Add support for KERN_ARND to get random bytes on NetBSD
[openssl.git] / crypto / stack / stack.c
1 /*
2  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include <stdio.h>
11 #include "internal/cryptlib.h"
12 #include "internal/numbers.h"
13 #include <openssl/stack.h>
14 #include <openssl/objects.h>
15 #include <errno.h>
16 #include <openssl/e_os2.h>      /* For ossl_inline */
17
18 /*
19  * The initial number of nodes in the array.
20  */
21 static const int min_nodes = 4;
22 static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
23                              ? (int)(SIZE_MAX / sizeof(void *))
24                              : INT_MAX;
25
26 struct stack_st {
27     int num;
28     const void **data;
29     int sorted;
30     int num_alloc;
31     OPENSSL_sk_compfunc comp;
32 };
33
34 OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
35 {
36     OPENSSL_sk_compfunc old = sk->comp;
37
38     if (sk->comp != c)
39         sk->sorted = 0;
40     sk->comp = c;
41
42     return old;
43 }
44
45 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
46 {
47     OPENSSL_STACK *ret;
48
49     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
50         CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
51         return NULL;
52     }
53
54     /* direct structure assignment */
55     *ret = *sk;
56
57     if (sk->num == 0) {
58         /* postpone |ret->data| allocation */
59         ret->data = NULL;
60         ret->num_alloc = 0;
61         return ret;
62     }
63     /* duplicate |sk->data| content */
64     if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
65         goto err;
66     memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
67     return ret;
68  err:
69     OPENSSL_sk_free(ret);
70     return NULL;
71 }
72
73 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
74                              OPENSSL_sk_copyfunc copy_func,
75                              OPENSSL_sk_freefunc free_func)
76 {
77     OPENSSL_STACK *ret;
78     int i;
79
80     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
81         CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
82         return NULL;
83     }
84
85     /* direct structure assignment */
86     *ret = *sk;
87
88     if (sk->num == 0) {
89         /* postpone |ret| data allocation */
90         ret->data = NULL;
91         ret->num_alloc = 0;
92         return ret;
93     }
94
95     ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
96     ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
97     if (ret->data == NULL) {
98         OPENSSL_free(ret);
99         return NULL;
100     }
101
102     for (i = 0; i < ret->num; ++i) {
103         if (sk->data[i] == NULL)
104             continue;
105         if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
106             while (--i >= 0)
107                 if (ret->data[i] != NULL)
108                     free_func((void *)ret->data[i]);
109             OPENSSL_sk_free(ret);
110             return NULL;
111         }
112     }
113     return ret;
114 }
115
116 OPENSSL_STACK *OPENSSL_sk_new_null(void)
117 {
118     return OPENSSL_sk_new_reserve(NULL, 0);
119 }
120
121 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
122 {
123     return OPENSSL_sk_new_reserve(c, 0);
124 }
125
126 /*
127  * Calculate the array growth based on the target size.
128  *
129  * The growth fraction is a rational number and is defined by a numerator
130  * and a denominator.  According to Andrew Koenig in his paper "Why Are
131  * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
132  * than the golden ratio (1.618...).
133  *
134  * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
135  * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
136  * computation is more difficult.
137  *
138  * The limit to avoid overflow is spot on.  The modulo three correction term
139  * ensures that the limit is the largest number than can be expanded by the
140  * growth factor without exceeding the hard limit.
141  *
142  * Do not call it with |current| lower than 2, or it will infinitely loop.
143  */
144 static ossl_inline int compute_growth(int target, int current)
145 {
146     const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
147
148     while (current < target) {
149         /* Check to see if we're at the hard limit */
150         if (current >= max_nodes)
151             return 0;
152
153         /* Expand the size by a factor of 3/2 if it is within range */
154         current = current < limit ? current + current / 2 : max_nodes;
155     }
156     return current;
157 }
158
159 /* internal STACK storage allocation */
160 static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
161 {
162     const void **tmpdata;
163     int num_alloc;
164
165     /* Check to see the reservation isn't exceeding the hard limit */
166     if (n > max_nodes - st->num)
167         return 0;
168
169     /* Figure out the new size */
170     num_alloc = st->num + n;
171     if (num_alloc < min_nodes)
172         num_alloc = min_nodes;
173
174     /* If |st->data| allocation was postponed */
175     if (st->data == NULL) {
176         /*
177          * At this point, |st->num_alloc| and |st->num| are 0;
178          * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
179          */
180         if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
181             CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
182             return 0;
183         }
184         st->num_alloc = num_alloc;
185         return 1;
186     }
187
188     if (!exact) {
189         if (num_alloc <= st->num_alloc)
190             return 1;
191         num_alloc = compute_growth(num_alloc, st->num_alloc);
192         if (num_alloc == 0)
193             return 0;
194     } else if (num_alloc == st->num_alloc) {
195         return 1;
196     }
197
198     tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
199     if (tmpdata == NULL)
200         return 0;
201
202     st->data = tmpdata;
203     st->num_alloc = num_alloc;
204     return 1;
205 }
206
207 OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
208 {
209     OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
210
211     if (st == NULL)
212         return NULL;
213
214     st->comp = c;
215
216     if (n <= 0)
217         return st;
218
219     if (!sk_reserve(st, n, 1)) {
220         OPENSSL_sk_free(st);
221         return NULL;
222     }
223
224     return st;
225 }
226
227 int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
228 {
229     if (st == NULL)
230         return 0;
231
232     if (n < 0)
233         return 1;
234     return sk_reserve(st, n, 1);
235 }
236
237 int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
238 {
239     if (st == NULL || st->num == max_nodes)
240         return 0;
241
242     if (!sk_reserve(st, 1, 0))
243         return 0;
244
245     if ((loc >= st->num) || (loc < 0)) {
246         st->data[st->num] = data;
247     } else {
248         memmove(&st->data[loc + 1], &st->data[loc],
249                 sizeof(st->data[0]) * (st->num - loc));
250         st->data[loc] = data;
251     }
252     st->num++;
253     st->sorted = 0;
254     return st->num;
255 }
256
257 static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
258 {
259     const void *ret = st->data[loc];
260
261     if (loc != st->num - 1)
262          memmove(&st->data[loc], &st->data[loc + 1],
263                  sizeof(st->data[0]) * (st->num - loc - 1));
264     st->num--;
265
266     return (void *)ret;
267 }
268
269 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
270 {
271     int i;
272
273     for (i = 0; i < st->num; i++)
274         if (st->data[i] == p)
275             return internal_delete(st, i);
276     return NULL;
277 }
278
279 void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
280 {
281     if (st == NULL || loc < 0 || loc >= st->num)
282         return NULL;
283
284     return internal_delete(st, loc);
285 }
286
287 static int internal_find(OPENSSL_STACK *st, const void *data,
288                          int ret_val_options)
289 {
290     const void *r;
291     int i;
292
293     if (st == NULL || st->num == 0)
294         return -1;
295
296     if (st->comp == NULL) {
297         for (i = 0; i < st->num; i++)
298             if (st->data[i] == data)
299                 return i;
300         return -1;
301     }
302
303     if (!st->sorted) {
304         if (st->num > 1)
305             qsort(st->data, st->num, sizeof(void *), st->comp);
306         st->sorted = 1; /* empty or single-element stack is considered sorted */
307     }
308     if (data == NULL)
309         return -1;
310     r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
311                         ret_val_options);
312
313     return r == NULL ? -1 : (int)((const void **)r - st->data);
314 }
315
316 int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
317 {
318     return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
319 }
320
321 int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
322 {
323     return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
324 }
325
326 int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
327 {
328     if (st == NULL)
329         return -1;
330     return OPENSSL_sk_insert(st, data, st->num);
331 }
332
333 int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
334 {
335     return OPENSSL_sk_insert(st, data, 0);
336 }
337
338 void *OPENSSL_sk_shift(OPENSSL_STACK *st)
339 {
340     if (st == NULL || st->num == 0)
341         return NULL;
342     return internal_delete(st, 0);
343 }
344
345 void *OPENSSL_sk_pop(OPENSSL_STACK *st)
346 {
347     if (st == NULL || st->num == 0)
348         return NULL;
349     return internal_delete(st, st->num - 1);
350 }
351
352 void OPENSSL_sk_zero(OPENSSL_STACK *st)
353 {
354     if (st == NULL || st->num == 0)
355         return;
356     memset(st->data, 0, sizeof(*st->data) * st->num);
357     st->num = 0;
358 }
359
360 void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
361 {
362     int i;
363
364     if (st == NULL)
365         return;
366     for (i = 0; i < st->num; i++)
367         if (st->data[i] != NULL)
368             func((char *)st->data[i]);
369     OPENSSL_sk_free(st);
370 }
371
372 void OPENSSL_sk_free(OPENSSL_STACK *st)
373 {
374     if (st == NULL)
375         return;
376     OPENSSL_free(st->data);
377     OPENSSL_free(st);
378 }
379
380 int OPENSSL_sk_num(const OPENSSL_STACK *st)
381 {
382     return st == NULL ? -1 : st->num;
383 }
384
385 void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
386 {
387     if (st == NULL || i < 0 || i >= st->num)
388         return NULL;
389     return (void *)st->data[i];
390 }
391
392 void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
393 {
394     if (st == NULL || i < 0 || i >= st->num)
395         return NULL;
396     st->data[i] = data;
397     st->sorted = 0;
398     return (void *)st->data[i];
399 }
400
401 void OPENSSL_sk_sort(OPENSSL_STACK *st)
402 {
403     if (st != NULL && !st->sorted && st->comp != NULL) {
404         if (st->num > 1)
405             qsort(st->data, st->num, sizeof(void *), st->comp);
406         st->sorted = 1; /* empty or single-element stack is considered sorted */
407     }
408 }
409
410 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
411 {
412     return st == NULL ? 1 : st->sorted;
413 }