Add functions to set ECDSA_METHOD structure.
[openssl.git] / crypto / x509v3 / v3_addr.c
1 /*
2  * Contributed to the OpenSSL Project by the American Registry for
3  * Internet Numbers ("ARIN").
4  */
5 /* ====================================================================
6  * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer. 
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  */
57
58 /*
59  * Implementation of RFC 3779 section 2.2.
60  */
61
62 #include <stdio.h>
63 #include <stdlib.h>
64
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71
72 #ifndef OPENSSL_NO_RFC3779
73
74 /*
75  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76  */
77
78 ASN1_SEQUENCE(IPAddressRange) = {
79   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
82
83 ASN1_CHOICE(IPAddressOrRange) = {
84   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
87
88 ASN1_CHOICE(IPAddressChoice) = {
89   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
92
93 ASN1_SEQUENCE(IPAddressFamily) = {
94   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
97
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) = 
99   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100                         IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108 /*
109  * How much buffer space do we need for a raw address?
110  */
111 #define ADDR_RAW_BUF_LEN        16
112
113 /*
114  * What's the address length associated with this AFI?
115  */
116 static int length_from_afi(const unsigned afi)
117 {
118   switch (afi) {
119   case IANA_AFI_IPV4:
120     return 4;
121   case IANA_AFI_IPV6:
122     return 16;
123   default:
124     return 0;
125   }
126 }
127
128 /*
129  * Extract the AFI from an IPAddressFamily.
130  */
131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132 {
133   return ((f != NULL &&
134            f->addressFamily != NULL &&
135            f->addressFamily->data != NULL)
136           ? ((f->addressFamily->data[0] << 8) |
137              (f->addressFamily->data[1]))
138           : 0);
139 }
140
141 /*
142  * Expand the bitstring form of an address into a raw byte array.
143  * At the moment this is coded for simplicity, not speed.
144  */
145 static int addr_expand(unsigned char *addr,
146                         const ASN1_BIT_STRING *bs,
147                         const int length,
148                         const unsigned char fill)
149 {
150   if (bs->length < 0 || bs->length > length)
151     return 0;
152   if (bs->length > 0) {
153     memcpy(addr, bs->data, bs->length);
154     if ((bs->flags & 7) != 0) {
155       unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
156       if (fill == 0)
157         addr[bs->length - 1] &= ~mask;
158       else
159         addr[bs->length - 1] |= mask;
160     }
161   }
162   memset(addr + bs->length, fill, length - bs->length);
163   return 1;
164 }
165
166 /*
167  * Extract the prefix length from a bitstring.
168  */
169 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
170
171 /*
172  * i2r handler for one address bitstring.
173  */
174 static int i2r_address(BIO *out,
175                        const unsigned afi,
176                        const unsigned char fill,
177                        const ASN1_BIT_STRING *bs)
178 {
179   unsigned char addr[ADDR_RAW_BUF_LEN];
180   int i, n;
181
182   if (bs->length < 0)
183     return 0;
184   switch (afi) {
185   case IANA_AFI_IPV4:
186     if (!addr_expand(addr, bs, 4, fill))
187       return 0;
188     BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
189     break;
190   case IANA_AFI_IPV6:
191     if (!addr_expand(addr, bs, 16, fill))
192       return 0;
193     for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
194       ;
195     for (i = 0; i < n; i += 2)
196       BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
197     if (i < 16)
198       BIO_puts(out, ":");
199     if (i == 0)
200       BIO_puts(out, ":");
201     break;
202   default:
203     for (i = 0; i < bs->length; i++)
204       BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
205     BIO_printf(out, "[%d]", (int) (bs->flags & 7));
206     break;
207   }
208   return 1;
209 }
210
211 /*
212  * i2r handler for a sequence of addresses and ranges.
213  */
214 static int i2r_IPAddressOrRanges(BIO *out,
215                                  const int indent,
216                                  const IPAddressOrRanges *aors,
217                                  const unsigned afi)
218 {
219   int i;
220   for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
221     const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
222     BIO_printf(out, "%*s", indent, "");
223     switch (aor->type) {
224     case IPAddressOrRange_addressPrefix:
225       if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
226         return 0;
227       BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
228       continue;
229     case IPAddressOrRange_addressRange:
230       if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
231         return 0;
232       BIO_puts(out, "-");
233       if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
234         return 0;
235       BIO_puts(out, "\n");
236       continue;
237     }
238   }
239   return 1;
240 }
241
242 /*
243  * i2r handler for an IPAddrBlocks extension.
244  */
245 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
246                             void *ext,
247                             BIO *out,
248                             int indent)
249 {
250   const IPAddrBlocks *addr = ext;
251   int i;
252   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
253     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
254     const unsigned int afi = v3_addr_get_afi(f);
255     switch (afi) {
256     case IANA_AFI_IPV4:
257       BIO_printf(out, "%*sIPv4", indent, "");
258       break;
259     case IANA_AFI_IPV6:
260       BIO_printf(out, "%*sIPv6", indent, "");
261       break;
262     default:
263       BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
264       break;
265     }
266     if (f->addressFamily->length > 2) {
267       switch (f->addressFamily->data[2]) {
268       case   1:
269         BIO_puts(out, " (Unicast)");
270         break;
271       case   2:
272         BIO_puts(out, " (Multicast)");
273         break;
274       case   3:
275         BIO_puts(out, " (Unicast/Multicast)");
276         break;
277       case   4:
278         BIO_puts(out, " (MPLS)");
279         break;
280       case  64:
281         BIO_puts(out, " (Tunnel)");
282         break;
283       case  65:
284         BIO_puts(out, " (VPLS)");
285         break;
286       case  66:
287         BIO_puts(out, " (BGP MDT)");
288         break;
289       case 128:
290         BIO_puts(out, " (MPLS-labeled VPN)");
291         break;
292       default:  
293         BIO_printf(out, " (Unknown SAFI %u)",
294                    (unsigned) f->addressFamily->data[2]);
295         break;
296       }
297     }
298     switch (f->ipAddressChoice->type) {
299     case IPAddressChoice_inherit:
300       BIO_puts(out, ": inherit\n");
301       break;
302     case IPAddressChoice_addressesOrRanges:
303       BIO_puts(out, ":\n");
304       if (!i2r_IPAddressOrRanges(out,
305                                  indent + 2,
306                                  f->ipAddressChoice->u.addressesOrRanges,
307                                  afi))
308         return 0;
309       break;
310     }
311   }
312   return 1;
313 }
314
315 /*
316  * Sort comparison function for a sequence of IPAddressOrRange
317  * elements.
318  *
319  * There's no sane answer we can give if addr_expand() fails, and an
320  * assertion failure on externally supplied data is seriously uncool,
321  * so we just arbitrarily declare that if given invalid inputs this
322  * function returns -1.  If this messes up your preferred sort order
323  * for garbage input, tough noogies.
324  */
325 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
326                                 const IPAddressOrRange *b,
327                                 const int length)
328 {
329   unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
330   int prefixlen_a = 0, prefixlen_b = 0;
331   int r;
332
333   switch (a->type) {
334   case IPAddressOrRange_addressPrefix:
335     if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
336       return -1;
337     prefixlen_a = addr_prefixlen(a->u.addressPrefix);
338     break;
339   case IPAddressOrRange_addressRange:
340     if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
341       return -1;
342     prefixlen_a = length * 8;
343     break;
344   }
345
346   switch (b->type) {
347   case IPAddressOrRange_addressPrefix:
348     if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
349       return -1;
350     prefixlen_b = addr_prefixlen(b->u.addressPrefix);
351     break;
352   case IPAddressOrRange_addressRange:
353     if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
354       return -1;
355     prefixlen_b = length * 8;
356     break;
357   }
358
359   if ((r = memcmp(addr_a, addr_b, length)) != 0)
360     return r;
361   else
362     return prefixlen_a - prefixlen_b;
363 }
364
365 /*
366  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
367  * comparision routines are only allowed two arguments.
368  */
369 static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
370                                   const IPAddressOrRange * const *b)
371 {
372   return IPAddressOrRange_cmp(*a, *b, 4);
373 }
374
375 /*
376  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
377  * comparision routines are only allowed two arguments.
378  */
379 static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
380                                   const IPAddressOrRange * const *b)
381 {
382   return IPAddressOrRange_cmp(*a, *b, 16);
383 }
384
385 /*
386  * Calculate whether a range collapses to a prefix.
387  * See last paragraph of RFC 3779 2.2.3.7.
388  */
389 static int range_should_be_prefix(const unsigned char *min,
390                                   const unsigned char *max,
391                                   const int length)
392 {
393   unsigned char mask;
394   int i, j;
395
396   OPENSSL_assert(memcmp(min, max, length) <= 0);
397   for (i = 0; i < length && min[i] == max[i]; i++)
398     ;
399   for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
400     ;
401   if (i < j)
402     return -1;
403   if (i > j)
404     return i * 8;
405   mask = min[i] ^ max[i];
406   switch (mask) {
407   case 0x01: j = 7; break;
408   case 0x03: j = 6; break;
409   case 0x07: j = 5; break;
410   case 0x0F: j = 4; break;
411   case 0x1F: j = 3; break;
412   case 0x3F: j = 2; break;
413   case 0x7F: j = 1; break;
414   default:   return -1;
415   }
416   if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
417     return -1;
418   else
419     return i * 8 + j;
420 }
421
422 /*
423  * Construct a prefix.
424  */
425 static int make_addressPrefix(IPAddressOrRange **result,
426                               unsigned char *addr,
427                               const int prefixlen)
428 {
429   int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
430   IPAddressOrRange *aor = IPAddressOrRange_new();
431
432   if (aor == NULL)
433     return 0;
434   aor->type = IPAddressOrRange_addressPrefix;
435   if (aor->u.addressPrefix == NULL &&
436       (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
437     goto err;
438   if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
439     goto err;
440   aor->u.addressPrefix->flags &= ~7;
441   aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
442   if (bitlen > 0) {
443     aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
444     aor->u.addressPrefix->flags |= 8 - bitlen;
445   }
446   
447   *result = aor;
448   return 1;
449
450  err:
451   IPAddressOrRange_free(aor);
452   return 0;
453 }
454
455 /*
456  * Construct a range.  If it can be expressed as a prefix,
457  * return a prefix instead.  Doing this here simplifies
458  * the rest of the code considerably.
459  */
460 static int make_addressRange(IPAddressOrRange **result,
461                              unsigned char *min,
462                              unsigned char *max,
463                              const int length)
464 {
465   IPAddressOrRange *aor;
466   int i, prefixlen;
467
468   if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
469     return make_addressPrefix(result, min, prefixlen);
470
471   if ((aor = IPAddressOrRange_new()) == NULL)
472     return 0;
473   aor->type = IPAddressOrRange_addressRange;
474   OPENSSL_assert(aor->u.addressRange == NULL);
475   if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
476     goto err;
477   if (aor->u.addressRange->min == NULL &&
478       (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
479     goto err;
480   if (aor->u.addressRange->max == NULL &&
481       (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
482     goto err;
483
484   for (i = length; i > 0 && min[i - 1] == 0x00; --i)
485     ;
486   if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
487     goto err;
488   aor->u.addressRange->min->flags &= ~7;
489   aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
490   if (i > 0) {
491     unsigned char b = min[i - 1];
492     int j = 1;
493     while ((b & (0xFFU >> j)) != 0) 
494       ++j;
495     aor->u.addressRange->min->flags |= 8 - j;
496   }
497
498   for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
499     ;
500   if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
501     goto err;
502   aor->u.addressRange->max->flags &= ~7;
503   aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
504   if (i > 0) {
505     unsigned char b = max[i - 1];
506     int j = 1;
507     while ((b & (0xFFU >> j)) != (0xFFU >> j))
508       ++j;
509     aor->u.addressRange->max->flags |= 8 - j;
510   }
511
512   *result = aor;
513   return 1;
514
515  err:
516   IPAddressOrRange_free(aor);
517   return 0;
518 }
519
520 /*
521  * Construct a new address family or find an existing one.
522  */
523 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
524                                              const unsigned afi,
525                                              const unsigned *safi)
526 {
527   IPAddressFamily *f;
528   unsigned char key[3];
529   unsigned keylen;
530   int i;
531
532   key[0] = (afi >> 8) & 0xFF;
533   key[1] = afi & 0xFF;
534   if (safi != NULL) {
535     key[2] = *safi & 0xFF;
536     keylen = 3;
537   } else {
538     keylen = 2;
539   }
540
541   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
542     f = sk_IPAddressFamily_value(addr, i);
543     OPENSSL_assert(f->addressFamily->data != NULL);
544     if (f->addressFamily->length == keylen &&
545         !memcmp(f->addressFamily->data, key, keylen))
546       return f;
547   }
548
549   if ((f = IPAddressFamily_new()) == NULL)
550     goto err;
551   if (f->ipAddressChoice == NULL &&
552       (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
553     goto err;
554   if (f->addressFamily == NULL && 
555       (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
556     goto err;
557   if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
558     goto err;
559   if (!sk_IPAddressFamily_push(addr, f))
560     goto err;
561
562   return f;
563
564  err:
565   IPAddressFamily_free(f);
566   return NULL;
567 }
568
569 /*
570  * Add an inheritance element.
571  */
572 int v3_addr_add_inherit(IPAddrBlocks *addr,
573                         const unsigned afi,
574                         const unsigned *safi)
575 {
576   IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
577   if (f == NULL ||
578       f->ipAddressChoice == NULL ||
579       (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
580        f->ipAddressChoice->u.addressesOrRanges != NULL))
581     return 0;
582   if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
583       f->ipAddressChoice->u.inherit != NULL)
584     return 1;
585   if (f->ipAddressChoice->u.inherit == NULL &&
586       (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
587     return 0;
588   f->ipAddressChoice->type = IPAddressChoice_inherit;
589   return 1;
590 }
591
592 /*
593  * Construct an IPAddressOrRange sequence, or return an existing one.
594  */
595 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
596                                                const unsigned afi,
597                                                const unsigned *safi)
598 {
599   IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
600   IPAddressOrRanges *aors = NULL;
601
602   if (f == NULL ||
603       f->ipAddressChoice == NULL ||
604       (f->ipAddressChoice->type == IPAddressChoice_inherit &&
605        f->ipAddressChoice->u.inherit != NULL))
606     return NULL;
607   if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
608     aors = f->ipAddressChoice->u.addressesOrRanges;
609   if (aors != NULL)
610     return aors;
611   if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
612     return NULL;
613   switch (afi) {
614   case IANA_AFI_IPV4:
615     (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
616     break;
617   case IANA_AFI_IPV6:
618     (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
619     break;
620   }
621   f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
622   f->ipAddressChoice->u.addressesOrRanges = aors;
623   return aors;
624 }
625
626 /*
627  * Add a prefix.
628  */
629 int v3_addr_add_prefix(IPAddrBlocks *addr,
630                        const unsigned afi,
631                        const unsigned *safi,
632                        unsigned char *a,
633                        const int prefixlen)
634 {
635   IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636   IPAddressOrRange *aor;
637   if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638     return 0;
639   if (sk_IPAddressOrRange_push(aors, aor))
640     return 1;
641   IPAddressOrRange_free(aor);
642   return 0;
643 }
644
645 /*
646  * Add a range.
647  */
648 int v3_addr_add_range(IPAddrBlocks *addr,
649                       const unsigned afi,
650                       const unsigned *safi,
651                       unsigned char *min,
652                       unsigned char *max)
653 {
654   IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655   IPAddressOrRange *aor;
656   int length = length_from_afi(afi);
657   if (aors == NULL)
658     return 0;
659   if (!make_addressRange(&aor, min, max, length))
660     return 0;
661   if (sk_IPAddressOrRange_push(aors, aor))
662     return 1;
663   IPAddressOrRange_free(aor);
664   return 0;
665 }
666
667 /*
668  * Extract min and max values from an IPAddressOrRange.
669  */
670 static int extract_min_max(IPAddressOrRange *aor,
671                             unsigned char *min,
672                             unsigned char *max,
673                             int length)
674 {
675   if (aor == NULL || min == NULL || max == NULL)
676     return 0;
677   switch (aor->type) {
678   case IPAddressOrRange_addressPrefix:
679     return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
680             addr_expand(max, aor->u.addressPrefix, length, 0xFF));
681   case IPAddressOrRange_addressRange:
682     return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
683             addr_expand(max, aor->u.addressRange->max, length, 0xFF));
684   }
685   return 0;
686 }
687
688 /*
689  * Public wrapper for extract_min_max().
690  */
691 int v3_addr_get_range(IPAddressOrRange *aor,
692                       const unsigned afi,
693                       unsigned char *min,
694                       unsigned char *max,
695                       const int length)
696 {
697   int afi_length = length_from_afi(afi);
698   if (aor == NULL || min == NULL || max == NULL ||
699       afi_length == 0 || length < afi_length ||
700       (aor->type != IPAddressOrRange_addressPrefix &&
701        aor->type != IPAddressOrRange_addressRange) ||
702       !extract_min_max(aor, min, max, afi_length))
703     return 0;
704
705   return afi_length;
706 }
707
708 /*
709  * Sort comparision function for a sequence of IPAddressFamily.
710  *
711  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
712  * the ordering: I can read it as meaning that IPv6 without a SAFI
713  * comes before IPv4 with a SAFI, which seems pretty weird.  The
714  * examples in appendix B suggest that the author intended the
715  * null-SAFI rule to apply only within a single AFI, which is what I
716  * would have expected and is what the following code implements.
717  */
718 static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
719                                const IPAddressFamily * const *b_)
720 {
721   const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
722   const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
723   int len = ((a->length <= b->length) ? a->length : b->length);
724   int cmp = memcmp(a->data, b->data, len);
725   return cmp ? cmp : a->length - b->length;
726 }
727
728 /*
729  * Check whether an IPAddrBLocks is in canonical form.
730  */
731 int v3_addr_is_canonical(IPAddrBlocks *addr)
732 {
733   unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
734   unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
735   IPAddressOrRanges *aors;
736   int i, j, k;
737
738   /*
739    * Empty extension is cannonical.
740    */
741   if (addr == NULL)
742     return 1;
743
744   /*
745    * Check whether the top-level list is in order.
746    */
747   for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
748     const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
749     const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
750     if (IPAddressFamily_cmp(&a, &b) >= 0)
751       return 0;
752   }
753
754   /*
755    * Top level's ok, now check each address family.
756    */
757   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
758     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
759     int length = length_from_afi(v3_addr_get_afi(f));
760
761     /*
762      * Inheritance is canonical.  Anything other than inheritance or
763      * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
764      */
765     if (f == NULL || f->ipAddressChoice == NULL)
766       return 0;
767     switch (f->ipAddressChoice->type) {
768     case IPAddressChoice_inherit:
769       continue;
770     case IPAddressChoice_addressesOrRanges:
771       break;
772     default:
773       return 0;
774     }
775
776     /*
777      * It's an IPAddressOrRanges sequence, check it.
778      */
779     aors = f->ipAddressChoice->u.addressesOrRanges;
780     if (sk_IPAddressOrRange_num(aors) == 0)
781       return 0;
782     for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
783       IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
784       IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
785
786       if (!extract_min_max(a, a_min, a_max, length) ||
787           !extract_min_max(b, b_min, b_max, length))
788         return 0;
789
790       /*
791        * Punt misordered list, overlapping start, or inverted range.
792        */
793       if (memcmp(a_min, b_min, length) >= 0 ||
794           memcmp(a_min, a_max, length) > 0 ||
795           memcmp(b_min, b_max, length) > 0)
796         return 0;
797
798       /*
799        * Punt if adjacent or overlapping.  Check for adjacency by
800        * subtracting one from b_min first.
801        */
802       for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
803         ;
804       if (memcmp(a_max, b_min, length) >= 0)
805         return 0;
806
807       /*
808        * Check for range that should be expressed as a prefix.
809        */
810       if (a->type == IPAddressOrRange_addressRange &&
811           range_should_be_prefix(a_min, a_max, length) >= 0)
812         return 0;
813     }
814
815     /*
816      * Check range to see if it's inverted or should be a
817      * prefix.
818      */
819     j = sk_IPAddressOrRange_num(aors) - 1;
820     {
821       IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
822       if (a != NULL && a->type == IPAddressOrRange_addressRange) {
823         if (!extract_min_max(a, a_min, a_max, length))
824           return 0;
825         if (memcmp(a_min, a_max, length) > 0 ||
826             range_should_be_prefix(a_min, a_max, length) >= 0)
827           return 0;
828       }
829     }
830   }
831
832   /*
833    * If we made it through all that, we're happy.
834    */
835   return 1;
836 }
837
838 /*
839  * Whack an IPAddressOrRanges into canonical form.
840  */
841 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
842                                       const unsigned afi)
843 {
844   int i, j, length = length_from_afi(afi);
845
846   /*
847    * Sort the IPAddressOrRanges sequence.
848    */
849   sk_IPAddressOrRange_sort(aors);
850
851   /*
852    * Clean up representation issues, punt on duplicates or overlaps.
853    */
854   for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
855     IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
856     IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
857     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
858     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
859
860     if (!extract_min_max(a, a_min, a_max, length) ||
861         !extract_min_max(b, b_min, b_max, length))
862       return 0;
863
864     /*
865      * Punt inverted ranges.
866      */
867     if (memcmp(a_min, a_max, length) > 0 ||
868         memcmp(b_min, b_max, length) > 0)
869       return 0;
870
871     /*
872      * Punt overlaps.
873      */
874     if (memcmp(a_max, b_min, length) >= 0)
875       return 0;
876
877     /*
878      * Merge if a and b are adjacent.  We check for
879      * adjacency by subtracting one from b_min first.
880      */
881     for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
882       ;
883     if (memcmp(a_max, b_min, length) == 0) {
884       IPAddressOrRange *merged;
885       if (!make_addressRange(&merged, a_min, b_max, length))
886         return 0;
887       (void) sk_IPAddressOrRange_set(aors, i, merged);
888       (void) sk_IPAddressOrRange_delete(aors, i + 1);
889       IPAddressOrRange_free(a);
890       IPAddressOrRange_free(b);
891       --i;
892       continue;
893     }
894   }
895
896   /*
897    * Check for inverted final range.
898    */
899   j = sk_IPAddressOrRange_num(aors) - 1;
900   {
901     IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
902     if (a != NULL && a->type == IPAddressOrRange_addressRange) {
903       unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
904       extract_min_max(a, a_min, a_max, length);
905       if (memcmp(a_min, a_max, length) > 0)
906         return 0;
907     }
908   }
909
910   return 1;
911 }
912
913 /*
914  * Whack an IPAddrBlocks extension into canonical form.
915  */
916 int v3_addr_canonize(IPAddrBlocks *addr)
917 {
918   int i;
919   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
920     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
921     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
922         !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
923                                     v3_addr_get_afi(f)))
924       return 0;
925   }
926   (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
927   sk_IPAddressFamily_sort(addr);
928   OPENSSL_assert(v3_addr_is_canonical(addr));
929   return 1;
930 }
931
932 /*
933  * v2i handler for the IPAddrBlocks extension.
934  */
935 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
936                               struct v3_ext_ctx *ctx,
937                               STACK_OF(CONF_VALUE) *values)
938 {
939   static const char v4addr_chars[] = "0123456789.";
940   static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
941   IPAddrBlocks *addr = NULL;
942   char *s = NULL, *t;
943   int i;
944   
945   if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
946     X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
947     return NULL;
948   }
949
950   for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
951     CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
952     unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
953     unsigned afi, *safi = NULL, safi_;
954     const char *addr_chars;
955     int prefixlen, i1, i2, delim, length;
956
957     if (       !name_cmp(val->name, "IPv4")) {
958       afi = IANA_AFI_IPV4;
959     } else if (!name_cmp(val->name, "IPv6")) {
960       afi = IANA_AFI_IPV6;
961     } else if (!name_cmp(val->name, "IPv4-SAFI")) {
962       afi = IANA_AFI_IPV4;
963       safi = &safi_;
964     } else if (!name_cmp(val->name, "IPv6-SAFI")) {
965       afi = IANA_AFI_IPV6;
966       safi = &safi_;
967     } else {
968       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
969       X509V3_conf_err(val);
970       goto err;
971     }
972
973     switch (afi) {
974     case IANA_AFI_IPV4:
975       addr_chars = v4addr_chars;
976       break;
977     case IANA_AFI_IPV6:
978       addr_chars = v6addr_chars;
979       break;
980     }
981
982     length = length_from_afi(afi);
983
984     /*
985      * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
986      * the other input values.
987      */
988     if (safi != NULL) {
989       *safi = strtoul(val->value, &t, 0);
990       t += strspn(t, " \t");
991       if (*safi > 0xFF || *t++ != ':') {
992         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
993         X509V3_conf_err(val);
994         goto err;
995       }
996       t += strspn(t, " \t");
997       s = BUF_strdup(t);
998     } else {
999       s = BUF_strdup(val->value);
1000     }
1001     if (s == NULL) {
1002       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1003       goto err;
1004     }
1005
1006     /*
1007      * Check for inheritance.  Not worth additional complexity to
1008      * optimize this (seldom-used) case.
1009      */
1010     if (!strcmp(s, "inherit")) {
1011       if (!v3_addr_add_inherit(addr, afi, safi)) {
1012         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
1013         X509V3_conf_err(val);
1014         goto err;
1015       }
1016       OPENSSL_free(s);
1017       s = NULL;
1018       continue;
1019     }
1020
1021     i1 = strspn(s, addr_chars);
1022     i2 = i1 + strspn(s + i1, " \t");
1023     delim = s[i2++];
1024     s[i1] = '\0';
1025
1026     if (a2i_ipadd(min, s) != length) {
1027       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1028       X509V3_conf_err(val);
1029       goto err;
1030     }
1031
1032     switch (delim) {
1033     case '/':
1034       prefixlen = (int) strtoul(s + i2, &t, 10);
1035       if (t == s + i2 || *t != '\0') {
1036         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1037         X509V3_conf_err(val);
1038         goto err;
1039       }
1040       if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1041         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1042         goto err;
1043       }
1044       break;
1045     case '-':
1046       i1 = i2 + strspn(s + i2, " \t");
1047       i2 = i1 + strspn(s + i1, addr_chars);
1048       if (i1 == i2 || s[i2] != '\0') {
1049         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1050         X509V3_conf_err(val);
1051         goto err;
1052       }
1053       if (a2i_ipadd(max, s + i1) != length) {
1054         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1055         X509V3_conf_err(val);
1056         goto err;
1057       }
1058       if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1060         X509V3_conf_err(val);
1061         goto err;
1062       }
1063       if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1064         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1065         goto err;
1066       }
1067       break;
1068     case '\0':
1069       if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1070         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1071         goto err;
1072       }
1073       break;
1074     default:
1075       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1076       X509V3_conf_err(val);
1077       goto err;
1078     }
1079
1080     OPENSSL_free(s);
1081     s = NULL;
1082   }
1083
1084   /*
1085    * Canonize the result, then we're done.
1086    */
1087   if (!v3_addr_canonize(addr))
1088     goto err;    
1089   return addr;
1090
1091  err:
1092   OPENSSL_free(s);
1093   sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1094   return NULL;
1095 }
1096
1097 /*
1098  * OpenSSL dispatch
1099  */
1100 const X509V3_EXT_METHOD v3_addr = {
1101   NID_sbgp_ipAddrBlock,         /* nid */
1102   0,                            /* flags */
1103   ASN1_ITEM_ref(IPAddrBlocks),  /* template */
1104   0, 0, 0, 0,                   /* old functions, ignored */
1105   0,                            /* i2s */
1106   0,                            /* s2i */
1107   0,                            /* i2v */
1108   v2i_IPAddrBlocks,             /* v2i */
1109   i2r_IPAddrBlocks,             /* i2r */
1110   0,                            /* r2i */
1111   NULL                          /* extension-specific data */
1112 };
1113
1114 /*
1115  * Figure out whether extension sues inheritance.
1116  */
1117 int v3_addr_inherits(IPAddrBlocks *addr)
1118 {
1119   int i;
1120   if (addr == NULL)
1121     return 0;
1122   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1123     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1124     if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1125       return 1;
1126   }
1127   return 0;
1128 }
1129
1130 /*
1131  * Figure out whether parent contains child.
1132  */
1133 static int addr_contains(IPAddressOrRanges *parent,
1134                          IPAddressOrRanges *child,
1135                          int length)
1136 {
1137   unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1138   unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1139   int p, c;
1140
1141   if (child == NULL || parent == child)
1142     return 1;
1143   if (parent == NULL)
1144     return 0;
1145
1146   p = 0;
1147   for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1148     if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1149                          c_min, c_max, length))
1150       return -1;
1151     for (;; p++) {
1152       if (p >= sk_IPAddressOrRange_num(parent))
1153         return 0;
1154       if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1155                            p_min, p_max, length))
1156         return 0;
1157       if (memcmp(p_max, c_max, length) < 0)
1158         continue;
1159       if (memcmp(p_min, c_min, length) > 0)
1160         return 0;
1161       break;
1162     }
1163   }
1164
1165   return 1;
1166 }
1167
1168 /*
1169  * Test whether a is a subset of b.
1170  */
1171 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1172 {
1173   int i;
1174   if (a == NULL || a == b)
1175     return 1;
1176   if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1177     return 0;
1178   (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1179   for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1180     IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1181     int j = sk_IPAddressFamily_find(b, fa);
1182     IPAddressFamily *fb;
1183     fb = sk_IPAddressFamily_value(b, j);
1184     if (fb == NULL)
1185        return 0;
1186     if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, 
1187                        fa->ipAddressChoice->u.addressesOrRanges,
1188                        length_from_afi(v3_addr_get_afi(fb))))
1189       return 0;
1190   }
1191   return 1;
1192 }
1193
1194 /*
1195  * Validation error handling via callback.
1196  */
1197 #define validation_err(_err_)           \
1198   do {                                  \
1199     if (ctx != NULL) {                  \
1200       ctx->error = _err_;               \
1201       ctx->error_depth = i;             \
1202       ctx->current_cert = x;            \
1203       ret = ctx->verify_cb(0, ctx);     \
1204     } else {                            \
1205       ret = 0;                          \
1206     }                                   \
1207     if (!ret)                           \
1208       goto done;                        \
1209   } while (0)
1210
1211 /*
1212  * Core code for RFC 3779 2.3 path validation.
1213  */
1214 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1215                                           STACK_OF(X509) *chain,
1216                                           IPAddrBlocks *ext)
1217 {
1218   IPAddrBlocks *child = NULL;
1219   int i, j, ret = 1;
1220   X509 *x;
1221
1222   OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1223   OPENSSL_assert(ctx != NULL || ext != NULL);
1224   OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1225
1226   /*
1227    * Figure out where to start.  If we don't have an extension to
1228    * check, we're done.  Otherwise, check canonical form and
1229    * set up for walking up the chain.
1230    */
1231   if (ext != NULL) {
1232     i = -1;
1233     x = NULL;
1234   } else {
1235     i = 0;
1236     x = sk_X509_value(chain, i);
1237     OPENSSL_assert(x != NULL);
1238     if ((ext = x->rfc3779_addr) == NULL)
1239       goto done;
1240   }
1241   if (!v3_addr_is_canonical(ext))
1242     validation_err(X509_V_ERR_INVALID_EXTENSION);
1243   (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1244   if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1245     X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1246     ret = 0;
1247     goto done;
1248   }
1249
1250   /*
1251    * Now walk up the chain.  No cert may list resources that its
1252    * parent doesn't list.
1253    */
1254   for (i++; i < sk_X509_num(chain); i++) {
1255     x = sk_X509_value(chain, i);
1256     OPENSSL_assert(x != NULL);
1257     if (!v3_addr_is_canonical(x->rfc3779_addr))
1258       validation_err(X509_V_ERR_INVALID_EXTENSION);
1259     if (x->rfc3779_addr == NULL) {
1260       for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1261         IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1262         if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1263           validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1264           break;
1265         }
1266       }
1267       continue;
1268     }
1269     (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1270     for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1271       IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1272       int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1273       IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1274       if (fp == NULL) {
1275         if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1276           validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1277           break;
1278         }
1279         continue;
1280       }
1281       if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1282         if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1283             addr_contains(fp->ipAddressChoice->u.addressesOrRanges, 
1284                           fc->ipAddressChoice->u.addressesOrRanges,
1285                           length_from_afi(v3_addr_get_afi(fc))))
1286           sk_IPAddressFamily_set(child, j, fp);
1287         else
1288           validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1289       }
1290     }
1291   }
1292
1293   /*
1294    * Trust anchor can't inherit.
1295    */
1296   OPENSSL_assert(x != NULL);
1297   if (x->rfc3779_addr != NULL) {
1298     for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1299       IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1300       if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1301           sk_IPAddressFamily_find(child, fp) >= 0)
1302         validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1303     }
1304   }
1305
1306  done:
1307   sk_IPAddressFamily_free(child);
1308   return ret;
1309 }
1310
1311 #undef validation_err
1312
1313 /*
1314  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1315  */
1316 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1317 {
1318   return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1319 }
1320
1321 /*
1322  * RFC 3779 2.3 path validation of an extension.
1323  * Test whether chain covers extension.
1324  */
1325 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1326                                   IPAddrBlocks *ext,
1327                                   int allow_inheritance)
1328 {
1329   if (ext == NULL)
1330     return 1;
1331   if (chain == NULL || sk_X509_num(chain) == 0)
1332     return 0;
1333   if (!allow_inheritance && v3_addr_inherits(ext))
1334     return 0;
1335   return v3_addr_validate_path_internal(NULL, chain, ext);
1336 }
1337
1338 #endif /* OPENSSL_NO_RFC3779 */