1290dec9bb8c0ccec58b5476ec4d8ae16a6a6a5e
[openssl.git] / crypto / x509v3 / v3_addr.c
1 /*
2  * Contributed to the OpenSSL Project by the American Registry for
3  * Internet Numbers ("ARIN").
4  */
5 /* ====================================================================
6  * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  */
57
58 /*
59  * Implementation of RFC 3779 section 2.2.
60  */
61
62 #include <stdio.h>
63 #include <stdlib.h>
64
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71
72 #ifndef OPENSSL_NO_RFC3779
73
74 /*
75  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76  */
77
78 ASN1_SEQUENCE(IPAddressRange) = {
79   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
82
83 ASN1_CHOICE(IPAddressOrRange) = {
84   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
87
88 ASN1_CHOICE(IPAddressChoice) = {
89   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
92
93 ASN1_SEQUENCE(IPAddressFamily) = {
94   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
97
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100                         IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108 /*
109  * How much buffer space do we need for a raw address?
110  */
111 # define ADDR_RAW_BUF_LEN        16
112
113 /*
114  * What's the address length associated with this AFI?
115  */
116 static int length_from_afi(const unsigned afi)
117 {
118     switch (afi) {
119     case IANA_AFI_IPV4:
120         return 4;
121     case IANA_AFI_IPV6:
122         return 16;
123     default:
124         return 0;
125     }
126 }
127
128 /*
129  * Extract the AFI from an IPAddressFamily.
130  */
131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132 {
133     return ((f != NULL &&
134              f->addressFamily != NULL && f->addressFamily->data != NULL)
135             ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
136             : 0);
137 }
138
139 /*
140  * Expand the bitstring form of an address into a raw byte array.
141  * At the moment this is coded for simplicity, not speed.
142  */
143 static int addr_expand(unsigned char *addr,
144                        const ASN1_BIT_STRING *bs,
145                        const int length, const unsigned char fill)
146 {
147     if (bs->length < 0 || bs->length > length)
148         return 0;
149     if (bs->length > 0) {
150         memcpy(addr, bs->data, bs->length);
151         if ((bs->flags & 7) != 0) {
152             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
153             if (fill == 0)
154                 addr[bs->length - 1] &= ~mask;
155             else
156                 addr[bs->length - 1] |= mask;
157         }
158     }
159     memset(addr + bs->length, fill, length - bs->length);
160     return 1;
161 }
162
163 /*
164  * Extract the prefix length from a bitstring.
165  */
166 # define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
167
168 /*
169  * i2r handler for one address bitstring.
170  */
171 static int i2r_address(BIO *out,
172                        const unsigned afi,
173                        const unsigned char fill, const ASN1_BIT_STRING *bs)
174 {
175     unsigned char addr[ADDR_RAW_BUF_LEN];
176     int i, n;
177
178     if (bs->length < 0)
179         return 0;
180     switch (afi) {
181     case IANA_AFI_IPV4:
182         if (!addr_expand(addr, bs, 4, fill))
183             return 0;
184         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
185         break;
186     case IANA_AFI_IPV6:
187         if (!addr_expand(addr, bs, 16, fill))
188             return 0;
189         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
190              n -= 2) ;
191         for (i = 0; i < n; i += 2)
192             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
193                        (i < 14 ? ":" : ""));
194         if (i < 16)
195             BIO_puts(out, ":");
196         if (i == 0)
197             BIO_puts(out, ":");
198         break;
199     default:
200         for (i = 0; i < bs->length; i++)
201             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
202         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
203         break;
204     }
205     return 1;
206 }
207
208 /*
209  * i2r handler for a sequence of addresses and ranges.
210  */
211 static int i2r_IPAddressOrRanges(BIO *out,
212                                  const int indent,
213                                  const IPAddressOrRanges *aors,
214                                  const unsigned afi)
215 {
216     int i;
217     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
218         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
219         BIO_printf(out, "%*s", indent, "");
220         switch (aor->type) {
221         case IPAddressOrRange_addressPrefix:
222             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
223                 return 0;
224             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
225             continue;
226         case IPAddressOrRange_addressRange:
227             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
228                 return 0;
229             BIO_puts(out, "-");
230             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
231                 return 0;
232             BIO_puts(out, "\n");
233             continue;
234         }
235     }
236     return 1;
237 }
238
239 /*
240  * i2r handler for an IPAddrBlocks extension.
241  */
242 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
243                             void *ext, BIO *out, int indent)
244 {
245     const IPAddrBlocks *addr = ext;
246     int i;
247     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
248         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
249         const unsigned int afi = v3_addr_get_afi(f);
250         switch (afi) {
251         case IANA_AFI_IPV4:
252             BIO_printf(out, "%*sIPv4", indent, "");
253             break;
254         case IANA_AFI_IPV6:
255             BIO_printf(out, "%*sIPv6", indent, "");
256             break;
257         default:
258             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
259             break;
260         }
261         if (f->addressFamily->length > 2) {
262             switch (f->addressFamily->data[2]) {
263             case 1:
264                 BIO_puts(out, " (Unicast)");
265                 break;
266             case 2:
267                 BIO_puts(out, " (Multicast)");
268                 break;
269             case 3:
270                 BIO_puts(out, " (Unicast/Multicast)");
271                 break;
272             case 4:
273                 BIO_puts(out, " (MPLS)");
274                 break;
275             case 64:
276                 BIO_puts(out, " (Tunnel)");
277                 break;
278             case 65:
279                 BIO_puts(out, " (VPLS)");
280                 break;
281             case 66:
282                 BIO_puts(out, " (BGP MDT)");
283                 break;
284             case 128:
285                 BIO_puts(out, " (MPLS-labeled VPN)");
286                 break;
287             default:
288                 BIO_printf(out, " (Unknown SAFI %u)",
289                            (unsigned)f->addressFamily->data[2]);
290                 break;
291             }
292         }
293         switch (f->ipAddressChoice->type) {
294         case IPAddressChoice_inherit:
295             BIO_puts(out, ": inherit\n");
296             break;
297         case IPAddressChoice_addressesOrRanges:
298             BIO_puts(out, ":\n");
299             if (!i2r_IPAddressOrRanges(out,
300                                        indent + 2,
301                                        f->ipAddressChoice->
302                                        u.addressesOrRanges, afi))
303                 return 0;
304             break;
305         }
306     }
307     return 1;
308 }
309
310 /*
311  * Sort comparison function for a sequence of IPAddressOrRange
312  * elements.
313  *
314  * There's no sane answer we can give if addr_expand() fails, and an
315  * assertion failure on externally supplied data is seriously uncool,
316  * so we just arbitrarily declare that if given invalid inputs this
317  * function returns -1.  If this messes up your preferred sort order
318  * for garbage input, tough noogies.
319  */
320 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
321                                 const IPAddressOrRange *b, const int length)
322 {
323     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
324     int prefixlen_a = 0, prefixlen_b = 0;
325     int r;
326
327     switch (a->type) {
328     case IPAddressOrRange_addressPrefix:
329         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
330             return -1;
331         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
332         break;
333     case IPAddressOrRange_addressRange:
334         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
335             return -1;
336         prefixlen_a = length * 8;
337         break;
338     }
339
340     switch (b->type) {
341     case IPAddressOrRange_addressPrefix:
342         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
343             return -1;
344         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
345         break;
346     case IPAddressOrRange_addressRange:
347         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
348             return -1;
349         prefixlen_b = length * 8;
350         break;
351     }
352
353     if ((r = memcmp(addr_a, addr_b, length)) != 0)
354         return r;
355     else
356         return prefixlen_a - prefixlen_b;
357 }
358
359 /*
360  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
361  * comparision routines are only allowed two arguments.
362  */
363 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
364                                   const IPAddressOrRange *const *b)
365 {
366     return IPAddressOrRange_cmp(*a, *b, 4);
367 }
368
369 /*
370  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
371  * comparision routines are only allowed two arguments.
372  */
373 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
374                                   const IPAddressOrRange *const *b)
375 {
376     return IPAddressOrRange_cmp(*a, *b, 16);
377 }
378
379 /*
380  * Calculate whether a range collapses to a prefix.
381  * See last paragraph of RFC 3779 2.2.3.7.
382  */
383 static int range_should_be_prefix(const unsigned char *min,
384                                   const unsigned char *max, const int length)
385 {
386     unsigned char mask;
387     int i, j;
388
389     OPENSSL_assert(memcmp(min, max, length) <= 0);
390     for (i = 0; i < length && min[i] == max[i]; i++) ;
391     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
392     if (i < j)
393         return -1;
394     if (i > j)
395         return i * 8;
396     mask = min[i] ^ max[i];
397     switch (mask) {
398     case 0x01:
399         j = 7;
400         break;
401     case 0x03:
402         j = 6;
403         break;
404     case 0x07:
405         j = 5;
406         break;
407     case 0x0F:
408         j = 4;
409         break;
410     case 0x1F:
411         j = 3;
412         break;
413     case 0x3F:
414         j = 2;
415         break;
416     case 0x7F:
417         j = 1;
418         break;
419     default:
420         return -1;
421     }
422     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
423         return -1;
424     else
425         return i * 8 + j;
426 }
427
428 /*
429  * Construct a prefix.
430  */
431 static int make_addressPrefix(IPAddressOrRange **result,
432                               unsigned char *addr, const int prefixlen)
433 {
434     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
435     IPAddressOrRange *aor = IPAddressOrRange_new();
436
437     if (aor == NULL)
438         return 0;
439     aor->type = IPAddressOrRange_addressPrefix;
440     if (aor->u.addressPrefix == NULL &&
441         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
442         goto err;
443     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
444         goto err;
445     aor->u.addressPrefix->flags &= ~7;
446     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
447     if (bitlen > 0) {
448         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
449         aor->u.addressPrefix->flags |= 8 - bitlen;
450     }
451
452     *result = aor;
453     return 1;
454
455  err:
456     IPAddressOrRange_free(aor);
457     return 0;
458 }
459
460 /*
461  * Construct a range.  If it can be expressed as a prefix,
462  * return a prefix instead.  Doing this here simplifies
463  * the rest of the code considerably.
464  */
465 static int make_addressRange(IPAddressOrRange **result,
466                              unsigned char *min,
467                              unsigned char *max, const int length)
468 {
469     IPAddressOrRange *aor;
470     int i, prefixlen;
471
472     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
473         return make_addressPrefix(result, min, prefixlen);
474
475     if ((aor = IPAddressOrRange_new()) == NULL)
476         return 0;
477     aor->type = IPAddressOrRange_addressRange;
478     OPENSSL_assert(aor->u.addressRange == NULL);
479     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
480         goto err;
481     if (aor->u.addressRange->min == NULL &&
482         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
483         goto err;
484     if (aor->u.addressRange->max == NULL &&
485         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
486         goto err;
487
488     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
489     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
490         goto err;
491     aor->u.addressRange->min->flags &= ~7;
492     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
493     if (i > 0) {
494         unsigned char b = min[i - 1];
495         int j = 1;
496         while ((b & (0xFFU >> j)) != 0)
497             ++j;
498         aor->u.addressRange->min->flags |= 8 - j;
499     }
500
501     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
502     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
503         goto err;
504     aor->u.addressRange->max->flags &= ~7;
505     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
506     if (i > 0) {
507         unsigned char b = max[i - 1];
508         int j = 1;
509         while ((b & (0xFFU >> j)) != (0xFFU >> j))
510             ++j;
511         aor->u.addressRange->max->flags |= 8 - j;
512     }
513
514     *result = aor;
515     return 1;
516
517  err:
518     IPAddressOrRange_free(aor);
519     return 0;
520 }
521
522 /*
523  * Construct a new address family or find an existing one.
524  */
525 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
526                                              const unsigned afi,
527                                              const unsigned *safi)
528 {
529     IPAddressFamily *f;
530     unsigned char key[3];
531     unsigned keylen;
532     int i;
533
534     key[0] = (afi >> 8) & 0xFF;
535     key[1] = afi & 0xFF;
536     if (safi != NULL) {
537         key[2] = *safi & 0xFF;
538         keylen = 3;
539     } else {
540         keylen = 2;
541     }
542
543     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
544         f = sk_IPAddressFamily_value(addr, i);
545         OPENSSL_assert(f->addressFamily->data != NULL);
546         if (f->addressFamily->length == keylen &&
547             !memcmp(f->addressFamily->data, key, keylen))
548             return f;
549     }
550
551     if ((f = IPAddressFamily_new()) == NULL)
552         goto err;
553     if (f->ipAddressChoice == NULL &&
554         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
555         goto err;
556     if (f->addressFamily == NULL &&
557         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
558         goto err;
559     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
560         goto err;
561     if (!sk_IPAddressFamily_push(addr, f))
562         goto err;
563
564     return f;
565
566  err:
567     IPAddressFamily_free(f);
568     return NULL;
569 }
570
571 /*
572  * Add an inheritance element.
573  */
574 int v3_addr_add_inherit(IPAddrBlocks *addr,
575                         const unsigned afi, const unsigned *safi)
576 {
577     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
578     if (f == NULL ||
579         f->ipAddressChoice == NULL ||
580         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
581          f->ipAddressChoice->u.addressesOrRanges != NULL))
582         return 0;
583     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
584         f->ipAddressChoice->u.inherit != NULL)
585         return 1;
586     if (f->ipAddressChoice->u.inherit == NULL &&
587         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
588         return 0;
589     f->ipAddressChoice->type = IPAddressChoice_inherit;
590     return 1;
591 }
592
593 /*
594  * Construct an IPAddressOrRange sequence, or return an existing one.
595  */
596 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
597                                                const unsigned afi,
598                                                const unsigned *safi)
599 {
600     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
601     IPAddressOrRanges *aors = NULL;
602
603     if (f == NULL ||
604         f->ipAddressChoice == NULL ||
605         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
606          f->ipAddressChoice->u.inherit != NULL))
607         return NULL;
608     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
609         aors = f->ipAddressChoice->u.addressesOrRanges;
610     if (aors != NULL)
611         return aors;
612     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
613         return NULL;
614     switch (afi) {
615     case IANA_AFI_IPV4:
616         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
617         break;
618     case IANA_AFI_IPV6:
619         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
620         break;
621     }
622     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
623     f->ipAddressChoice->u.addressesOrRanges = aors;
624     return aors;
625 }
626
627 /*
628  * Add a prefix.
629  */
630 int v3_addr_add_prefix(IPAddrBlocks *addr,
631                        const unsigned afi,
632                        const unsigned *safi,
633                        unsigned char *a, const int prefixlen)
634 {
635     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636     IPAddressOrRange *aor;
637     if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638         return 0;
639     if (sk_IPAddressOrRange_push(aors, aor))
640         return 1;
641     IPAddressOrRange_free(aor);
642     return 0;
643 }
644
645 /*
646  * Add a range.
647  */
648 int v3_addr_add_range(IPAddrBlocks *addr,
649                       const unsigned afi,
650                       const unsigned *safi,
651                       unsigned char *min, unsigned char *max)
652 {
653     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
654     IPAddressOrRange *aor;
655     int length = length_from_afi(afi);
656     if (aors == NULL)
657         return 0;
658     if (!make_addressRange(&aor, min, max, length))
659         return 0;
660     if (sk_IPAddressOrRange_push(aors, aor))
661         return 1;
662     IPAddressOrRange_free(aor);
663     return 0;
664 }
665
666 /*
667  * Extract min and max values from an IPAddressOrRange.
668  */
669 static int extract_min_max(IPAddressOrRange *aor,
670                            unsigned char *min, unsigned char *max, int length)
671 {
672     if (aor == NULL || min == NULL || max == NULL)
673         return 0;
674     switch (aor->type) {
675     case IPAddressOrRange_addressPrefix:
676         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
677                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
678     case IPAddressOrRange_addressRange:
679         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
680                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
681     }
682     return 0;
683 }
684
685 /*
686  * Public wrapper for extract_min_max().
687  */
688 int v3_addr_get_range(IPAddressOrRange *aor,
689                       const unsigned afi,
690                       unsigned char *min,
691                       unsigned char *max, const int length)
692 {
693     int afi_length = length_from_afi(afi);
694     if (aor == NULL || min == NULL || max == NULL ||
695         afi_length == 0 || length < afi_length ||
696         (aor->type != IPAddressOrRange_addressPrefix &&
697          aor->type != IPAddressOrRange_addressRange) ||
698         !extract_min_max(aor, min, max, afi_length))
699         return 0;
700
701     return afi_length;
702 }
703
704 /*
705  * Sort comparision function for a sequence of IPAddressFamily.
706  *
707  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
708  * the ordering: I can read it as meaning that IPv6 without a SAFI
709  * comes before IPv4 with a SAFI, which seems pretty weird.  The
710  * examples in appendix B suggest that the author intended the
711  * null-SAFI rule to apply only within a single AFI, which is what I
712  * would have expected and is what the following code implements.
713  */
714 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
715                                const IPAddressFamily *const *b_)
716 {
717     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
718     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
719     int len = ((a->length <= b->length) ? a->length : b->length);
720     int cmp = memcmp(a->data, b->data, len);
721     return cmp ? cmp : a->length - b->length;
722 }
723
724 /*
725  * Check whether an IPAddrBLocks is in canonical form.
726  */
727 int v3_addr_is_canonical(IPAddrBlocks *addr)
728 {
729     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
730     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
731     IPAddressOrRanges *aors;
732     int i, j, k;
733
734     /*
735      * Empty extension is cannonical.
736      */
737     if (addr == NULL)
738         return 1;
739
740     /*
741      * Check whether the top-level list is in order.
742      */
743     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
744         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
745         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
746         if (IPAddressFamily_cmp(&a, &b) >= 0)
747             return 0;
748     }
749
750     /*
751      * Top level's ok, now check each address family.
752      */
753     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
754         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
755         int length = length_from_afi(v3_addr_get_afi(f));
756
757         /*
758          * Inheritance is canonical.  Anything other than inheritance or
759          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
760          */
761         if (f == NULL || f->ipAddressChoice == NULL)
762             return 0;
763         switch (f->ipAddressChoice->type) {
764         case IPAddressChoice_inherit:
765             continue;
766         case IPAddressChoice_addressesOrRanges:
767             break;
768         default:
769             return 0;
770         }
771
772         /*
773          * It's an IPAddressOrRanges sequence, check it.
774          */
775         aors = f->ipAddressChoice->u.addressesOrRanges;
776         if (sk_IPAddressOrRange_num(aors) == 0)
777             return 0;
778         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
779             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
780             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
781
782             if (!extract_min_max(a, a_min, a_max, length) ||
783                 !extract_min_max(b, b_min, b_max, length))
784                 return 0;
785
786             /*
787              * Punt misordered list, overlapping start, or inverted range.
788              */
789             if (memcmp(a_min, b_min, length) >= 0 ||
790                 memcmp(a_min, a_max, length) > 0 ||
791                 memcmp(b_min, b_max, length) > 0)
792                 return 0;
793
794             /*
795              * Punt if adjacent or overlapping.  Check for adjacency by
796              * subtracting one from b_min first.
797              */
798             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
799             if (memcmp(a_max, b_min, length) >= 0)
800                 return 0;
801
802             /*
803              * Check for range that should be expressed as a prefix.
804              */
805             if (a->type == IPAddressOrRange_addressRange &&
806                 range_should_be_prefix(a_min, a_max, length) >= 0)
807                 return 0;
808         }
809
810         /*
811          * Check range to see if it's inverted or should be a
812          * prefix.
813          */
814         j = sk_IPAddressOrRange_num(aors) - 1;
815         {
816             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
817             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
818                 if (!extract_min_max(a, a_min, a_max, length))
819                     return 0;
820                 if (memcmp(a_min, a_max, length) > 0 ||
821                     range_should_be_prefix(a_min, a_max, length) >= 0)
822                     return 0;
823             }
824         }
825     }
826
827     /*
828      * If we made it through all that, we're happy.
829      */
830     return 1;
831 }
832
833 /*
834  * Whack an IPAddressOrRanges into canonical form.
835  */
836 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
837                                       const unsigned afi)
838 {
839     int i, j, length = length_from_afi(afi);
840
841     /*
842      * Sort the IPAddressOrRanges sequence.
843      */
844     sk_IPAddressOrRange_sort(aors);
845
846     /*
847      * Clean up representation issues, punt on duplicates or overlaps.
848      */
849     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
850         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
851         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
852         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
853         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
854
855         if (!extract_min_max(a, a_min, a_max, length) ||
856             !extract_min_max(b, b_min, b_max, length))
857             return 0;
858
859         /*
860          * Punt inverted ranges.
861          */
862         if (memcmp(a_min, a_max, length) > 0 ||
863             memcmp(b_min, b_max, length) > 0)
864             return 0;
865
866         /*
867          * Punt overlaps.
868          */
869         if (memcmp(a_max, b_min, length) >= 0)
870             return 0;
871
872         /*
873          * Merge if a and b are adjacent.  We check for
874          * adjacency by subtracting one from b_min first.
875          */
876         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
877         if (memcmp(a_max, b_min, length) == 0) {
878             IPAddressOrRange *merged;
879             if (!make_addressRange(&merged, a_min, b_max, length))
880                 return 0;
881             (void)sk_IPAddressOrRange_set(aors, i, merged);
882             (void)sk_IPAddressOrRange_delete(aors, i + 1);
883             IPAddressOrRange_free(a);
884             IPAddressOrRange_free(b);
885             --i;
886             continue;
887         }
888     }
889
890     /*
891      * Check for inverted final range.
892      */
893     j = sk_IPAddressOrRange_num(aors) - 1;
894     {
895         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
896         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
897             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
898             extract_min_max(a, a_min, a_max, length);
899             if (memcmp(a_min, a_max, length) > 0)
900                 return 0;
901         }
902     }
903
904     return 1;
905 }
906
907 /*
908  * Whack an IPAddrBlocks extension into canonical form.
909  */
910 int v3_addr_canonize(IPAddrBlocks *addr)
911 {
912     int i;
913     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
914         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
915         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
916             !IPAddressOrRanges_canonize(f->ipAddressChoice->
917                                         u.addressesOrRanges,
918                                         v3_addr_get_afi(f)))
919             return 0;
920     }
921     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
922     sk_IPAddressFamily_sort(addr);
923     OPENSSL_assert(v3_addr_is_canonical(addr));
924     return 1;
925 }
926
927 /*
928  * v2i handler for the IPAddrBlocks extension.
929  */
930 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
931                               struct v3_ext_ctx *ctx,
932                               STACK_OF(CONF_VALUE) *values)
933 {
934     static const char v4addr_chars[] = "0123456789.";
935     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
936     IPAddrBlocks *addr = NULL;
937     char *s = NULL, *t;
938     int i;
939
940     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
941         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
942         return NULL;
943     }
944
945     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
946         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
947         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
948         unsigned afi, *safi = NULL, safi_;
949         const char *addr_chars;
950         int prefixlen, i1, i2, delim, length;
951
952         if (!name_cmp(val->name, "IPv4")) {
953             afi = IANA_AFI_IPV4;
954         } else if (!name_cmp(val->name, "IPv6")) {
955             afi = IANA_AFI_IPV6;
956         } else if (!name_cmp(val->name, "IPv4-SAFI")) {
957             afi = IANA_AFI_IPV4;
958             safi = &safi_;
959         } else if (!name_cmp(val->name, "IPv6-SAFI")) {
960             afi = IANA_AFI_IPV6;
961             safi = &safi_;
962         } else {
963             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
964                       X509V3_R_EXTENSION_NAME_ERROR);
965             X509V3_conf_err(val);
966             goto err;
967         }
968
969         switch (afi) {
970         case IANA_AFI_IPV4:
971             addr_chars = v4addr_chars;
972             break;
973         case IANA_AFI_IPV6:
974             addr_chars = v6addr_chars;
975             break;
976         }
977
978         length = length_from_afi(afi);
979
980         /*
981          * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
982          * the other input values.
983          */
984         if (safi != NULL) {
985             *safi = strtoul(val->value, &t, 0);
986             t += strspn(t, " \t");
987             if (*safi > 0xFF || *t++ != ':') {
988                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
989                 X509V3_conf_err(val);
990                 goto err;
991             }
992             t += strspn(t, " \t");
993             s = BUF_strdup(t);
994         } else {
995             s = BUF_strdup(val->value);
996         }
997         if (s == NULL) {
998             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
999             goto err;
1000         }
1001
1002         /*
1003          * Check for inheritance.  Not worth additional complexity to
1004          * optimize this (seldom-used) case.
1005          */
1006         if (!strcmp(s, "inherit")) {
1007             if (!v3_addr_add_inherit(addr, afi, safi)) {
1008                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1009                           X509V3_R_INVALID_INHERITANCE);
1010                 X509V3_conf_err(val);
1011                 goto err;
1012             }
1013             OPENSSL_free(s);
1014             s = NULL;
1015             continue;
1016         }
1017
1018         i1 = strspn(s, addr_chars);
1019         i2 = i1 + strspn(s + i1, " \t");
1020         delim = s[i2++];
1021         s[i1] = '\0';
1022
1023         if (a2i_ipadd(min, s) != length) {
1024             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1025             X509V3_conf_err(val);
1026             goto err;
1027         }
1028
1029         switch (delim) {
1030         case '/':
1031             prefixlen = (int)strtoul(s + i2, &t, 10);
1032             if (t == s + i2 || *t != '\0') {
1033                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034                           X509V3_R_EXTENSION_VALUE_ERROR);
1035                 X509V3_conf_err(val);
1036                 goto err;
1037             }
1038             if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1039                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1040                 goto err;
1041             }
1042             break;
1043         case '-':
1044             i1 = i2 + strspn(s + i2, " \t");
1045             i2 = i1 + strspn(s + i1, addr_chars);
1046             if (i1 == i2 || s[i2] != '\0') {
1047                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1048                           X509V3_R_EXTENSION_VALUE_ERROR);
1049                 X509V3_conf_err(val);
1050                 goto err;
1051             }
1052             if (a2i_ipadd(max, s + i1) != length) {
1053                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1054                           X509V3_R_INVALID_IPADDRESS);
1055                 X509V3_conf_err(val);
1056                 goto err;
1057             }
1058             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1060                           X509V3_R_EXTENSION_VALUE_ERROR);
1061                 X509V3_conf_err(val);
1062                 goto err;
1063             }
1064             if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1065                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1066                 goto err;
1067             }
1068             break;
1069         case '\0':
1070             if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1071                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1072                 goto err;
1073             }
1074             break;
1075         default:
1076             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1077                       X509V3_R_EXTENSION_VALUE_ERROR);
1078             X509V3_conf_err(val);
1079             goto err;
1080         }
1081
1082         OPENSSL_free(s);
1083         s = NULL;
1084     }
1085
1086     /*
1087      * Canonize the result, then we're done.
1088      */
1089     if (!v3_addr_canonize(addr))
1090         goto err;
1091     return addr;
1092
1093  err:
1094     OPENSSL_free(s);
1095     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1096     return NULL;
1097 }
1098
1099 /*
1100  * OpenSSL dispatch
1101  */
1102 const X509V3_EXT_METHOD v3_addr = {
1103     NID_sbgp_ipAddrBlock,       /* nid */
1104     0,                          /* flags */
1105     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1106     0, 0, 0, 0,                 /* old functions, ignored */
1107     0,                          /* i2s */
1108     0,                          /* s2i */
1109     0,                          /* i2v */
1110     v2i_IPAddrBlocks,           /* v2i */
1111     i2r_IPAddrBlocks,           /* i2r */
1112     0,                          /* r2i */
1113     NULL                        /* extension-specific data */
1114 };
1115
1116 /*
1117  * Figure out whether extension sues inheritance.
1118  */
1119 int v3_addr_inherits(IPAddrBlocks *addr)
1120 {
1121     int i;
1122     if (addr == NULL)
1123         return 0;
1124     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1125         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1126         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1127             return 1;
1128     }
1129     return 0;
1130 }
1131
1132 /*
1133  * Figure out whether parent contains child.
1134  */
1135 static int addr_contains(IPAddressOrRanges *parent,
1136                          IPAddressOrRanges *child, int length)
1137 {
1138     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1139     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1140     int p, c;
1141
1142     if (child == NULL || parent == child)
1143         return 1;
1144     if (parent == NULL)
1145         return 0;
1146
1147     p = 0;
1148     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1149         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1150                              c_min, c_max, length))
1151             return -1;
1152         for (;; p++) {
1153             if (p >= sk_IPAddressOrRange_num(parent))
1154                 return 0;
1155             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1156                                  p_min, p_max, length))
1157                 return 0;
1158             if (memcmp(p_max, c_max, length) < 0)
1159                 continue;
1160             if (memcmp(p_min, c_min, length) > 0)
1161                 return 0;
1162             break;
1163         }
1164     }
1165
1166     return 1;
1167 }
1168
1169 /*
1170  * Test whether a is a subset of b.
1171  */
1172 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1173 {
1174     int i;
1175     if (a == NULL || a == b)
1176         return 1;
1177     if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1178         return 0;
1179     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1180     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1181         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1182         int j = sk_IPAddressFamily_find(b, fa);
1183         IPAddressFamily *fb;
1184         fb = sk_IPAddressFamily_value(b, j);
1185         if (fb == NULL)
1186             return 0;
1187         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1188                            fa->ipAddressChoice->u.addressesOrRanges,
1189                            length_from_afi(v3_addr_get_afi(fb))))
1190             return 0;
1191     }
1192     return 1;
1193 }
1194
1195 /*
1196  * Validation error handling via callback.
1197  */
1198 # define validation_err(_err_)           \
1199   do {                                  \
1200     if (ctx != NULL) {                  \
1201       ctx->error = _err_;               \
1202       ctx->error_depth = i;             \
1203       ctx->current_cert = x;            \
1204       ret = ctx->verify_cb(0, ctx);     \
1205     } else {                            \
1206       ret = 0;                          \
1207     }                                   \
1208     if (!ret)                           \
1209       goto done;                        \
1210   } while (0)
1211
1212 /*
1213  * Core code for RFC 3779 2.3 path validation.
1214  *
1215  * Returns 1 for success, 0 on error.
1216  *
1217  * When returning 0, ctx->error MUST be set to an appropriate value other than
1218  * X509_V_OK.
1219  */
1220 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1221                                           STACK_OF(X509) *chain,
1222                                           IPAddrBlocks *ext)
1223 {
1224     IPAddrBlocks *child = NULL;
1225     int i, j, ret = 1;
1226     X509 *x;
1227
1228     OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1229     OPENSSL_assert(ctx != NULL || ext != NULL);
1230     OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1231
1232     /*
1233      * Figure out where to start.  If we don't have an extension to
1234      * check, we're done.  Otherwise, check canonical form and
1235      * set up for walking up the chain.
1236      */
1237     if (ext != NULL) {
1238         i = -1;
1239         x = NULL;
1240     } else {
1241         i = 0;
1242         x = sk_X509_value(chain, i);
1243         OPENSSL_assert(x != NULL);
1244         if ((ext = x->rfc3779_addr) == NULL)
1245             goto done;
1246     }
1247     if (!v3_addr_is_canonical(ext))
1248         validation_err(X509_V_ERR_INVALID_EXTENSION);
1249     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1250     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1251         X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1252                   ERR_R_MALLOC_FAILURE);
1253         ctx->error = X509_V_ERR_OUT_OF_MEM;
1254         ret = 0;
1255         goto done;
1256     }
1257
1258     /*
1259      * Now walk up the chain.  No cert may list resources that its
1260      * parent doesn't list.
1261      */
1262     for (i++; i < sk_X509_num(chain); i++) {
1263         x = sk_X509_value(chain, i);
1264         OPENSSL_assert(x != NULL);
1265         if (!v3_addr_is_canonical(x->rfc3779_addr))
1266             validation_err(X509_V_ERR_INVALID_EXTENSION);
1267         if (x->rfc3779_addr == NULL) {
1268             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1269                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1270                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1271                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1272                     break;
1273                 }
1274             }
1275             continue;
1276         }
1277         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1278                                               IPAddressFamily_cmp);
1279         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1280             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1281             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1282             IPAddressFamily *fp =
1283                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1284             if (fp == NULL) {
1285                 if (fc->ipAddressChoice->type ==
1286                     IPAddressChoice_addressesOrRanges) {
1287                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1288                     break;
1289                 }
1290                 continue;
1291             }
1292             if (fp->ipAddressChoice->type ==
1293                 IPAddressChoice_addressesOrRanges) {
1294                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1295                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1296                                      fc->ipAddressChoice->u.addressesOrRanges,
1297                                      length_from_afi(v3_addr_get_afi(fc))))
1298                     sk_IPAddressFamily_set(child, j, fp);
1299                 else
1300                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1301             }
1302         }
1303     }
1304
1305     /*
1306      * Trust anchor can't inherit.
1307      */
1308     OPENSSL_assert(x != NULL);
1309     if (x->rfc3779_addr != NULL) {
1310         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1311             IPAddressFamily *fp =
1312                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1313             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1314                 && sk_IPAddressFamily_find(child, fp) >= 0)
1315                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1316         }
1317     }
1318
1319  done:
1320     sk_IPAddressFamily_free(child);
1321     return ret;
1322 }
1323
1324 # undef validation_err
1325
1326 /*
1327  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1328  */
1329 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1330 {
1331     return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1332 }
1333
1334 /*
1335  * RFC 3779 2.3 path validation of an extension.
1336  * Test whether chain covers extension.
1337  */
1338 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1339                                   IPAddrBlocks *ext, int allow_inheritance)
1340 {
1341     if (ext == NULL)
1342         return 1;
1343     if (chain == NULL || sk_X509_num(chain) == 0)
1344         return 0;
1345     if (!allow_inheritance && v3_addr_inherits(ext))
1346         return 0;
1347     return v3_addr_validate_path_internal(NULL, chain, ext);
1348 }
1349
1350 #endif                          /* OPENSSL_NO_RFC3779 */