As all assembler modules are alignment neutral, allow C to pass unaligned
[openssl.git] / crypto / sha / sha512.c
1 /* crypto/sha/sha512.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
9 /*
10  * IMPLEMENTATION NOTES.
11  *
12  * As you might have noticed 32-bit hash algorithms:
13  *
14  * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
15  * - optimized versions implement two transform functions: one operating
16  *   on [aligned] data in host byte order and one - on data in input
17  *   stream byte order;
18  * - share common byte-order neutral collector and padding function
19  *   implementations, ../md32_common.h;
20  *
21  * Neither of the above applies to this SHA-512 implementations. Reasons
22  * [in reverse order] are:
23  *
24  * - it's the only 64-bit hash algorithm for the moment of this writing,
25  *   there is no need for common collector/padding implementation [yet];
26  * - by supporting only one transform function [which operates on
27  *   *aligned* data in input stream byte order, big-endian in this case]
28  *   we minimize burden of maintenance in two ways: a) collector/padding
29  *   function is simpler; b) only one transform function to stare at;
30  * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
31  *   apply a number of optimizations to mitigate potential performance
32  *   penalties caused by previous design decision;
33  *
34  * Caveat lector.
35  *
36  * Implementation relies on the fact that "long long" is 64-bit on
37  * both 32- and 64-bit platforms. If some compiler vendor comes up
38  * with 128-bit long long, adjustment to sha.h would be required.
39  * As this implementation relies on 64-bit integer type, it's totally
40  * inappropriate for platforms which don't support it, most notably
41  * 16-bit platforms.
42  *                                      <appro@fy.chalmers.se>
43  */
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <openssl/crypto.h>
48 #include <openssl/sha.h>
49 #include <openssl/opensslv.h>
50
51 #include "cryptlib.h"
52
53 const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;
54
55 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
56     defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
57     defined(__s390__) || defined(__s390x__) || \
58     defined(SHA512_ASM)
59 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
60 #endif
61
62 int SHA384_Init (SHA512_CTX *c)
63         {
64         c->h[0]=U64(0xcbbb9d5dc1059ed8);
65         c->h[1]=U64(0x629a292a367cd507);
66         c->h[2]=U64(0x9159015a3070dd17);
67         c->h[3]=U64(0x152fecd8f70e5939);
68         c->h[4]=U64(0x67332667ffc00b31);
69         c->h[5]=U64(0x8eb44a8768581511);
70         c->h[6]=U64(0xdb0c2e0d64f98fa7);
71         c->h[7]=U64(0x47b5481dbefa4fa4);
72         c->Nl=0;        c->Nh=0;
73         c->num=0;       c->md_len=SHA384_DIGEST_LENGTH;
74         return 1;
75         }
76
77 int SHA512_Init (SHA512_CTX *c)
78         {
79         c->h[0]=U64(0x6a09e667f3bcc908);
80         c->h[1]=U64(0xbb67ae8584caa73b);
81         c->h[2]=U64(0x3c6ef372fe94f82b);
82         c->h[3]=U64(0xa54ff53a5f1d36f1);
83         c->h[4]=U64(0x510e527fade682d1);
84         c->h[5]=U64(0x9b05688c2b3e6c1f);
85         c->h[6]=U64(0x1f83d9abfb41bd6b);
86         c->h[7]=U64(0x5be0cd19137e2179);
87         c->Nl=0;        c->Nh=0;
88         c->num=0;       c->md_len=SHA512_DIGEST_LENGTH;
89         return 1;
90         }
91
92 #ifndef SHA512_ASM
93 static
94 #endif
95 void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
96
97 int SHA512_Final (unsigned char *md, SHA512_CTX *c)
98         {
99         unsigned char *p=(unsigned char *)c->u.p;
100         size_t n=c->num;
101
102         p[n]=0x80;      /* There always is a room for one */
103         n++;
104         if (n > (sizeof(c->u)-16))
105                 memset (p+n,0,sizeof(c->u)-n), n=0,
106                 sha512_block_data_order (c,p,1);
107
108         memset (p+n,0,sizeof(c->u)-16-n);
109 #ifdef  B_ENDIAN
110         c->u.d[SHA_LBLOCK-2] = c->Nh;
111         c->u.d[SHA_LBLOCK-1] = c->Nl;
112 #else
113         p[sizeof(c->u)-1]  = (unsigned char)(c->Nl);
114         p[sizeof(c->u)-2]  = (unsigned char)(c->Nl>>8);
115         p[sizeof(c->u)-3]  = (unsigned char)(c->Nl>>16);
116         p[sizeof(c->u)-4]  = (unsigned char)(c->Nl>>24);
117         p[sizeof(c->u)-5]  = (unsigned char)(c->Nl>>32);
118         p[sizeof(c->u)-6]  = (unsigned char)(c->Nl>>40);
119         p[sizeof(c->u)-7]  = (unsigned char)(c->Nl>>48);
120         p[sizeof(c->u)-8]  = (unsigned char)(c->Nl>>56);
121         p[sizeof(c->u)-9]  = (unsigned char)(c->Nh);
122         p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
123         p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
124         p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
125         p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
126         p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
127         p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
128         p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
129 #endif
130
131         sha512_block_data_order (c,p,1);
132
133         if (md==0) return 0;
134
135         switch (c->md_len)
136                 {
137                 /* Let compiler decide if it's appropriate to unroll... */
138                 case SHA384_DIGEST_LENGTH:
139                         for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
140                                 {
141                                 SHA_LONG64 t = c->h[n];
142
143                                 *(md++) = (unsigned char)(t>>56);
144                                 *(md++) = (unsigned char)(t>>48);
145                                 *(md++) = (unsigned char)(t>>40);
146                                 *(md++) = (unsigned char)(t>>32);
147                                 *(md++) = (unsigned char)(t>>24);
148                                 *(md++) = (unsigned char)(t>>16);
149                                 *(md++) = (unsigned char)(t>>8);
150                                 *(md++) = (unsigned char)(t);
151                                 }
152                         break;
153                 case SHA512_DIGEST_LENGTH:
154                         for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
155                                 {
156                                 SHA_LONG64 t = c->h[n];
157
158                                 *(md++) = (unsigned char)(t>>56);
159                                 *(md++) = (unsigned char)(t>>48);
160                                 *(md++) = (unsigned char)(t>>40);
161                                 *(md++) = (unsigned char)(t>>32);
162                                 *(md++) = (unsigned char)(t>>24);
163                                 *(md++) = (unsigned char)(t>>16);
164                                 *(md++) = (unsigned char)(t>>8);
165                                 *(md++) = (unsigned char)(t);
166                                 }
167                         break;
168                 /* ... as well as make sure md_len is not abused. */
169                 default:        return 0;
170                 }
171
172         return 1;
173         }
174
175 int SHA384_Final (unsigned char *md,SHA512_CTX *c)
176 {   return SHA512_Final (md,c);   }
177
178 int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
179         {
180         SHA_LONG64      l;
181         unsigned char  *p=c->u.p;
182         const unsigned char *data=(const unsigned char *)_data;
183
184         if (len==0) return  1;
185
186         l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
187         if (l < c->Nl)          c->Nh++;
188         if (sizeof(len)>=8)     c->Nh+=(((SHA_LONG64)len)>>61);
189         c->Nl=l;
190
191         if (c->num != 0)
192                 {
193                 size_t n = sizeof(c->u) - c->num;
194
195                 if (len < n)
196                         {
197                         memcpy (p+c->num,data,len), c->num += len;
198                         return 1;
199                         }
200                 else    {
201                         memcpy (p+c->num,data,n), c->num = 0;
202                         len-=n, data+=n;
203                         sha512_block_data_order (c,p,1);
204                         }
205                 }
206
207         if (len >= sizeof(c->u))
208                 {
209 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
210                 if ((size_t)data%sizeof(c->u.d[0]) != 0)
211                         while (len >= sizeof(c->u))
212                                 memcpy (p,data,sizeof(c->u)),
213                                 sha512_block_data_order (c,p,1),
214                                 len  -= sizeof(c->u),
215                                 data += sizeof(c->u);
216                 else
217 #endif
218                         sha512_block_data_order (c,data,len/sizeof(c->u)),
219                         data += len,
220                         len  %= sizeof(c->u),
221                         data -= len;
222                 }
223
224         if (len != 0)   memcpy (p,data,len), c->num = (int)len;
225
226         return 1;
227         }
228
229 int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
230 {   return SHA512_Update (c,data,len);   }
231
232 void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
233 {   sha512_block_data_order (c,data,1);  }
234
235 unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
236         {
237         SHA512_CTX c;
238         static unsigned char m[SHA384_DIGEST_LENGTH];
239
240         if (md == NULL) md=m;
241         SHA384_Init(&c);
242         SHA512_Update(&c,d,n);
243         SHA512_Final(md,&c);
244         OPENSSL_cleanse(&c,sizeof(c));
245         return(md);
246         }
247
248 unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
249         {
250         SHA512_CTX c;
251         static unsigned char m[SHA512_DIGEST_LENGTH];
252
253         if (md == NULL) md=m;
254         SHA512_Init(&c);
255         SHA512_Update(&c,d,n);
256         SHA512_Final(md,&c);
257         OPENSSL_cleanse(&c,sizeof(c));
258         return(md);
259         }
260
261 #ifndef SHA512_ASM
262 static const SHA_LONG64 K512[80] = {
263         U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
264         U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
265         U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
266         U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
267         U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
268         U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
269         U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
270         U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
271         U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
272         U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
273         U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
274         U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
275         U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
276         U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
277         U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
278         U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
279         U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
280         U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
281         U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
282         U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
283         U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
284         U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
285         U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
286         U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
287         U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
288         U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
289         U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
290         U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
291         U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
292         U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
293         U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
294         U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
295         U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
296         U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
297         U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
298         U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
299         U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
300         U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
301         U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
302         U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
303
304 #ifndef PEDANTIC
305 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
306 #  if defined(__x86_64) || defined(__x86_64__)
307 #   define ROTR(a,n)    ({ unsigned long ret;           \
308                                 asm ("rorq %1,%0"       \
309                                 : "=r"(ret)             \
310                                 : "J"(n),"0"(a)         \
311                                 : "cc"); ret;           })
312 #   if !defined(B_ENDIAN)
313 #    define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x)));  \
314                                 asm ("bswapq    %0"             \
315                                 : "=r"(ret)                     \
316                                 : "0"(ret)); ret;               })
317 #   endif
318 #  elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
319 #   if defined(I386_ONLY)
320 #    define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
321                         unsigned int hi,lo;                     \
322                                 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
323                                     "roll $16,%%eax; roll $16,%%edx; "\
324                                     "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
325                                 : "=a"(lo),"=d"(hi)             \
326                                 : "0"(p[1]),"1"(p[0]) : "cc");  \
327                                 ((SHA_LONG64)hi)<<32|lo;        })
328 #   else
329 #    define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
330                         unsigned int hi,lo;                     \
331                                 asm ("bswapl %0; bswapl %1;"    \
332                                 : "=r"(lo),"=r"(hi)             \
333                                 : "0"(p[1]),"1"(p[0]));         \
334                                 ((SHA_LONG64)hi)<<32|lo;        })
335 #   endif
336 #  elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
337 #   define ROTR(a,n)    ({ unsigned long ret;           \
338                                 asm ("rotrdi %0,%1,%2"  \
339                                 : "=r"(ret)             \
340                                 : "r"(a),"K"(n)); ret;  })
341 #  endif
342 # elif defined(_MSC_VER)
343 #  if defined(_WIN64)   /* applies to both IA-64 and AMD64 */
344 #   define ROTR(a,n)    _rotr64((a),n)
345 #  endif
346 #  if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
347 #   if defined(I386_ONLY)
348     static SHA_LONG64 __fastcall __pull64be(const void *x)
349     {   _asm    mov     edx, [ecx + 0]
350         _asm    mov     eax, [ecx + 4]
351         _asm    xchg    dh,dl
352         _asm    xchg    ah,al
353         _asm    rol     edx,16
354         _asm    rol     eax,16
355         _asm    xchg    dh,dl
356         _asm    xchg    ah,al
357     }
358 #   else
359     static SHA_LONG64 __fastcall __pull64be(const void *x)
360     {   _asm    mov     edx, [ecx + 0]
361         _asm    mov     eax, [ecx + 4]
362         _asm    bswap   edx
363         _asm    bswap   eax
364     }
365 #   endif
366 #   define PULL64(x) __pull64be(&(x))
367 #  endif
368 # endif
369 #endif
370
371 #ifndef PULL64
372 #define B(x,j)    (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
373 #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
374 #endif
375
376 #ifndef ROTR
377 #define ROTR(x,s)       (((x)>>s) | (x)<<(64-s))
378 #endif
379
380 #define Sigma0(x)       (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
381 #define Sigma1(x)       (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
382 #define sigma0(x)       (ROTR((x),1)  ^ ROTR((x),8)  ^ ((x)>>7))
383 #define sigma1(x)       (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
384
385 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
386 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
387
388 #if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
389 #define GO_FOR_SSE2(ctx,in,num)         do {            \
390         void    sha512_block_sse2(void *,const void *,size_t);  \
391         if (!(OPENSSL_ia32cap_P & (1<<26))) break;      \
392         sha512_block_sse2(ctx->h,in,num); return;       \
393                                         } while (0)
394 #endif
395
396 #ifdef OPENSSL_SMALL_FOOTPRINT
397
398 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
399         {
400         const SHA_LONG64 *W=in;
401         SHA_LONG64      a,b,c,d,e,f,g,h,s0,s1,T1,T2;
402         SHA_LONG64      X[16];
403         int i;
404
405 #ifdef GO_FOR_SSE2
406         GO_FOR_SSE2(ctx,in,num);
407 #endif
408
409                         while (num--) {
410
411         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
412         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
413
414         for (i=0;i<16;i++)
415                 {
416 #ifdef B_ENDIAN
417                 T1 = X[i] = W[i];
418 #else
419                 T1 = X[i] = PULL64(W[i]);
420 #endif
421                 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
422                 T2 = Sigma0(a) + Maj(a,b,c);
423                 h = g;  g = f;  f = e;  e = d + T1;
424                 d = c;  c = b;  b = a;  a = T1 + T2;
425                 }
426
427         for (;i<80;i++)
428                 {
429                 s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
430                 s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
431
432                 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
433                 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
434                 T2 = Sigma0(a) + Maj(a,b,c);
435                 h = g;  g = f;  f = e;  e = d + T1;
436                 d = c;  c = b;  b = a;  a = T1 + T2;
437                 }
438
439         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
440         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
441
442                         W+=SHA_LBLOCK;
443                         }
444         }
445
446 #else
447
448 #define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
449         T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];      \
450         h = Sigma0(a) + Maj(a,b,c);                     \
451         d += T1;        h += T1;                } while (0)
452
453 #define ROUND_16_80(i,a,b,c,d,e,f,g,h,X)        do {    \
454         s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
455         s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
456         T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
457         ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
458
459 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
460         {
461         const SHA_LONG64 *W=in;
462         SHA_LONG64      a,b,c,d,e,f,g,h,s0,s1,T1;
463         SHA_LONG64      X[16];
464         int i;
465
466 #ifdef GO_FOR_SSE2
467         GO_FOR_SSE2(ctx,in,num);
468 #endif
469
470                         while (num--) {
471
472         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
473         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
474
475 #ifdef B_ENDIAN
476         T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
477         T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
478         T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
479         T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
480         T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
481         T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
482         T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
483         T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
484         T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
485         T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
486         T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
487         T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
488         T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
489         T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
490         T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
491         T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
492 #else
493         T1 = X[0]  = PULL64(W[0]);      ROUND_00_15(0,a,b,c,d,e,f,g,h);
494         T1 = X[1]  = PULL64(W[1]);      ROUND_00_15(1,h,a,b,c,d,e,f,g);
495         T1 = X[2]  = PULL64(W[2]);      ROUND_00_15(2,g,h,a,b,c,d,e,f);
496         T1 = X[3]  = PULL64(W[3]);      ROUND_00_15(3,f,g,h,a,b,c,d,e);
497         T1 = X[4]  = PULL64(W[4]);      ROUND_00_15(4,e,f,g,h,a,b,c,d);
498         T1 = X[5]  = PULL64(W[5]);      ROUND_00_15(5,d,e,f,g,h,a,b,c);
499         T1 = X[6]  = PULL64(W[6]);      ROUND_00_15(6,c,d,e,f,g,h,a,b);
500         T1 = X[7]  = PULL64(W[7]);      ROUND_00_15(7,b,c,d,e,f,g,h,a);
501         T1 = X[8]  = PULL64(W[8]);      ROUND_00_15(8,a,b,c,d,e,f,g,h);
502         T1 = X[9]  = PULL64(W[9]);      ROUND_00_15(9,h,a,b,c,d,e,f,g);
503         T1 = X[10] = PULL64(W[10]);     ROUND_00_15(10,g,h,a,b,c,d,e,f);
504         T1 = X[11] = PULL64(W[11]);     ROUND_00_15(11,f,g,h,a,b,c,d,e);
505         T1 = X[12] = PULL64(W[12]);     ROUND_00_15(12,e,f,g,h,a,b,c,d);
506         T1 = X[13] = PULL64(W[13]);     ROUND_00_15(13,d,e,f,g,h,a,b,c);
507         T1 = X[14] = PULL64(W[14]);     ROUND_00_15(14,c,d,e,f,g,h,a,b);
508         T1 = X[15] = PULL64(W[15]);     ROUND_00_15(15,b,c,d,e,f,g,h,a);
509 #endif
510
511         for (i=16;i<80;i+=8)
512                 {
513                 ROUND_16_80(i+0,a,b,c,d,e,f,g,h,X);
514                 ROUND_16_80(i+1,h,a,b,c,d,e,f,g,X);
515                 ROUND_16_80(i+2,g,h,a,b,c,d,e,f,X);
516                 ROUND_16_80(i+3,f,g,h,a,b,c,d,e,X);
517                 ROUND_16_80(i+4,e,f,g,h,a,b,c,d,X);
518                 ROUND_16_80(i+5,d,e,f,g,h,a,b,c,X);
519                 ROUND_16_80(i+6,c,d,e,f,g,h,a,b,X);
520                 ROUND_16_80(i+7,b,c,d,e,f,g,h,a,X);
521                 }
522
523         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
524         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
525
526                         W+=SHA_LBLOCK;
527                         }
528         }
529
530 #endif
531
532 #endif /* SHA512_ASM */
533
534 #endif /* OPENSSL_NO_SHA512 */