigestUpdate(md_ctx, md, md_size) <= 0
1268             || EVP_DigestFinal_ex(md_ctx, md, &md_size_u) <= 0) {
1269             EVP_MD_CTX_free(md_ctx);
1270             return 0;
1271         }
1272
1273         EVP_MD_CTX_free(md_ctx);
1274     }
1275
1276     ssl3_record_sequence_update(seq);
1277     return 1;
1278 }
1279
1280 int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending)
1281 {
1282     unsigned char *seq;
1283     EVP_MD_CTX *hash;
1284     size_t md_size;
1285     int i;
1286     EVP_MD_CTX *hmac = NULL, *mac_ctx;
1287     unsigned char header[13];
1288     int stream_mac = (sending ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM)
1289                       : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
1290     int t;
1291
1292     if (sending) {
1293         seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer);
1294         hash = ssl->write_hash;
1295     } else {
1296         seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer);
1297         hash = ssl->read_hash;
1298     }
1299
1300     t = EVP_MD_CTX_size(hash);
1301     if (!ossl_assert(t >= 0))
1302         return 0;
1303     md_size = t;
1304
1305     /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
1306     if (stream_mac) {
1307         mac_ctx = hash;
1308     } else {
1309         hmac = EVP_MD_CTX_new();
1310         if (hmac == NULL || !EVP_MD_CTX_copy(hmac, hash)) {
1311             EVP_MD_CTX_free(hmac);
1312             return 0;
1313         }
1314         mac_ctx = hmac;
1315     }
1316
1317     if (SSL_IS_DTLS(ssl)) {
1318         unsigned char dtlsseq[8], *p = dtlsseq;
1319
1320         s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&ssl->rlayer) :
1321             DTLS_RECORD_LAYER_get_r_epoch(&ssl->rlayer), p);
1322         memcpy(p, &seq[2], 6);
1323
1324         memcpy(header, dtlsseq, 8);
1325     } else
1326         memcpy(header, seq, 8);
1327
1328     header[8] = rec->type;
1329     header[9] = (unsigned char)(ssl->version >> 8);
1330     header[10] = (unsigned char)(ssl->version);
1331     header[11] = (unsigned char)(rec->length >> 8);
1332     header[12] = (unsigned char)(rec->length & 0xff);
1333
1334     if (!sending && !SSL_READ_ETM(ssl) &&
1335         EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1336         ssl3_cbc_record_digest_supported(mac_ctx)) {
1337         /*
1338          * This is a CBC-encrypted record. We must avoid leaking any
1339          * timing-side channel information about how many blocks of data we
1340          * are hashing because that gives an attacker a timing-oracle.
1341          */
1342         /* Final param == not SSLv3 */
1343         if (ssl3_cbc_digest_record(mac_ctx,
1344                                    md, &md_size,
1345                                    header, rec->input,
1346                                    rec->length + md_size, rec->orig_len,
1347                                    ssl->s3->read_mac_secret,
1348                                    ssl->s3->read_mac_secret_size, 0) <= 0) {
1349             EVP_MD_CTX_free(hmac);
1350             return 0;
1351         }
1352     } else {
1353         /* TODO(size_t): Convert these calls */
1354         if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0
1355             || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0
1356             || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) {
1357             EVP_MD_CTX_free(hmac);
1358             return 0;
1359         }
1360     }
1361
1362     EVP_MD_CTX_free(hmac);
1363
1364 #ifdef SSL_DEBUG
1365     fprintf(stderr, "seq=");
1366     {
1367         int z;
1368         for (z = 0; z < 8; z++)
1369             fprintf(stderr, "%02X ", seq[z]);
1370         fprintf(stderr, "\n");
1371     }
1372     fprintf(stderr, "rec=");
1373     {
1374         size_t z;
1375         for (z = 0; z < rec->length; z++)
1376             fprintf(stderr, "%02X ", rec->data[z]);
1377         fprintf(stderr, "\n");
1378     }
1379 #endif
1380
1381     if (!SSL_IS_DTLS(ssl)) {
1382         for (i = 7; i >= 0; i--) {
1383             ++seq[i];
1384             if (seq[i] != 0)
1385                 break;
1386         }
1387     }
1388 #ifdef SSL_DEBUG
1389     {
1390         unsigned int z;
1391         for (z = 0; z < md_size; z++)
1392             fprintf(stderr, "%02X ", md[z]);
1393         fprintf(stderr, "\n");
1394     }
1395 #endif
1396     return 1;
1397 }
1398
1399 /*-
1400  * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
1401  * record in |rec| by updating |rec->length| in constant time.
1402  *
1403  * block_size: the block size of the cipher used to encrypt the record.
1404  * returns:
1405  *   0: (in non-constant time) if the record is publicly invalid.
1406  *   1: if the padding was valid
1407  *  -1: otherwise.
1408  */
1409 int ssl3_cbc_remove_padding(SSL3_RECORD *rec,
1410                             size_t block_size, size_t mac_size)
1411 {
1412     size_t padding_length;
1413     size_t good;
1414     const size_t overhead = 1 /* padding length byte */  + mac_size;
1415
1416     /*
1417      * These lengths are all public so we can test them in non-constant time.
1418      */
1419     if (overhead > rec->length)
1420         return 0;
1421
1422     padding_length = rec->data[rec->length - 1];
1423     good = constant_time_ge_s(rec->length, padding_length + overhead);
1424     /* SSLv3 requires that the padding is minimal. */
1425     good &= constant_time_ge_s(block_size, padding_length + 1);
1426     rec->length -= good & (padding_length + 1);
1427     return constant_time_select_int_s(good, 1, -1);
1428 }
1429
1430 /*-
1431  * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
1432  * record in |rec| in constant time and returns 1 if the padding is valid and
1433  * -1 otherwise. It also removes any explicit IV from the start of the record
1434  * without leaking any timing about whether there was enough space after the
1435  * padding was removed.
1436  *
1437  * block_size: the block size of the cipher used to encrypt the record.
1438  * returns:
1439  *   0: (in non-constant time) if the record is publicly invalid.
1440  *   1: if the padding was valid
1441  *  -1: otherwise.
1442  */
1443 int tls1_cbc_remove_padding(const SSL *s,
1444                             SSL3_RECORD *rec,
1445                             size_t block_size, size_t mac_size)
1446 {
1447     size_t good;
1448     size_t padding_length, to_check, i;
1449     const size_t overhead = 1 /* padding length byte */  + mac_size;
1450     /* Check if version requires explicit IV */
1451     if (SSL_USE_EXPLICIT_IV(s)) {
1452         /*
1453          * These lengths are all public so we can test them in non-constant
1454          * time.
1455          */
1456         if (overhead + block_size > rec->length)
1457             return 0;
1458         /* We can now safely skip explicit IV */
1459         rec->data += block_size;
1460         rec->input += block_size;
1461         rec->length -= block_size;
1462         rec->orig_len -= block_size;
1463     } else if (overhead > rec->length)
1464         return 0;
1465
1466     padding_length = rec->data[rec->length - 1];
1467
1468     if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) &
1469         EVP_CIPH_FLAG_AEAD_CIPHER) {
1470         /* padding is already verified */
1471         rec->length -= padding_length + 1;
1472         return 1;
1473     }
1474
1475     good = constant_time_ge_s(rec->length, overhead + padding_length);
1476     /*
1477      * The padding consists of a length byte at the end of the record and
1478      * then that many bytes of padding, all with the same value as the length
1479      * byte. Thus, with the length byte included, there are i+1 bytes of
1480      * padding. We can't check just |padding_length+1| bytes because that
1481      * leaks decrypted information. Therefore we always have to check the
1482      * maximum amount of padding possible. (Again, the length of the record
1483      * is public information so we can use it.)
1484      */
1485     to_check = 256;            /* maximum amount of padding, inc length byte. */
1486     if (to_check > rec->length)
1487         to_check = rec->length;
1488
1489     for (i = 0; i < to_check; i++) {
1490         unsigned char mask = constant_time_ge_8_s(padding_length, i);
1491         unsigned char b = rec->data[rec->length - 1 - i];
1492         /*
1493          * The final |padding_length+1| bytes should all have the value
1494          * |padding_length|. Therefore the XOR should be zero.
1495          */
1496         good &= ~(mask & (padding_length ^ b));
1497     }
1498
1499     /*
1500      * If any of the final |padding_length+1| bytes had the wrong value, one
1501      * or more of the lower eight bits of |good| will be cleared.
1502      */
1503     good = constant_time_eq_s(0xff, good & 0xff);
1504     rec->length -= good & (padding_length + 1);
1505
1506     return constant_time_select_int_s(good, 1, -1);
1507 }
1508
1509 /*-
1510  * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
1511  * constant time (independent of the concrete value of rec->length, which may
1512  * vary within a 256-byte window).
1513  *
1514  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
1515  * this function.
1516  *
1517  * On entry:
1518  *   rec->orig_len >= md_size
1519  *   md_size <= EVP_MAX_MD_SIZE
1520  *
1521  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
1522  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
1523  * a single or pair of cache-lines, then the variable memory accesses don't
1524  * actually affect the timing. CPUs with smaller cache-lines [if any] are
1525  * not multi-core and are not considered vulnerable to cache-timing attacks.
1526  */
1527 #define CBC_MAC_ROTATE_IN_PLACE
1528
1529 int ssl3_cbc_copy_mac(unsigned char *out,
1530                        const SSL3_RECORD *rec, size_t md_size)
1531 {
1532 #if defined(CBC_MAC_ROTATE_IN_PLACE)
1533     unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
1534     unsigned char *rotated_mac;
1535 #else
1536     unsigned char rotated_mac[EVP_MAX_MD_SIZE];
1537 #endif
1538
1539     /*
1540      * mac_end is the index of |rec->data| just after the end of the MAC.
1541      */
1542     size_t mac_end = rec->length;
1543     size_t mac_start = mac_end - md_size;
1544     size_t in_mac;
1545     /*
1546      * scan_start contains the number of bytes that we can ignore because the
1547      * MAC's position can only vary by 255 bytes.
1548      */
1549     size_t scan_start = 0;
1550     size_t i, j;
1551     size_t rotate_offset;
1552
1553     if (!ossl_assert(rec->orig_len >= md_size
1554                      && md_size <= EVP_MAX_MD_SIZE))
1555         return 0;
1556
1557 #if defined(CBC_MAC_ROTATE_IN_PLACE)
1558     rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
1559 #endif
1560
1561     /* This information is public so it's safe to branch based on it. */
1562     if (rec->orig_len > md_size + 255 + 1)
1563         scan_start = rec->orig_len - (md_size + 255 + 1);
1564
1565     in_mac = 0;
1566     rotate_offset = 0;
1567     memset(rotated_mac, 0, md_size);
1568     for (i = scan_start, j = 0; i < rec->orig_len; i++) {
1569         size_t mac_started = constant_time_eq_s(i, mac_start);
1570         size_t mac_ended = constant_time_lt_s(i, mac_end);
1571         unsigned char b = rec->data[i];
1572
1573         in_mac |= mac_started;
1574         in_mac &= mac_ended;
1575         rotate_offset |= j & mac_started;
1576         rotated_mac[j++] |= b & in_mac;
1577         j &= constant_time_lt_s(j, md_size);
1578     }
1579
1580     /* Now rotate the MAC */
1581 #if defined(CBC_MAC_ROTATE_IN_PLACE)
1582     j = 0;
1583     for (i = 0; i < md_size; i++) {
1584         /* in case cache-line is 32 bytes, touch second line */
1585         ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
1586         out[j++] = rotated_mac[rotate_offset++];
1587         rotate_offset &= constant_time_lt_s(rotate_offset, md_size);
1588     }
1589 #else
1590     memset(out, 0, md_size);
1591     rotate_offset = md_size - rotate_offset;
1592     rotate_offset &= constant_time_lt_s(rotate_offset, md_size);
1593     for (i = 0; i < md_size; i++) {
1594         for (j = 0; j < md_size; j++)
1595             out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset);
1596         rotate_offset++;
1597         rotate_offset &= constant_time_lt_s(rotate_offset, md_size);
1598     }
1599 #endif
1600
1601     return 1;
1602 }
1603
1604 int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap)
1605 {
1606     int i;
1607     int enc_err;
1608     SSL_SESSION *sess;
1609     SSL3_RECORD *rr;
1610     int imac_size;
1611     size_t mac_size;
1612     unsigned char md[EVP_MAX_MD_SIZE];
1613
1614     rr = RECORD_LAYER_get_rrec(&s->rlayer);
1615     sess = s->session;
1616
1617     /*
1618      * At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length,
1619      * and we have that many bytes in s->packet
1620      */
1621     rr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[DTLS1_RT_HEADER_LENGTH]);
1622
1623     /*
1624      * ok, we can now read from 's->packet' data into 'rr' rr->input points
1625      * at rr->length bytes, which need to be copied into rr->data by either
1626      * the decryption or by the decompression When the data is 'copied' into
1627      * the rr->data buffer, rr->input will be pointed at the new buffer
1628      */
1629
1630     /*
1631      * We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length
1632      * bytes of encrypted compressed stuff.
1633      */
1634
1635     /* check is not needed I believe */
1636     if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
1637         SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD,
1638                  SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
1639         return 0;
1640     }
1641
1642     /* decrypt in place in 'rr->input' */
1643     rr->data = rr->input;
1644     rr->orig_len = rr->length;
1645
1646     if (SSL_READ_ETM(s) && s->read_hash) {
1647         unsigned char *mac;
1648         mac_size = EVP_MD_CTX_size(s->read_hash);
1649         if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) {
1650             SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
1651                      ERR_R_INTERNAL_ERROR);
1652             return 0;
1653         }
1654         if (rr->orig_len < mac_size) {
1655             SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
1656                      SSL_R_LENGTH_TOO_SHORT);
1657             return 0;
1658         }
1659         rr->length -= mac_size;
1660         mac = rr->data + rr->length;
1661         i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ );
1662         if (i == 0 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) {
1663             SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_DTLS1_PROCESS_RECORD,
1664                    SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
1665             return 0;
1666         }
1667     }
1668
1669     enc_err = s->method->ssl3_enc->enc(s, rr, 1, 0);
1670     /*-
1671      * enc_err is:
1672      *    0: (in non-constant time) if the record is publically invalid.
1673      *    1: if the padding is valid
1674      *   -1: if the padding is invalid
1675      */
1676     if (enc_err == 0) {
1677         if (ossl_statem_in_error(s)) {
1678             /* SSLfatal() got called */
1679             return 0;
1680         }
1681         /* For DTLS we simply ignore bad packets. */
1682         rr->length = 0;
1683         RECORD_LAYER_reset_packet_length(&s->rlayer);
1684         return 0;
1685     }
1686 #ifdef SSL_DEBUG
1687     printf("dec %ld\n", rr->length);
1688     {
1689         size_t z;
1690         for (z = 0; z < rr->length; z++)
1691             printf("%02X%c", rr->data[z], ((z + 1) % 16) ? ' ' : '\n');
1692     }
1693     printf("\n");
1694 #endif
1695
1696     /* r->length is now the compressed data plus mac */
1697     if ((sess != NULL) && !SSL_READ_ETM(s) &&
1698         (s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) {
1699         /* s->read_hash != NULL => mac_size != -1 */
1700         unsigned char *mac = NULL;
1701         unsigned char mac_tmp[EVP_MAX_MD_SIZE];
1702
1703         /* TODO(size_t): Convert this to do size_t properly */
1704         imac_size = EVP_MD_CTX_size(s->read_hash);
1705         if (imac_size < 0) {
1706             SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
1707                      ERR_LIB_EVP);
1708             return 0;
1709         }
1710         mac_size = (size_t)imac_size;
1711         if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) {
1712             SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
1713                      ERR_R_INTERNAL_ERROR);
1714             return 0;
1715         }
1716
1717         /*
1718          * orig_len is the length of the record before any padding was
1719          * removed. This is public information, as is the MAC in use,
1720          * therefore we can safely process the record in a different amount
1721          * of time if it's too short to possibly contain a MAC.
1722          */
1723         if (rr->orig_len < mac_size ||
1724             /* CBC records must have a padding length byte too. */
1725             (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1726              rr->orig_len < mac_size + 1)) {
1727             SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
1728                      SSL_R_LENGTH_TOO_SHORT);
1729             return 0;
1730         }
1731
1732         if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) {
1733             /*
1734              * We update the length so that the TLS header bytes can be
1735              * constructed correctly but we need to extract the MAC in
1736              * constant time from within the record, without leaking the
1737              * contents of the padding bytes.
1738              */
1739             mac = mac_tmp;
1740             if (!ssl3_cbc_copy_mac(mac_tmp, rr, mac_size)) {
1741                 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
1742                          ERR_R_INTERNAL_ERROR);
1743                 return 0;
1744             }
1745             rr->length -= mac_size;
1746         } else {
1747             /*
1748              * In this case there's no padding, so |rec->orig_len| equals
1749              * |rec->length| and we checked that there's enough bytes for
1750              * |mac_size| above.
1751              */
1752             rr->length -= mac_size;
1753             mac = &rr->data[rr->length];
1754         }
1755
1756         i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ );
1757         if (i == 0 || mac == NULL
1758             || CRYPTO_memcmp(md, mac, mac_size) != 0)
1759             enc_err = -1;
1760         if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
1761             enc_err = -1;
1762     }
1763
1764     if (enc_err < 0) {
1765         /* decryption failed, silently discard message */
1766         rr->length = 0;
1767         RECORD_LAYER_reset_packet_length(&s->rlayer);
1768         return 0;
1769     }
1770
1771     /* r->length is now just compressed */
1772     if (s->expand != NULL) {
1773         if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
1774             SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD,
1775                      SSL_R_COMPRESSED_LENGTH_TOO_LONG);
1776             return 0;
1777         }
1778         if (!ssl3_do_uncompress(s, rr)) {
1779             SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE,
1780                      SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION);
1781             return 0;
1782         }
1783     }
1784
1785     if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) {
1786         SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD,
1787                  SSL_R_DATA_LENGTH_TOO_LONG);
1788         return 0;
1789     }
1790
1791     rr->off = 0;
1792     /*-
1793      * So at this point the following is true
1794      * ssl->s3->rrec.type   is the type of record
1795      * ssl->s3->rrec.length == number of bytes in record
1796      * ssl->s3->rrec.off    == offset to first valid byte
1797      * ssl->s3->rrec.data   == where to take bytes from, increment
1798      *                         after use :-).
1799      */
1800
1801     /* we have pulled in a full packet so zero things */
1802     RECORD_LAYER_reset_packet_length(&s->rlayer);
1803
1804     /* Mark receipt of record. */
1805     dtls1_record_bitmap_update(s, bitmap);
1806
1807     return 1;
1808 }
1809
1810 /*
1811  * Retrieve a buffered record that belongs to the current epoch, i.e. processed
1812  */
1813 #define dtls1_get_processed_record(s) \
1814                    dtls1_retrieve_buffered_record((s), \
1815                    &(DTLS_RECORD_LAYER_get_processed_rcds(&s->rlayer)))
1816
1817 /*-
1818  * Call this to get a new input record.
1819  * It will return <= 0 if more data is needed, normally due to an error
1820  * or non-blocking IO.
1821  * When it finishes, one packet has been decoded and can be found in
1822  * ssl->s3->rrec.type    - is the type of record
1823  * ssl->s3->rrec.data,   - data
1824  * ssl->s3->rrec.length, - number of bytes
1825  */
1826 /* used only by dtls1_read_bytes */
1827 int dtls1_get_record(SSL *s)
1828 {
1829     int ssl_major, ssl_minor;
1830     int rret;
1831     size_t more, n;
1832     SSL3_RECORD *rr;
1833     unsigned char *p = NULL;
1834     unsigned short version;
1835     DTLS1_BITMAP *bitmap;
1836     unsigned int is_next_epoch;
1837
1838     rr = RECORD_LAYER_get_rrec(&s->rlayer);
1839
1840  again:
1841     /*
1842      * The epoch may have changed.  If so, process all the pending records.
1843      * This is a non-blocking operation.
1844      */
1845     if (!dtls1_process_buffered_records(s)) {
1846         /* SSLfatal() already called */
1847         return -1;
1848     }
1849
1850     /* if we're renegotiating, then there may be buffered records */
1851     if (dtls1_get_processed_record(s))
1852         return 1;
1853
1854     /* get something from the wire */
1855
1856     /* check if we have the header */
1857     if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) ||
1858         (RECORD_LAYER_get_packet_length(&s->rlayer) < DTLS1_RT_HEADER_LENGTH)) {
1859         rret = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH,
1860                            SSL3_BUFFER_get_len(&s->rlayer.rbuf), 0, 1, &n);
1861         /* read timeout is handled by dtls1_read_bytes */
1862         if (rret <= 0) {
1863             /* SSLfatal() already called if appropriate */
1864             return rret;         /* error or non-blocking */
1865         }
1866
1867         /* this packet contained a partial record, dump it */
1868         if (RECORD_LAYER_get_packet_length(&s->rlayer) !=
1869             DTLS1_RT_HEADER_LENGTH) {
1870             RECORD_LAYER_reset_packet_length(&s->rlayer);
1871             goto again;
1872         }
1873
1874         RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY);
1875
1876         p = RECORD_LAYER_get_packet(&s->rlayer);
1877
1878         if (s->msg_callback)
1879             s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH,
1880                             s, s->msg_callback_arg);
1881
1882         /* Pull apart the header into the DTLS1_RECORD */
1883         rr->type = *(p++);
1884         ssl_major = *(p++);
1885         ssl_minor = *(p++);
1886         version = (ssl_major << 8) | ssl_minor;
1887
1888         /* sequence number is 64 bits, with top 2 bytes = epoch */
1889         n2s(p, rr->epoch);
1890
1891         memcpy(&(RECORD_LAYER_get_read_sequence(&s->rlayer)[2]), p, 6);
1892         p += 6;
1893
1894         n2s(p, rr->length);
1895         rr->read = 0;
1896
1897         /*
1898          * Lets check the version. We tolerate alerts that don't have the exact
1899          * version number (e.g. because of protocol version errors)
1900          */
1901         if (!s->first_packet && rr->type != SSL3_RT_ALERT) {
1902             if (version != s->version) {
1903                 /* unexpected version, silently discard */
1904                 rr->length = 0;
1905                 rr->read = 1;
1906                 RECORD_LAYER_reset_packet_length(&s->rlayer);
1907                 goto again;
1908             }
1909         }
1910
1911         if ((version & 0xff00) != (s->version & 0xff00)) {
1912             /* wrong version, silently discard record */
1913             rr->length = 0;
1914             rr->read = 1;
1915             RECORD_LAYER_reset_packet_length(&s->rlayer);
1916             goto again;
1917         }
1918
1919         if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
1920             /* record too long, silently discard it */
1921             rr->length = 0;
1922             rr->read = 1;
1923             RECORD_LAYER_reset_packet_length(&s->rlayer);
1924             goto again;
1925         }
1926
1927         /* If received packet overflows own-client Max Fragment Length setting */
1928         if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session)
1929                 && rr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) {
1930             /* record too long, silently discard it */
1931             rr->length = 0;
1932             rr->read = 1;
1933             RECORD_LAYER_reset_packet_length(&s->rlayer);
1934             goto again;
1935         }
1936
1937         /* now s->rlayer.rstate == SSL_ST_READ_BODY */
1938     }
1939
1940     /* s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data */
1941
1942     if (rr->length >
1943         RECORD_LAYER_get_packet_length(&s->rlayer) - DTLS1_RT_HEADER_LENGTH) {
1944         /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */
1945         more = rr->length;
1946         rret = ssl3_read_n(s, more, more, 1, 1, &n);
1947         /* this packet contained a partial record, dump it */
1948         if (rret <= 0 || n != more) {
1949             if (ossl_statem_in_error(s)) {
1950                 /* ssl3_read_n() called SSLfatal() */
1951                 return -1;
1952             }
1953             rr->length = 0;
1954             rr->read = 1;
1955             RECORD_LAYER_reset_packet_length(&s->rlayer);
1956             goto again;
1957         }
1958
1959         /*
1960          * now n == rr->length, and s->packet_length ==
1961          * DTLS1_RT_HEADER_LENGTH + rr->length
1962          */
1963     }
1964     /* set state for later operations */
1965     RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER);
1966
1967     /* match epochs.  NULL means the packet is dropped on the floor */
1968     bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch);
1969     if (bitmap == NULL) {
1970         rr->length = 0;
1971         RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */
1972         goto again;             /* get another record */
1973     }
1974 #ifndef OPENSSL_NO_SCTP
1975     /* Only do replay check if no SCTP bio */
1976     if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) {
1977 #endif
1978         /* Check whether this is a repeat, or aged record. */
1979         /*
1980          * TODO: Does it make sense to have replay protection in epoch 0 where
1981          * we have no integrity negotiated yet?
1982          */
1983         if (!dtls1_record_replay_check(s, bitmap)) {
1984             rr->length = 0;
1985             rr->read = 1;
1986             RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */
1987             goto again;         /* get another record */
1988         }
1989 #ifndef OPENSSL_NO_SCTP
1990     }
1991 #endif
1992
1993     /* just read a 0 length packet */
1994     if (rr->length == 0) {
1995         rr->read = 1;
1996         goto again;
1997     }
1998
1999     /*
2000      * If this record is from the next epoch (either HM or ALERT), and a
2001      * handshake is currently in progress, buffer it since it cannot be
2002      * processed at this time.
2003      */
2004     if (is_next_epoch) {
2005         if ((SSL_in_init(s) || ossl_statem_get_in_handshake(s))) {
2006             if (dtls1_buffer_record (s,
2007                     &(DTLS_RECORD_LAYER_get_unprocessed_rcds(&s->rlayer)),
2008                     rr->seq_num) < 0) {
2009                 /* SSLfatal() already called */
2010                 return -1;
2011             }
2012         }
2013         rr->length = 0;
2014         rr->read = 1;
2015         RECORD_LAYER_reset_packet_length(&s->rlayer);
2016         goto again;
2017     }
2018
2019     if (!dtls1_process_record(s, bitmap)) {
2020         if (ossl_statem_in_error(s)) {
2021             /* dtls1_process_record() called SSLfatal */
2022             return -1;
2023         }
2024         rr->length = 0;
2025         rr->read = 1;
2026         RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */
2027         goto again;             /* get another record */
2028     }
2029
2030     return 1;
2031
2032 }
2033
2034 int dtls_buffer_listen_record(SSL *s, size_t len, unsigned char *seq, size_t off)
2035 {
2036     SSL3_RECORD *rr;
2037
2038     rr = RECORD_LAYER_get_rrec(&s->rlayer);
2039     memset(rr, 0, sizeof(SSL3_RECORD));
2040
2041     rr->length = len;
2042     rr->type = SSL3_RT_HANDSHAKE;
2043     memcpy(rr->seq_num, seq, sizeof(rr->seq_num));
2044     rr->off = off;
2045
2046     s->rlayer.packet = RECORD_LAYER_get_rbuf(&s->rlayer)->buf;
2047     s->rlayer.packet_length = DTLS1_RT_HEADER_LENGTH + len;
2048     rr->data = s->rlayer.packet + DTLS1_RT_HEADER_LENGTH;
2049
2050     if (dtls1_buffer_record(s, &(s->rlayer.d->processed_rcds),
2051                             SSL3_RECORD_get_seq_num(s->rlayer.rrec)) <= 0) {
2052         /* SSLfatal() already called */
2053         return 0;
2054     }
2055
2056     return 1;
2057 }