Remove libcrypto to libssl dependency
[openssl.git] / crypto / x509v3 / v3_addr.c
1 /*
2  * Contributed to the OpenSSL Project by the American Registry for
3  * Internet Numbers ("ARIN").
4  */
5 /* ====================================================================
6  * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  */
57
58 /*
59  * Implementation of RFC 3779 section 2.2.
60  */
61
62 #include <stdio.h>
63 #include <stdlib.h>
64
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71
72
73 /*
74  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
75  */
76
77 ASN1_SEQUENCE(IPAddressRange) = {
78   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
79   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
80 } ASN1_SEQUENCE_END(IPAddressRange)
81
82 ASN1_CHOICE(IPAddressOrRange) = {
83   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
84   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
85 } ASN1_CHOICE_END(IPAddressOrRange)
86
87 ASN1_CHOICE(IPAddressChoice) = {
88   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
89   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
90 } ASN1_CHOICE_END(IPAddressChoice)
91
92 ASN1_SEQUENCE(IPAddressFamily) = {
93   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
94   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
95 } ASN1_SEQUENCE_END(IPAddressFamily)
96
97 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
98   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
99                         IPAddrBlocks, IPAddressFamily)
100 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
101
102 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
106
107 /*
108  * How much buffer space do we need for a raw address?
109  */
110 #define ADDR_RAW_BUF_LEN        16
111
112 /*
113  * What's the address length associated with this AFI?
114  */
115 static int length_from_afi(const unsigned afi)
116 {
117     switch (afi) {
118     case IANA_AFI_IPV4:
119         return 4;
120     case IANA_AFI_IPV6:
121         return 16;
122     default:
123         return 0;
124     }
125 }
126
127 /*
128  * Extract the AFI from an IPAddressFamily.
129  */
130 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
131 {
132     return ((f != NULL &&
133              f->addressFamily != NULL && f->addressFamily->data != NULL)
134             ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
135             : 0);
136 }
137
138 /*
139  * Expand the bitstring form of an address into a raw byte array.
140  * At the moment this is coded for simplicity, not speed.
141  */
142 static int addr_expand(unsigned char *addr,
143                        const ASN1_BIT_STRING *bs,
144                        const int length, const unsigned char fill)
145 {
146     if (bs->length < 0 || bs->length > length)
147         return 0;
148     if (bs->length > 0) {
149         memcpy(addr, bs->data, bs->length);
150         if ((bs->flags & 7) != 0) {
151             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
152             if (fill == 0)
153                 addr[bs->length - 1] &= ~mask;
154             else
155                 addr[bs->length - 1] |= mask;
156         }
157     }
158     memset(addr + bs->length, fill, length - bs->length);
159     return 1;
160 }
161
162 /*
163  * Extract the prefix length from a bitstring.
164  */
165 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
166
167 /*
168  * i2r handler for one address bitstring.
169  */
170 static int i2r_address(BIO *out,
171                        const unsigned afi,
172                        const unsigned char fill, const ASN1_BIT_STRING *bs)
173 {
174     unsigned char addr[ADDR_RAW_BUF_LEN];
175     int i, n;
176
177     if (bs->length < 0)
178         return 0;
179     switch (afi) {
180     case IANA_AFI_IPV4:
181         if (!addr_expand(addr, bs, 4, fill))
182             return 0;
183         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
184         break;
185     case IANA_AFI_IPV6:
186         if (!addr_expand(addr, bs, 16, fill))
187             return 0;
188         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
189              n -= 2) ;
190         for (i = 0; i < n; i += 2)
191             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
192                        (i < 14 ? ":" : ""));
193         if (i < 16)
194             BIO_puts(out, ":");
195         if (i == 0)
196             BIO_puts(out, ":");
197         break;
198     default:
199         for (i = 0; i < bs->length; i++)
200             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
201         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
202         break;
203     }
204     return 1;
205 }
206
207 /*
208  * i2r handler for a sequence of addresses and ranges.
209  */
210 static int i2r_IPAddressOrRanges(BIO *out,
211                                  const int indent,
212                                  const IPAddressOrRanges *aors,
213                                  const unsigned afi)
214 {
215     int i;
216     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
217         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
218         BIO_printf(out, "%*s", indent, "");
219         switch (aor->type) {
220         case IPAddressOrRange_addressPrefix:
221             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
222                 return 0;
223             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
224             continue;
225         case IPAddressOrRange_addressRange:
226             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
227                 return 0;
228             BIO_puts(out, "-");
229             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
230                 return 0;
231             BIO_puts(out, "\n");
232             continue;
233         }
234     }
235     return 1;
236 }
237
238 /*
239  * i2r handler for an IPAddrBlocks extension.
240  */
241 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
242                             void *ext, BIO *out, int indent)
243 {
244     const IPAddrBlocks *addr = ext;
245     int i;
246     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
247         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
248         const unsigned int afi = v3_addr_get_afi(f);
249         switch (afi) {
250         case IANA_AFI_IPV4:
251             BIO_printf(out, "%*sIPv4", indent, "");
252             break;
253         case IANA_AFI_IPV6:
254             BIO_printf(out, "%*sIPv6", indent, "");
255             break;
256         default:
257             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
258             break;
259         }
260         if (f->addressFamily->length > 2) {
261             switch (f->addressFamily->data[2]) {
262             case 1:
263                 BIO_puts(out, " (Unicast)");
264                 break;
265             case 2:
266                 BIO_puts(out, " (Multicast)");
267                 break;
268             case 3:
269                 BIO_puts(out, " (Unicast/Multicast)");
270                 break;
271             case 4:
272                 BIO_puts(out, " (MPLS)");
273                 break;
274             case 64:
275                 BIO_puts(out, " (Tunnel)");
276                 break;
277             case 65:
278                 BIO_puts(out, " (VPLS)");
279                 break;
280             case 66:
281                 BIO_puts(out, " (BGP MDT)");
282                 break;
283             case 128:
284                 BIO_puts(out, " (MPLS-labeled VPN)");
285                 break;
286             default:
287                 BIO_printf(out, " (Unknown SAFI %u)",
288                            (unsigned)f->addressFamily->data[2]);
289                 break;
290             }
291         }
292         switch (f->ipAddressChoice->type) {
293         case IPAddressChoice_inherit:
294             BIO_puts(out, ": inherit\n");
295             break;
296         case IPAddressChoice_addressesOrRanges:
297             BIO_puts(out, ":\n");
298             if (!i2r_IPAddressOrRanges(out,
299                                        indent + 2,
300                                        f->ipAddressChoice->
301                                        u.addressesOrRanges, afi))
302                 return 0;
303             break;
304         }
305     }
306     return 1;
307 }
308
309 /*
310  * Sort comparison function for a sequence of IPAddressOrRange
311  * elements.
312  *
313  * There's no sane answer we can give if addr_expand() fails, and an
314  * assertion failure on externally supplied data is seriously uncool,
315  * so we just arbitrarily declare that if given invalid inputs this
316  * function returns -1.  If this messes up your preferred sort order
317  * for garbage input, tough noogies.
318  */
319 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
320                                 const IPAddressOrRange *b, const int length)
321 {
322     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
323     int prefixlen_a = 0, prefixlen_b = 0;
324     int r;
325
326     switch (a->type) {
327     case IPAddressOrRange_addressPrefix:
328         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
329             return -1;
330         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
331         break;
332     case IPAddressOrRange_addressRange:
333         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
334             return -1;
335         prefixlen_a = length * 8;
336         break;
337     }
338
339     switch (b->type) {
340     case IPAddressOrRange_addressPrefix:
341         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
342             return -1;
343         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
344         break;
345     case IPAddressOrRange_addressRange:
346         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
347             return -1;
348         prefixlen_b = length * 8;
349         break;
350     }
351
352     if ((r = memcmp(addr_a, addr_b, length)) != 0)
353         return r;
354     else
355         return prefixlen_a - prefixlen_b;
356 }
357
358 /*
359  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
360  * comparision routines are only allowed two arguments.
361  */
362 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
363                                   const IPAddressOrRange *const *b)
364 {
365     return IPAddressOrRange_cmp(*a, *b, 4);
366 }
367
368 /*
369  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
370  * comparision routines are only allowed two arguments.
371  */
372 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
373                                   const IPAddressOrRange *const *b)
374 {
375     return IPAddressOrRange_cmp(*a, *b, 16);
376 }
377
378 /*
379  * Calculate whether a range collapses to a prefix.
380  * See last paragraph of RFC 3779 2.2.3.7.
381  */
382 static int range_should_be_prefix(const unsigned char *min,
383                                   const unsigned char *max, const int length)
384 {
385     unsigned char mask;
386     int i, j;
387
388     OPENSSL_assert(memcmp(min, max, length) <= 0);
389     for (i = 0; i < length && min[i] == max[i]; i++) ;
390     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
391     if (i < j)
392         return -1;
393     if (i > j)
394         return i * 8;
395     mask = min[i] ^ max[i];
396     switch (mask) {
397     case 0x01:
398         j = 7;
399         break;
400     case 0x03:
401         j = 6;
402         break;
403     case 0x07:
404         j = 5;
405         break;
406     case 0x0F:
407         j = 4;
408         break;
409     case 0x1F:
410         j = 3;
411         break;
412     case 0x3F:
413         j = 2;
414         break;
415     case 0x7F:
416         j = 1;
417         break;
418     default:
419         return -1;
420     }
421     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
422         return -1;
423     else
424         return i * 8 + j;
425 }
426
427 /*
428  * Construct a prefix.
429  */
430 static int make_addressPrefix(IPAddressOrRange **result,
431                               unsigned char *addr, const int prefixlen)
432 {
433     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
434     IPAddressOrRange *aor = IPAddressOrRange_new();
435
436     if (aor == NULL)
437         return 0;
438     aor->type = IPAddressOrRange_addressPrefix;
439     if (aor->u.addressPrefix == NULL &&
440         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
441         goto err;
442     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
443         goto err;
444     aor->u.addressPrefix->flags &= ~7;
445     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
446     if (bitlen > 0) {
447         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
448         aor->u.addressPrefix->flags |= 8 - bitlen;
449     }
450
451     *result = aor;
452     return 1;
453
454  err:
455     IPAddressOrRange_free(aor);
456     return 0;
457 }
458
459 /*
460  * Construct a range.  If it can be expressed as a prefix,
461  * return a prefix instead.  Doing this here simplifies
462  * the rest of the code considerably.
463  */
464 static int make_addressRange(IPAddressOrRange **result,
465                              unsigned char *min,
466                              unsigned char *max, const int length)
467 {
468     IPAddressOrRange *aor;
469     int i, prefixlen;
470
471     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
472         return make_addressPrefix(result, min, prefixlen);
473
474     if ((aor = IPAddressOrRange_new()) == NULL)
475         return 0;
476     aor->type = IPAddressOrRange_addressRange;
477     OPENSSL_assert(aor->u.addressRange == NULL);
478     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
479         goto err;
480     if (aor->u.addressRange->min == NULL &&
481         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
482         goto err;
483     if (aor->u.addressRange->max == NULL &&
484         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
485         goto err;
486
487     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
488     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
489         goto err;
490     aor->u.addressRange->min->flags &= ~7;
491     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
492     if (i > 0) {
493         unsigned char b = min[i - 1];
494         int j = 1;
495         while ((b & (0xFFU >> j)) != 0)
496             ++j;
497         aor->u.addressRange->min->flags |= 8 - j;
498     }
499
500     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
501     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
502         goto err;
503     aor->u.addressRange->max->flags &= ~7;
504     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
505     if (i > 0) {
506         unsigned char b = max[i - 1];
507         int j = 1;
508         while ((b & (0xFFU >> j)) != (0xFFU >> j))
509             ++j;
510         aor->u.addressRange->max->flags |= 8 - j;
511     }
512
513     *result = aor;
514     return 1;
515
516  err:
517     IPAddressOrRange_free(aor);
518     return 0;
519 }
520
521 /*
522  * Construct a new address family or find an existing one.
523  */
524 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
525                                              const unsigned afi,
526                                              const unsigned *safi)
527 {
528     IPAddressFamily *f;
529     unsigned char key[3];
530     int keylen;
531     int i;
532
533     key[0] = (afi >> 8) & 0xFF;
534     key[1] = afi & 0xFF;
535     if (safi != NULL) {
536         key[2] = *safi & 0xFF;
537         keylen = 3;
538     } else {
539         keylen = 2;
540     }
541
542     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
543         f = sk_IPAddressFamily_value(addr, i);
544         OPENSSL_assert(f->addressFamily->data != NULL);
545         if (f->addressFamily->length == keylen &&
546             !memcmp(f->addressFamily->data, key, keylen))
547             return f;
548     }
549
550     if ((f = IPAddressFamily_new()) == NULL)
551         goto err;
552     if (f->ipAddressChoice == NULL &&
553         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
554         goto err;
555     if (f->addressFamily == NULL &&
556         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
557         goto err;
558     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
559         goto err;
560     if (!sk_IPAddressFamily_push(addr, f))
561         goto err;
562
563     return f;
564
565  err:
566     IPAddressFamily_free(f);
567     return NULL;
568 }
569
570 /*
571  * Add an inheritance element.
572  */
573 int v3_addr_add_inherit(IPAddrBlocks *addr,
574                         const unsigned afi, const unsigned *safi)
575 {
576     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
577     if (f == NULL ||
578         f->ipAddressChoice == NULL ||
579         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
580          f->ipAddressChoice->u.addressesOrRanges != NULL))
581         return 0;
582     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
583         f->ipAddressChoice->u.inherit != NULL)
584         return 1;
585     if (f->ipAddressChoice->u.inherit == NULL &&
586         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
587         return 0;
588     f->ipAddressChoice->type = IPAddressChoice_inherit;
589     return 1;
590 }
591
592 /*
593  * Construct an IPAddressOrRange sequence, or return an existing one.
594  */
595 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
596                                                const unsigned afi,
597                                                const unsigned *safi)
598 {
599     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
600     IPAddressOrRanges *aors = NULL;
601
602     if (f == NULL ||
603         f->ipAddressChoice == NULL ||
604         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
605          f->ipAddressChoice->u.inherit != NULL))
606         return NULL;
607     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
608         aors = f->ipAddressChoice->u.addressesOrRanges;
609     if (aors != NULL)
610         return aors;
611     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
612         return NULL;
613     switch (afi) {
614     case IANA_AFI_IPV4:
615         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
616         break;
617     case IANA_AFI_IPV6:
618         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
619         break;
620     }
621     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
622     f->ipAddressChoice->u.addressesOrRanges = aors;
623     return aors;
624 }
625
626 /*
627  * Add a prefix.
628  */
629 int v3_addr_add_prefix(IPAddrBlocks *addr,
630                        const unsigned afi,
631                        const unsigned *safi,
632                        unsigned char *a, const int prefixlen)
633 {
634     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
635     IPAddressOrRange *aor;
636     if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
637         return 0;
638     if (sk_IPAddressOrRange_push(aors, aor))
639         return 1;
640     IPAddressOrRange_free(aor);
641     return 0;
642 }
643
644 /*
645  * Add a range.
646  */
647 int v3_addr_add_range(IPAddrBlocks *addr,
648                       const unsigned afi,
649                       const unsigned *safi,
650                       unsigned char *min, unsigned char *max)
651 {
652     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
653     IPAddressOrRange *aor;
654     int length = length_from_afi(afi);
655     if (aors == NULL)
656         return 0;
657     if (!make_addressRange(&aor, min, max, length))
658         return 0;
659     if (sk_IPAddressOrRange_push(aors, aor))
660         return 1;
661     IPAddressOrRange_free(aor);
662     return 0;
663 }
664
665 /*
666  * Extract min and max values from an IPAddressOrRange.
667  */
668 static int extract_min_max(IPAddressOrRange *aor,
669                            unsigned char *min, unsigned char *max, int length)
670 {
671     if (aor == NULL || min == NULL || max == NULL)
672         return 0;
673     switch (aor->type) {
674     case IPAddressOrRange_addressPrefix:
675         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
676                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
677     case IPAddressOrRange_addressRange:
678         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
679                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
680     }
681     return 0;
682 }
683
684 /*
685  * Public wrapper for extract_min_max().
686  */
687 int v3_addr_get_range(IPAddressOrRange *aor,
688                       const unsigned afi,
689                       unsigned char *min,
690                       unsigned char *max, const int length)
691 {
692     int afi_length = length_from_afi(afi);
693     if (aor == NULL || min == NULL || max == NULL ||
694         afi_length == 0 || length < afi_length ||
695         (aor->type != IPAddressOrRange_addressPrefix &&
696          aor->type != IPAddressOrRange_addressRange) ||
697         !extract_min_max(aor, min, max, afi_length))
698         return 0;
699
700     return afi_length;
701 }
702
703 /*
704  * Sort comparision function for a sequence of IPAddressFamily.
705  *
706  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
707  * the ordering: I can read it as meaning that IPv6 without a SAFI
708  * comes before IPv4 with a SAFI, which seems pretty weird.  The
709  * examples in appendix B suggest that the author intended the
710  * null-SAFI rule to apply only within a single AFI, which is what I
711  * would have expected and is what the following code implements.
712  */
713 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
714                                const IPAddressFamily *const *b_)
715 {
716     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
717     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
718     int len = ((a->length <= b->length) ? a->length : b->length);
719     int cmp = memcmp(a->data, b->data, len);
720     return cmp ? cmp : a->length - b->length;
721 }
722
723 /*
724  * Check whether an IPAddrBLocks is in canonical form.
725  */
726 int v3_addr_is_canonical(IPAddrBlocks *addr)
727 {
728     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
729     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
730     IPAddressOrRanges *aors;
731     int i, j, k;
732
733     /*
734      * Empty extension is cannonical.
735      */
736     if (addr == NULL)
737         return 1;
738
739     /*
740      * Check whether the top-level list is in order.
741      */
742     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
743         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
744         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
745         if (IPAddressFamily_cmp(&a, &b) >= 0)
746             return 0;
747     }
748
749     /*
750      * Top level's ok, now check each address family.
751      */
752     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
753         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
754         int length = length_from_afi(v3_addr_get_afi(f));
755
756         /*
757          * Inheritance is canonical.  Anything other than inheritance or
758          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
759          */
760         if (f == NULL || f->ipAddressChoice == NULL)
761             return 0;
762         switch (f->ipAddressChoice->type) {
763         case IPAddressChoice_inherit:
764             continue;
765         case IPAddressChoice_addressesOrRanges:
766             break;
767         default:
768             return 0;
769         }
770
771         /*
772          * It's an IPAddressOrRanges sequence, check it.
773          */
774         aors = f->ipAddressChoice->u.addressesOrRanges;
775         if (sk_IPAddressOrRange_num(aors) == 0)
776             return 0;
777         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
778             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
779             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
780
781             if (!extract_min_max(a, a_min, a_max, length) ||
782                 !extract_min_max(b, b_min, b_max, length))
783                 return 0;
784
785             /*
786              * Punt misordered list, overlapping start, or inverted range.
787              */
788             if (memcmp(a_min, b_min, length) >= 0 ||
789                 memcmp(a_min, a_max, length) > 0 ||
790                 memcmp(b_min, b_max, length) > 0)
791                 return 0;
792
793             /*
794              * Punt if adjacent or overlapping.  Check for adjacency by
795              * subtracting one from b_min first.
796              */
797             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
798             if (memcmp(a_max, b_min, length) >= 0)
799                 return 0;
800
801             /*
802              * Check for range that should be expressed as a prefix.
803              */
804             if (a->type == IPAddressOrRange_addressRange &&
805                 range_should_be_prefix(a_min, a_max, length) >= 0)
806                 return 0;
807         }
808
809         /*
810          * Check range to see if it's inverted or should be a
811          * prefix.
812          */
813         j = sk_IPAddressOrRange_num(aors) - 1;
814         {
815             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
816             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
817                 if (!extract_min_max(a, a_min, a_max, length))
818                     return 0;
819                 if (memcmp(a_min, a_max, length) > 0 ||
820                     range_should_be_prefix(a_min, a_max, length) >= 0)
821                     return 0;
822             }
823         }
824     }
825
826     /*
827      * If we made it through all that, we're happy.
828      */
829     return 1;
830 }
831
832 /*
833  * Whack an IPAddressOrRanges into canonical form.
834  */
835 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
836                                       const unsigned afi)
837 {
838     int i, j, length = length_from_afi(afi);
839
840     /*
841      * Sort the IPAddressOrRanges sequence.
842      */
843     sk_IPAddressOrRange_sort(aors);
844
845     /*
846      * Clean up representation issues, punt on duplicates or overlaps.
847      */
848     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
849         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
850         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
851         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
852         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
853
854         if (!extract_min_max(a, a_min, a_max, length) ||
855             !extract_min_max(b, b_min, b_max, length))
856             return 0;
857
858         /*
859          * Punt inverted ranges.
860          */
861         if (memcmp(a_min, a_max, length) > 0 ||
862             memcmp(b_min, b_max, length) > 0)
863             return 0;
864
865         /*
866          * Punt overlaps.
867          */
868         if (memcmp(a_max, b_min, length) >= 0)
869             return 0;
870
871         /*
872          * Merge if a and b are adjacent.  We check for
873          * adjacency by subtracting one from b_min first.
874          */
875         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
876         if (memcmp(a_max, b_min, length) == 0) {
877             IPAddressOrRange *merged;
878             if (!make_addressRange(&merged, a_min, b_max, length))
879                 return 0;
880             (void)sk_IPAddressOrRange_set(aors, i, merged);
881             (void)sk_IPAddressOrRange_delete(aors, i + 1);
882             IPAddressOrRange_free(a);
883             IPAddressOrRange_free(b);
884             --i;
885             continue;
886         }
887     }
888
889     /*
890      * Check for inverted final range.
891      */
892     j = sk_IPAddressOrRange_num(aors) - 1;
893     {
894         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
895         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
896             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
897             extract_min_max(a, a_min, a_max, length);
898             if (memcmp(a_min, a_max, length) > 0)
899                 return 0;
900         }
901     }
902
903     return 1;
904 }
905
906 /*
907  * Whack an IPAddrBlocks extension into canonical form.
908  */
909 int v3_addr_canonize(IPAddrBlocks *addr)
910 {
911     int i;
912     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
913         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
914         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
915             !IPAddressOrRanges_canonize(f->ipAddressChoice->
916                                         u.addressesOrRanges,
917                                         v3_addr_get_afi(f)))
918             return 0;
919     }
920     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
921     sk_IPAddressFamily_sort(addr);
922     OPENSSL_assert(v3_addr_is_canonical(addr));
923     return 1;
924 }
925
926 /*
927  * v2i handler for the IPAddrBlocks extension.
928  */
929 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
930                               struct v3_ext_ctx *ctx,
931                               STACK_OF(CONF_VALUE) *values)
932 {
933     static const char v4addr_chars[] = "0123456789.";
934     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
935     IPAddrBlocks *addr = NULL;
936     char *s = NULL, *t;
937     int i;
938
939     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
940         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
941         return NULL;
942     }
943
944     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
945         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
946         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
947         unsigned afi, *safi = NULL, safi_;
948         const char *addr_chars;
949         int prefixlen, i1, i2, delim, length;
950
951         if (!name_cmp(val->name, "IPv4")) {
952             afi = IANA_AFI_IPV4;
953         } else if (!name_cmp(val->name, "IPv6")) {
954             afi = IANA_AFI_IPV6;
955         } else if (!name_cmp(val->name, "IPv4-SAFI")) {
956             afi = IANA_AFI_IPV4;
957             safi = &safi_;
958         } else if (!name_cmp(val->name, "IPv6-SAFI")) {
959             afi = IANA_AFI_IPV6;
960             safi = &safi_;
961         } else {
962             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
963                       X509V3_R_EXTENSION_NAME_ERROR);
964             X509V3_conf_err(val);
965             goto err;
966         }
967
968         switch (afi) {
969         case IANA_AFI_IPV4:
970             addr_chars = v4addr_chars;
971             break;
972         case IANA_AFI_IPV6:
973             addr_chars = v6addr_chars;
974             break;
975         }
976
977         length = length_from_afi(afi);
978
979         /*
980          * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
981          * the other input values.
982          */
983         if (safi != NULL) {
984             *safi = strtoul(val->value, &t, 0);
985             t += strspn(t, " \t");
986             if (*safi > 0xFF || *t++ != ':') {
987                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
988                 X509V3_conf_err(val);
989                 goto err;
990             }
991             t += strspn(t, " \t");
992             s = BUF_strdup(t);
993         } else {
994             s = BUF_strdup(val->value);
995         }
996         if (s == NULL) {
997             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
998             goto err;
999         }
1000
1001         /*
1002          * Check for inheritance.  Not worth additional complexity to
1003          * optimize this (seldom-used) case.
1004          */
1005         if (!strcmp(s, "inherit")) {
1006             if (!v3_addr_add_inherit(addr, afi, safi)) {
1007                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1008                           X509V3_R_INVALID_INHERITANCE);
1009                 X509V3_conf_err(val);
1010                 goto err;
1011             }
1012             OPENSSL_free(s);
1013             s = NULL;
1014             continue;
1015         }
1016
1017         i1 = strspn(s, addr_chars);
1018         i2 = i1 + strspn(s + i1, " \t");
1019         delim = s[i2++];
1020         s[i1] = '\0';
1021
1022         if (a2i_ipadd(min, s) != length) {
1023             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1024             X509V3_conf_err(val);
1025             goto err;
1026         }
1027
1028         switch (delim) {
1029         case '/':
1030             prefixlen = (int)strtoul(s + i2, &t, 10);
1031             if (t == s + i2 || *t != '\0') {
1032                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1033                           X509V3_R_EXTENSION_VALUE_ERROR);
1034                 X509V3_conf_err(val);
1035                 goto err;
1036             }
1037             if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1038                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1039                 goto err;
1040             }
1041             break;
1042         case '-':
1043             i1 = i2 + strspn(s + i2, " \t");
1044             i2 = i1 + strspn(s + i1, addr_chars);
1045             if (i1 == i2 || s[i2] != '\0') {
1046                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1047                           X509V3_R_EXTENSION_VALUE_ERROR);
1048                 X509V3_conf_err(val);
1049                 goto err;
1050             }
1051             if (a2i_ipadd(max, s + i1) != length) {
1052                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1053                           X509V3_R_INVALID_IPADDRESS);
1054                 X509V3_conf_err(val);
1055                 goto err;
1056             }
1057             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1058                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1059                           X509V3_R_EXTENSION_VALUE_ERROR);
1060                 X509V3_conf_err(val);
1061                 goto err;
1062             }
1063             if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1064                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1065                 goto err;
1066             }
1067             break;
1068         case '\0':
1069             if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1070                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1071                 goto err;
1072             }
1073             break;
1074         default:
1075             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1076                       X509V3_R_EXTENSION_VALUE_ERROR);
1077             X509V3_conf_err(val);
1078             goto err;
1079         }
1080
1081         OPENSSL_free(s);
1082         s = NULL;
1083     }
1084
1085     /*
1086      * Canonize the result, then we're done.
1087      */
1088     if (!v3_addr_canonize(addr))
1089         goto err;
1090     return addr;
1091
1092  err:
1093     OPENSSL_free(s);
1094     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1095     return NULL;
1096 }
1097
1098 /*
1099  * OpenSSL dispatch
1100  */
1101 const X509V3_EXT_METHOD v3_addr = {
1102     NID_sbgp_ipAddrBlock,       /* nid */
1103     0,                          /* flags */
1104     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1105     0, 0, 0, 0,                 /* old functions, ignored */
1106     0,                          /* i2s */
1107     0,                          /* s2i */
1108     0,                          /* i2v */
1109     v2i_IPAddrBlocks,           /* v2i */
1110     i2r_IPAddrBlocks,           /* i2r */
1111     0,                          /* r2i */
1112     NULL                        /* extension-specific data */
1113 };
1114
1115 /*
1116  * Figure out whether extension sues inheritance.
1117  */
1118 int v3_addr_inherits(IPAddrBlocks *addr)
1119 {
1120     int i;
1121     if (addr == NULL)
1122         return 0;
1123     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1124         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1125         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1126             return 1;
1127     }
1128     return 0;
1129 }
1130
1131 /*
1132  * Figure out whether parent contains child.
1133  */
1134 static int addr_contains(IPAddressOrRanges *parent,
1135                          IPAddressOrRanges *child, int length)
1136 {
1137     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1138     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1139     int p, c;
1140
1141     if (child == NULL || parent == child)
1142         return 1;
1143     if (parent == NULL)
1144         return 0;
1145
1146     p = 0;
1147     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1148         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1149                              c_min, c_max, length))
1150             return -1;
1151         for (;; p++) {
1152             if (p >= sk_IPAddressOrRange_num(parent))
1153                 return 0;
1154             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1155                                  p_min, p_max, length))
1156                 return 0;
1157             if (memcmp(p_max, c_max, length) < 0)
1158                 continue;
1159             if (memcmp(p_min, c_min, length) > 0)
1160                 return 0;
1161             break;
1162         }
1163     }
1164
1165     return 1;
1166 }
1167
1168 /*
1169  * Test whether a is a subset of b.
1170  */
1171 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1172 {
1173     int i;
1174     if (a == NULL || a == b)
1175         return 1;
1176     if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1177         return 0;
1178     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1179     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1180         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1181         int j = sk_IPAddressFamily_find(b, fa);
1182         IPAddressFamily *fb;
1183         fb = sk_IPAddressFamily_value(b, j);
1184         if (fb == NULL)
1185             return 0;
1186         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1187                            fa->ipAddressChoice->u.addressesOrRanges,
1188                            length_from_afi(v3_addr_get_afi(fb))))
1189             return 0;
1190     }
1191     return 1;
1192 }
1193
1194 /*
1195  * Validation error handling via callback.
1196  */
1197 #define validation_err(_err_)           \
1198   do {                                  \
1199     if (ctx != NULL) {                  \
1200       ctx->error = _err_;               \
1201       ctx->error_depth = i;             \
1202       ctx->current_cert = x;            \
1203       ret = ctx->verify_cb(0, ctx);     \
1204     } else {                            \
1205       ret = 0;                          \
1206     }                                   \
1207     if (!ret)                           \
1208       goto done;                        \
1209   } while (0)
1210
1211 /*
1212  * Core code for RFC 3779 2.3 path validation.
1213  */
1214 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1215                                           STACK_OF(X509) *chain,
1216                                           IPAddrBlocks *ext)
1217 {
1218     IPAddrBlocks *child = NULL;
1219     int i, j, ret = 1;
1220     X509 *x;
1221
1222     OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1223     OPENSSL_assert(ctx != NULL || ext != NULL);
1224     OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1225
1226     /*
1227      * Figure out where to start.  If we don't have an extension to
1228      * check, we're done.  Otherwise, check canonical form and
1229      * set up for walking up the chain.
1230      */
1231     if (ext != NULL) {
1232         i = -1;
1233         x = NULL;
1234     } else {
1235         i = 0;
1236         x = sk_X509_value(chain, i);
1237         OPENSSL_assert(x != NULL);
1238         if ((ext = x->rfc3779_addr) == NULL)
1239             goto done;
1240     }
1241     if (!v3_addr_is_canonical(ext))
1242         validation_err(X509_V_ERR_INVALID_EXTENSION);
1243     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1244     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1245         X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1246                   ERR_R_MALLOC_FAILURE);
1247         ret = 0;
1248         goto done;
1249     }
1250
1251     /*
1252      * Now walk up the chain.  No cert may list resources that its
1253      * parent doesn't list.
1254      */
1255     for (i++; i < sk_X509_num(chain); i++) {
1256         x = sk_X509_value(chain, i);
1257         OPENSSL_assert(x != NULL);
1258         if (!v3_addr_is_canonical(x->rfc3779_addr))
1259             validation_err(X509_V_ERR_INVALID_EXTENSION);
1260         if (x->rfc3779_addr == NULL) {
1261             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1262                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1263                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1264                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1265                     break;
1266                 }
1267             }
1268             continue;
1269         }
1270         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1271                                               IPAddressFamily_cmp);
1272         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1273             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1274             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1275             IPAddressFamily *fp =
1276                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1277             if (fp == NULL) {
1278                 if (fc->ipAddressChoice->type ==
1279                     IPAddressChoice_addressesOrRanges) {
1280                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1281                     break;
1282                 }
1283                 continue;
1284             }
1285             if (fp->ipAddressChoice->type ==
1286                 IPAddressChoice_addressesOrRanges) {
1287                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1288                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1289                                      fc->ipAddressChoice->u.addressesOrRanges,
1290                                      length_from_afi(v3_addr_get_afi(fc))))
1291                     sk_IPAddressFamily_set(child, j, fp);
1292                 else
1293                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1294             }
1295         }
1296     }
1297
1298     /*
1299      * Trust anchor can't inherit.
1300      */
1301     OPENSSL_assert(x != NULL);
1302     if (x->rfc3779_addr != NULL) {
1303         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1304             IPAddressFamily *fp =
1305                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1306             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1307                 && sk_IPAddressFamily_find(child, fp) >= 0)
1308                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1309         }
1310     }
1311
1312  done:
1313     sk_IPAddressFamily_free(child);
1314     return ret;
1315 }
1316
1317 #undef validation_err
1318
1319 /*
1320  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1321  */
1322 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1323 {
1324     return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1325 }
1326
1327 /*
1328  * RFC 3779 2.3 path validation of an extension.
1329  * Test whether chain covers extension.
1330  */
1331 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1332                                   IPAddrBlocks *ext, int allow_inheritance)
1333 {
1334     if (ext == NULL)
1335         return 1;
1336     if (chain == NULL || sk_X509_num(chain) == 0)
1337         return 0;
1338     if (!allow_inheritance && v3_addr_inherits(ext))
1339         return 0;
1340     return v3_addr_validate_path_internal(NULL, chain, ext);
1341 }