2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
5 /* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
34 * 6. Redistributions of any form whatsoever must retain the following
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
59 * Implementation of RFC 3779 section 2.2.
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
72 #ifndef OPENSSL_NO_RFC3779
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
78 ASN1_SEQUENCE(IPAddressRange) = {
79 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
83 ASN1_CHOICE(IPAddressOrRange) = {
84 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
88 ASN1_CHOICE(IPAddressChoice) = {
89 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
93 ASN1_SEQUENCE(IPAddressFamily) = {
94 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
95 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
109 * How much buffer space do we need for a raw address?
111 #define ADDR_RAW_BUF_LEN 16
114 * What's the address length associated with this AFI?
116 static int length_from_afi(const unsigned afi)
129 * Extract the AFI from an IPAddressFamily.
131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
133 return ((f != NULL &&
134 f->addressFamily != NULL &&
135 f->addressFamily->data != NULL)
136 ? ((f->addressFamily->data[0] << 8) |
137 (f->addressFamily->data[1]))
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
145 static void addr_expand(unsigned char *addr,
146 const ASN1_BIT_STRING *bs,
148 const unsigned char fill)
150 OPENSSL_assert(bs->length >= 0 && bs->length <= length);
151 if (bs->length > 0) {
152 memcpy(addr, bs->data, bs->length);
153 if ((bs->flags & 7) != 0) {
154 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
156 addr[bs->length - 1] &= ~mask;
158 addr[bs->length - 1] |= mask;
161 memset(addr + bs->length, fill, length - bs->length);
165 * Extract the prefix length from a bitstring.
167 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
170 * i2r handler for one address bitstring.
172 static int i2r_address(BIO *out,
174 const unsigned char fill,
175 const ASN1_BIT_STRING *bs)
177 unsigned char addr[ADDR_RAW_BUF_LEN];
182 addr_expand(addr, bs, 4, fill);
183 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
186 addr_expand(addr, bs, 16, fill);
187 for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
189 for (i = 0; i < n; i += 2)
190 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
197 for (i = 0; i < bs->length; i++)
198 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
199 BIO_printf(out, "[%d]", (int) (bs->flags & 7));
206 * i2r handler for a sequence of addresses and ranges.
208 static int i2r_IPAddressOrRanges(BIO *out,
210 const IPAddressOrRanges *aors,
214 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
215 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
216 BIO_printf(out, "%*s", indent, "");
218 case IPAddressOrRange_addressPrefix:
219 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
221 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
223 case IPAddressOrRange_addressRange:
224 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
227 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
237 * i2r handler for an IPAddrBlocks extension.
239 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
244 const IPAddrBlocks *addr = ext;
246 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
247 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
248 const unsigned int afi = v3_addr_get_afi(f);
251 BIO_printf(out, "%*sIPv4", indent, "");
254 BIO_printf(out, "%*sIPv6", indent, "");
257 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
260 if (f->addressFamily->length > 2) {
261 switch (f->addressFamily->data[2]) {
263 BIO_puts(out, " (Unicast)");
266 BIO_puts(out, " (Multicast)");
269 BIO_puts(out, " (Unicast/Multicast)");
272 BIO_puts(out, " (MPLS)");
275 BIO_puts(out, " (Tunnel)");
278 BIO_puts(out, " (VPLS)");
281 BIO_puts(out, " (BGP MDT)");
284 BIO_puts(out, " (MPLS-labeled VPN)");
287 BIO_printf(out, " (Unknown SAFI %u)",
288 (unsigned) f->addressFamily->data[2]);
292 switch (f->ipAddressChoice->type) {
293 case IPAddressChoice_inherit:
294 BIO_puts(out, ": inherit\n");
296 case IPAddressChoice_addressesOrRanges:
297 BIO_puts(out, ":\n");
298 if (!i2r_IPAddressOrRanges(out,
300 f->ipAddressChoice->u.addressesOrRanges,
310 * Sort comparison function for a sequence of IPAddressOrRange
313 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
314 const IPAddressOrRange *b,
317 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
318 int prefixlen_a = 0, prefixlen_b = 0;
322 case IPAddressOrRange_addressPrefix:
323 addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
324 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
326 case IPAddressOrRange_addressRange:
327 addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
328 prefixlen_a = length * 8;
333 case IPAddressOrRange_addressPrefix:
334 addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
335 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
337 case IPAddressOrRange_addressRange:
338 addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
339 prefixlen_b = length * 8;
343 if ((r = memcmp(addr_a, addr_b, length)) != 0)
346 return prefixlen_a - prefixlen_b;
350 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
351 * comparision routines are only allowed two arguments.
353 static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
354 const IPAddressOrRange * const *b)
356 return IPAddressOrRange_cmp(*a, *b, 4);
360 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
361 * comparision routines are only allowed two arguments.
363 static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
364 const IPAddressOrRange * const *b)
366 return IPAddressOrRange_cmp(*a, *b, 16);
370 * Calculate whether a range collapses to a prefix.
371 * See last paragraph of RFC 3779 2.2.3.7.
373 static int range_should_be_prefix(const unsigned char *min,
374 const unsigned char *max,
380 for (i = 0; i < length && min[i] == max[i]; i++)
382 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
388 mask = min[i] ^ max[i];
390 case 0x01: j = 7; break;
391 case 0x03: j = 6; break;
392 case 0x07: j = 5; break;
393 case 0x0F: j = 4; break;
394 case 0x1F: j = 3; break;
395 case 0x3F: j = 2; break;
396 case 0x7F: j = 1; break;
399 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
406 * Construct a prefix.
408 static int make_addressPrefix(IPAddressOrRange **result,
412 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
413 IPAddressOrRange *aor = IPAddressOrRange_new();
417 aor->type = IPAddressOrRange_addressPrefix;
418 if (aor->u.addressPrefix == NULL &&
419 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
421 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
423 aor->u.addressPrefix->flags &= ~7;
424 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
426 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
427 aor->u.addressPrefix->flags |= 8 - bitlen;
434 IPAddressOrRange_free(aor);
439 * Construct a range. If it can be expressed as a prefix,
440 * return a prefix instead. Doing this here simplifies
441 * the rest of the code considerably.
443 static int make_addressRange(IPAddressOrRange **result,
448 IPAddressOrRange *aor;
451 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
452 return make_addressPrefix(result, min, prefixlen);
454 if ((aor = IPAddressOrRange_new()) == NULL)
456 aor->type = IPAddressOrRange_addressRange;
457 OPENSSL_assert(aor->u.addressRange == NULL);
458 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
460 if (aor->u.addressRange->min == NULL &&
461 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
463 if (aor->u.addressRange->max == NULL &&
464 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
467 for (i = length; i > 0 && min[i - 1] == 0x00; --i)
469 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
471 aor->u.addressRange->min->flags &= ~7;
472 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
474 unsigned char b = min[i - 1];
476 while ((b & (0xFFU >> j)) != 0)
478 aor->u.addressRange->min->flags |= 8 - j;
481 for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
483 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
485 aor->u.addressRange->max->flags &= ~7;
486 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
488 unsigned char b = max[i - 1];
490 while ((b & (0xFFU >> j)) != (0xFFU >> j))
492 aor->u.addressRange->max->flags |= 8 - j;
499 IPAddressOrRange_free(aor);
504 * Construct a new address family or find an existing one.
506 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
508 const unsigned *safi)
511 unsigned char key[3];
515 key[0] = (afi >> 8) & 0xFF;
518 key[2] = *safi & 0xFF;
524 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
525 f = sk_IPAddressFamily_value(addr, i);
526 OPENSSL_assert(f->addressFamily->data != NULL);
527 if (f->addressFamily->length == keylen &&
528 !memcmp(f->addressFamily->data, key, keylen))
532 if ((f = IPAddressFamily_new()) == NULL)
534 if (f->ipAddressChoice == NULL &&
535 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
537 if (f->addressFamily == NULL &&
538 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
540 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
542 if (!sk_IPAddressFamily_push(addr, f))
548 IPAddressFamily_free(f);
553 * Add an inheritance element.
555 int v3_addr_add_inherit(IPAddrBlocks *addr,
557 const unsigned *safi)
559 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
561 f->ipAddressChoice == NULL ||
562 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
563 f->ipAddressChoice->u.addressesOrRanges != NULL))
565 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
566 f->ipAddressChoice->u.inherit != NULL)
568 if (f->ipAddressChoice->u.inherit == NULL &&
569 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
571 f->ipAddressChoice->type = IPAddressChoice_inherit;
576 * Construct an IPAddressOrRange sequence, or return an existing one.
578 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
580 const unsigned *safi)
582 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
583 IPAddressOrRanges *aors = NULL;
586 f->ipAddressChoice == NULL ||
587 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
588 f->ipAddressChoice->u.inherit != NULL))
590 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
591 aors = f->ipAddressChoice->u.addressesOrRanges;
594 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
598 sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
601 sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
604 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
605 f->ipAddressChoice->u.addressesOrRanges = aors;
612 int v3_addr_add_prefix(IPAddrBlocks *addr,
614 const unsigned *safi,
618 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
619 IPAddressOrRange *aor;
620 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
622 if (sk_IPAddressOrRange_push(aors, aor))
624 IPAddressOrRange_free(aor);
631 int v3_addr_add_range(IPAddrBlocks *addr,
633 const unsigned *safi,
637 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
638 IPAddressOrRange *aor;
639 int length = length_from_afi(afi);
642 if (!make_addressRange(&aor, min, max, length))
644 if (sk_IPAddressOrRange_push(aors, aor))
646 IPAddressOrRange_free(aor);
651 * Extract min and max values from an IPAddressOrRange.
653 static void extract_min_max(IPAddressOrRange *aor,
658 OPENSSL_assert(aor != NULL && min != NULL && max != NULL);
660 case IPAddressOrRange_addressPrefix:
661 addr_expand(min, aor->u.addressPrefix, length, 0x00);
662 addr_expand(max, aor->u.addressPrefix, length, 0xFF);
664 case IPAddressOrRange_addressRange:
665 addr_expand(min, aor->u.addressRange->min, length, 0x00);
666 addr_expand(max, aor->u.addressRange->max, length, 0xFF);
672 * Public wrapper for extract_min_max().
674 int v3_addr_get_range(IPAddressOrRange *aor,
680 int afi_length = length_from_afi(afi);
681 if (aor == NULL || min == NULL || max == NULL ||
682 afi_length == 0 || length < afi_length ||
683 (aor->type != IPAddressOrRange_addressPrefix &&
684 aor->type != IPAddressOrRange_addressRange))
686 extract_min_max(aor, min, max, afi_length);
691 * Sort comparision function for a sequence of IPAddressFamily.
693 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
694 * the ordering: I can read it as meaning that IPv6 without a SAFI
695 * comes before IPv4 with a SAFI, which seems pretty weird. The
696 * examples in appendix B suggest that the author intended the
697 * null-SAFI rule to apply only within a single AFI, which is what I
698 * would have expected and is what the following code implements.
700 static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
701 const IPAddressFamily * const *b_)
703 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
704 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
705 int len = ((a->length <= b->length) ? a->length : b->length);
706 int cmp = memcmp(a->data, b->data, len);
707 return cmp ? cmp : a->length - b->length;
711 * Check whether an IPAddrBLocks is in canonical form.
713 int v3_addr_is_canonical(IPAddrBlocks *addr)
715 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
716 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
717 IPAddressOrRanges *aors;
721 * Empty extension is cannonical.
727 * Check whether the top-level list is in order.
729 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
730 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
731 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
732 if (IPAddressFamily_cmp(&a, &b) >= 0)
737 * Top level's ok, now check each address family.
739 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
740 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
741 int length = length_from_afi(v3_addr_get_afi(f));
744 * Inheritance is canonical. Anything other than inheritance or
745 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
747 if (f == NULL || f->ipAddressChoice == NULL)
749 switch (f->ipAddressChoice->type) {
750 case IPAddressChoice_inherit:
752 case IPAddressChoice_addressesOrRanges:
759 * It's an IPAddressOrRanges sequence, check it.
761 aors = f->ipAddressChoice->u.addressesOrRanges;
762 if (sk_IPAddressOrRange_num(aors) == 0)
764 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
765 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
766 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
768 extract_min_max(a, a_min, a_max, length);
769 extract_min_max(b, b_min, b_max, length);
772 * Punt misordered list, overlapping start, or inverted range.
774 if (memcmp(a_min, b_min, length) >= 0 ||
775 memcmp(a_min, a_max, length) > 0 ||
776 memcmp(b_min, b_max, length) > 0)
780 * Punt if adjacent or overlapping. Check for adjacency by
781 * subtracting one from b_min first.
783 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
785 if (memcmp(a_max, b_min, length) >= 0)
789 * Check for range that should be expressed as a prefix.
791 if (a->type == IPAddressOrRange_addressRange &&
792 range_should_be_prefix(a_min, a_max, length) >= 0)
797 * Check final range to see if it should be a prefix.
799 j = sk_IPAddressOrRange_num(aors) - 1;
801 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
802 if (a->type == IPAddressOrRange_addressRange) {
803 extract_min_max(a, a_min, a_max, length);
804 if (range_should_be_prefix(a_min, a_max, length) >= 0)
811 * If we made it through all that, we're happy.
817 * Whack an IPAddressOrRanges into canonical form.
819 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
822 int i, j, length = length_from_afi(afi);
825 * Sort the IPAddressOrRanges sequence.
827 sk_IPAddressOrRange_sort(aors);
830 * Clean up representation issues, punt on duplicates or overlaps.
832 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
833 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
834 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
835 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
836 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
838 extract_min_max(a, a_min, a_max, length);
839 extract_min_max(b, b_min, b_max, length);
844 if (memcmp(a_max, b_min, length) >= 0)
848 * Merge if a and b are adjacent. We check for
849 * adjacency by subtracting one from b_min first.
851 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
853 if (memcmp(a_max, b_min, length) == 0) {
854 IPAddressOrRange *merged;
855 if (!make_addressRange(&merged, a_min, b_max, length))
857 sk_IPAddressOrRange_set(aors, i, merged);
858 sk_IPAddressOrRange_delete(aors, i + 1);
859 IPAddressOrRange_free(a);
860 IPAddressOrRange_free(b);
870 * Whack an IPAddrBlocks extension into canonical form.
872 int v3_addr_canonize(IPAddrBlocks *addr)
875 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
876 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
877 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
878 !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
882 sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
883 sk_IPAddressFamily_sort(addr);
884 OPENSSL_assert(v3_addr_is_canonical(addr));
889 * v2i handler for the IPAddrBlocks extension.
891 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
892 struct v3_ext_ctx *ctx,
893 STACK_OF(CONF_VALUE) *values)
895 static const char v4addr_chars[] = "0123456789.";
896 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
897 IPAddrBlocks *addr = NULL;
901 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
902 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
906 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
907 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
908 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
909 unsigned afi, *safi = NULL, safi_;
910 const char *addr_chars;
911 int prefixlen, i1, i2, delim, length;
913 if ( !name_cmp(val->name, "IPv4")) {
915 } else if (!name_cmp(val->name, "IPv6")) {
917 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
920 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
924 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
925 X509V3_conf_err(val);
931 addr_chars = v4addr_chars;
934 addr_chars = v6addr_chars;
938 length = length_from_afi(afi);
941 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
942 * the other input values.
945 *safi = strtoul(val->value, &t, 0);
946 t += strspn(t, " \t");
947 if (*safi > 0xFF || *t++ != ':') {
948 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
949 X509V3_conf_err(val);
952 t += strspn(t, " \t");
955 s = BUF_strdup(val->value);
958 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
963 * Check for inheritance. Not worth additional complexity to
964 * optimize this (seldom-used) case.
966 if (!strcmp(s, "inherit")) {
967 if (!v3_addr_add_inherit(addr, afi, safi)) {
968 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
969 X509V3_conf_err(val);
977 i1 = strspn(s, addr_chars);
978 i2 = i1 + strspn(s + i1, " \t");
982 if (a2i_ipadd(min, s) != length) {
983 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
984 X509V3_conf_err(val);
990 prefixlen = (int) strtoul(s + i2, &t, 10);
991 if (t == s + i2 || *t != '\0') {
992 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
993 X509V3_conf_err(val);
996 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
997 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1002 i1 = i2 + strspn(s + i2, " \t");
1003 i2 = i1 + strspn(s + i1, addr_chars);
1004 if (i1 == i2 || s[i2] != '\0') {
1005 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1006 X509V3_conf_err(val);
1009 if (a2i_ipadd(max, s + i1) != length) {
1010 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1011 X509V3_conf_err(val);
1014 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1015 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1020 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1021 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1026 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1027 X509V3_conf_err(val);
1036 * Canonize the result, then we're done.
1038 if (!v3_addr_canonize(addr))
1044 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1051 const X509V3_EXT_METHOD v3_addr = {
1052 NID_sbgp_ipAddrBlock, /* nid */
1054 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1055 0, 0, 0, 0, /* old functions, ignored */
1059 v2i_IPAddrBlocks, /* v2i */
1060 i2r_IPAddrBlocks, /* i2r */
1062 NULL /* extension-specific data */
1066 * Figure out whether extension sues inheritance.
1068 int v3_addr_inherits(IPAddrBlocks *addr)
1073 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1074 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1075 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1082 * Figure out whether parent contains child.
1084 static int addr_contains(IPAddressOrRanges *parent,
1085 IPAddressOrRanges *child,
1088 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1089 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1092 if (child == NULL || parent == child)
1098 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1099 extract_min_max(sk_IPAddressOrRange_value(child, c),
1100 c_min, c_max, length);
1102 if (p >= sk_IPAddressOrRange_num(parent))
1104 extract_min_max(sk_IPAddressOrRange_value(parent, p),
1105 p_min, p_max, length);
1106 if (memcmp(p_max, c_max, length) < 0)
1108 if (memcmp(p_min, c_min, length) > 0)
1118 * Test whether a is a subset of b.
1120 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1123 if (a == NULL || a == b)
1125 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1127 sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1128 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1129 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1130 int j = sk_IPAddressFamily_find(b, fa);
1131 IPAddressFamily *fb;
1132 fb = sk_IPAddressFamily_value(b, j);
1135 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1136 fa->ipAddressChoice->u.addressesOrRanges,
1137 length_from_afi(v3_addr_get_afi(fb))))
1144 * Validation error handling via callback.
1146 #define validation_err(_err_) \
1148 if (ctx != NULL) { \
1149 ctx->error = _err_; \
1150 ctx->error_depth = i; \
1151 ctx->current_cert = x; \
1152 ret = ctx->verify_cb(0, ctx); \
1161 * Core code for RFC 3779 2.3 path validation.
1163 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1164 STACK_OF(X509) *chain,
1167 IPAddrBlocks *child = NULL;
1171 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1172 OPENSSL_assert(ctx != NULL || ext != NULL);
1173 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1176 * Figure out where to start. If we don't have an extension to
1177 * check, we're done. Otherwise, check canonical form and
1178 * set up for walking up the chain.
1185 x = sk_X509_value(chain, i);
1186 OPENSSL_assert(x != NULL);
1187 if ((ext = x->rfc3779_addr) == NULL)
1190 if (!v3_addr_is_canonical(ext))
1191 validation_err(X509_V_ERR_INVALID_EXTENSION);
1192 sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1193 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1194 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1200 * Now walk up the chain. No cert may list resources that its
1201 * parent doesn't list.
1203 for (i++; i < sk_X509_num(chain); i++) {
1204 x = sk_X509_value(chain, i);
1205 OPENSSL_assert(x != NULL);
1206 if (!v3_addr_is_canonical(x->rfc3779_addr))
1207 validation_err(X509_V_ERR_INVALID_EXTENSION);
1208 if (x->rfc3779_addr == NULL) {
1209 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1210 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1211 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1212 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1218 sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1219 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1220 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1221 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1222 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1224 if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1225 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1230 if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1231 if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1232 addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1233 fc->ipAddressChoice->u.addressesOrRanges,
1234 length_from_afi(v3_addr_get_afi(fc))))
1235 sk_IPAddressFamily_set(child, j, fp);
1237 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1243 * Trust anchor can't inherit.
1246 if (x->rfc3779_addr != NULL) {
1247 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1248 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1249 if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1250 sk_IPAddressFamily_find(child, fp) >= 0)
1251 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1256 sk_IPAddressFamily_free(child);
1260 #undef validation_err
1263 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1265 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1267 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1271 * RFC 3779 2.3 path validation of an extension.
1272 * Test whether chain covers extension.
1274 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1276 int allow_inheritance)
1280 if (chain == NULL || sk_X509_num(chain) == 0)
1282 if (!allow_inheritance && v3_addr_inherits(ext))
1284 return v3_addr_validate_path_internal(NULL, chain, ext);
1287 #endif /* OPENSSL_NO_RFC3779 */